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 Understanding the merits of six-phase interior permanent magnet 

synchronous machines (IP-MSMs) over their three-phase counterparts, this 

paper analyses the six-phase machine for optimal parameter and performance 

considerations. Initially, a mathematical model of the six-phase IPMSM is 

developed employing the dq-axis theory and performance predicted by the 

model is verified under identical operating conditions with those using a 

machine designed and tested through finite element analysis (FEA). The 

developed and verified machine model is then employed to exclusively 

derive the relation between various machine parameters in order to obtain 

optimum flux weakening region in the six-phase IPMSM. Thereafter, the 

equations derived on the basis of maximum torque per ampere (MTPA) 

control theory are analyzed to understand the effect of various parameters 

and variables in influencing the machine‟s performance in the „constant 

torque‟ region and „constant power‟ region, power output capability, a ratio 

of reluctance torque to magnet-assisted torque with changes in the stator 

current vector etc. This is the contribution of this paper. 
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1. INTRODUCTION  

Over the last decade, research on six-phase machines have been widely performed and been 

seriously looked into as contenders for electric ship propulsion, locomotive traction, industrial high-power 

applications, electric and hybrid-electric vehicles and “more-electric” aircrafts. Fault tolerance feature, 

possibility of splitting the motor power across a higher number of phases and thus reducing the per-phase 

(per switch) converter rating, reduction of amplitude of torque pulsation, lesser harmonic content and more 

flexibility of torque/power control when compared to standard three-phase versions have been inherent 

merits of these machines [1-5]. Six phase conventional synchronous generators were modeled and developed 

for high power generation, and multi-phase induction and permanent magnet machines and drives were 

modeled, designed and tested for or industrial automation and electrified transportation applications as well 

[6]. Some of the paper also there for detecting defects by applying Hough transform and least squares on 

ceramic images obtained from non-destructive testing [7]. 

However, optimal parameter considerations in six-phase IPMSMs for optimal design and 

understanding its power capability have not been analyzed yet. This is where the authors derive their  

motivation from. 
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2. MATHEMATICAL MODEL OF THE SIX-PHASE IPMSM 

Mathematical model of the six-phase IPMSM employing the    axis theory has been developed in 

this section. The six-phase machine configuration taken into consideration employs two sets of balanced 

sinusoidal distributed three-phase windings, mutually displaced in space by 30 degrees electrical, and is 

shown in Figure 1. The derived model d-q axis model neglects the insignificant mutual leakage flux between 

the two stator winding sets, motoring mode of the machine is assumed positive in the analysis and the 

machine is analyzed in the rotor reference frame using Park‟s transformation as in [8]. 

The corresponding d- and q-axis flux linkage matrix can be obtained as in (1). The torque of the 

machine as in (2) can be derived using the flux linkage and voltage equations, where, sub-script 1 and 2 in 

various d- and q-axis quantities correspond to two three-phase sets a1b1c1 phases and a2b2c2 phases 

respectively. λ m is the peak value of the open-circuit permanent magnet flux linkage associated with one 

armature phase in the machine. The results obtained from both FEA and developed    axis model were 

found to be in close agreement. 

 

 

  
  

(a) (b) 

  

Figure 1. Six-phase IPMSM stator phase configuration considered and cross-section of the six-phase 

IPMSM designed in this paper for FEA based validation (a) Six-phase IPMSM stator phase configuration 

(b) Cross-section of the six-phase IPMSM designed 

 

 

To get the flux linkage and voltage equation, the phase inductances have to be transformed to d-q 

reference frame with a transformation matrix. Here we assumed that the same space and time difference 

between phases then the transformation matrix will look like following. [9] 
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We know the procedure to transform the phase inductance to d-q inductances 
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So the inductance matrix in    frame will look like, 
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Where, 

 

       
 

 
   

 

 
            

 

       
 

 
   

 

 
            

 

    
 

 
   

 

 
             

 

    
 

 
   

 

 
             

 

Now the flux linkage matrix will form as below, 
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Where, λf represents the permanent magnet flux linkage. 

 

Finally the voltage equation will be, 
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Where, 
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To find out the Torque expression following steps need to be performed. 

Expanding all four voltage equation and multiplied with corresponding current we can get the  

power expression, 
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Integrating (9), (10), (11) and (12) with respect to time and adding them gives the energy balance 

equation as: 
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The first term represents the Ohmic losses and the second term represents the stored field energy in 

the coils and the last term is responsible to produce useful electromagnetic torque. 

So finally the electromagnetic torque expression is, 
 

   
 

 
 

         

  

 
    

  
 

 

Where,   em represents the change in mechanical energy, i.e. last part of expression (13), 
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Where, p= no of pole-pairs. 
 

From the previous voltage equations we get steady state form of voltage equations like: 
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2.1. Equivalent circuit 

Equivalent circuit for six phase IPMSM (a) d-axis, (b) q-axis shown in Figure 2. 
 

 

  
  

(a) (b) 
  

Figure 2. Equivalent circuit for six phase IPMSM (a) d-axis, (b) q-axis 
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At steady state the voltage equations will be for the a1b1c1 winding set from the (15), (16), (17) and (18) 
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The stator current vector and voltage vector may be defined as 
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From (15), (16), (17), (18), (21) and (22) we can write 
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Where we consider, 
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And    and    are the magnitudes of the stator current and voltage respectively. 

With the help of the above equations, the phasor diagram has been drawn in the figures 3 and 4. We 

consider that the stator voltage   
⃗⃗  ⃗ and stator current   ⃗⃗   are leading the q axis at angles of  and  respectively in fig: 

here the d-axis current component is demagnetized the permanent magnet field mmf, and also we draw a phasor 

where   
⃗⃗  ⃗ leads the q-axis by  and the current phasor   ⃗⃗                        in fig: that‟s why in the second phasor 

d-axis current component magnetizing the permanent magnet field mmf. 

 

 

 
 

Figure 3. Steady-state phasor diagram for IPMSM when demagnetizing armature current in the d-axis 

 

 

 
 

Figure 4. Steady-state phasor diagram for IPMSM when magnetizing armature current in the d-axis 
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3. DERIVATION OF THE MTPA BASED OPTIMUM POWER CAPABILITY CONDITION 

The developed   -axis model presented in the previous section will be employed here to 

exclusively derive the Maximum Torque per Ampere (MTPA) control theory which will establish a basis 

towards understanding the relationship between various machine parameters in order to obtain optimal torque 

control below rated (base) speed and flux weakening capability above base speed in 6-phase IPMSMs. The 

MTPA theory established here for a six-phase IPMSM is one of the contributions of this paper. As per the 

conventional   -axis theory, a) the machine is assumed to have sinusoidal distributed MMF‟s both from the 

stator and the rotor side, b) core loss, mechanical loss, air-gap space harmonics and magnetic saturation are 

neglected. From the mathematical model presented in section II, d- and q- axis voltage equations of the six-

phase machine can be written as in (3) and (4), where other symbols have their usual meanings. 
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It is assumed that three phase balanced “30
0
 time-phase displaced” currents are fed through the two 

symmetrical three-phase sets such that                                    and           . 
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The torque equation can be written as in (5). Where, p is the differential operator,  is the electrical 

speed in rad/sec (other symbols having their usual meanings). Again, 1) considering steady state analysis of 

the machine; and 2) for simplicity of analysis, neglecting resistive voltage drops. 

The d- and q-axis voltage equations of the six-phase machine can be written as in (28) and (29). The 

per phase peak voltage    can be written as in (30). Substituting (28) and (29) in (30) we get (31). 
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If the d- and q-axes currents are considered as abscissa and ordinate variables respectively, equation 

(31) can be graphically represented through an ellipse whose center is not at the origin and has co-ordinates 

of ellipse center as((           ⁄    ,0). Equation (32) presents a circle and the peak of current per phase 

(  ) can be represented as its radius. The graphical representations of the voltage and current in the form of 

ellipse and circle, respectively, are in similar lines with the MTPA concept for three-phase IPMSMs [10]. 

 

 

4. ANALYSIS OF THE MTPA BASED EQUATIONS FOR OPTIMAL PARAMETER 

CONSIDERATIONS 

The equations provided in section IV have been analyzed here in order to understand the limits of 

various parameters and variables such as          and their effect on the output power, reluctance torque 

component, optimal angle of the current vector (γ), maximum speed and hence, the constant power speed 

range of a six phase IPMSM. 



IJAPE ISSN: 2252-8792  

Analysis of Six-Phase Interior Permanent Magnet Synchronous Machines (Surajit Mondal) 

145 

 
  

Figure 5. λm vs. wmax as a function of Changing Ld in per-unit quantities 

  

  

  
  

(a) (b) 

  

Figure 6. Gamma and output power as a function of Lq-Ld and λm in per-unit quantities where λm is varied 

between 0.1 and 1 pu at periodic steps of 0.1 pu. (a) γ vs. Lq-Ld. (b) Output power vs. Lq-Ld 

 

 

5. CONCLUSION 
The analytical d-q axes based model of a six-phase IPMSM has been formulated neglecting the 

mutual leakage inductance between the two numbers of stator winding phase sets. The work has presented 

prototype design of a six-phase interior PMSM and its parameter. The machine for which the design is 

considered will be used in an electrified vehicle traction application. The variation of inductances and 

permanent magnet flux linkage show nearly equal result with three phase IMPSM machine. As this is novel 

and no such machine exists in the laboratory, validation of this derived model has been performed through a 

more accurate finite element based formulation through ANSYS MAXWELL 2D software and results are 

found to be in close agreement. This model is expected to be the backbone for developing MTPA control 

strategy eventually on a 6-phase IPMSM drive, which will be a future scope of work. 
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