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 This paper presents a hybrid evolutionary computation algorithm termed as 

hybrid bacterial foraging-particle swarm optimization (HBFPSO) algorithm, 

to optimal reactive power dispatch (ORPD) problem. HBFPSO algorithm 

merges velocity and position updating strategy of particle swarm 

optimization (PSO) algorithm and reproduction and elimination dispersal  

of bacterial foraging algorithm (BFA). The ORPD is solved for minimization 

of two objective functions; system real power loss and voltage stability  

L-index. The objective is minimized by optimally choosing the control 

variables; generator excitations, tap positions of on-load tap changing 

transformers and switched var compensators while satisfying their 

constraints and also the constraints of dependent variables; voltages of all 

load buses and reactive power generation of all generators. The proposed 

approach has been evaluated on a standard IEEE 30 bus test system and 24 

bus EHV southern region equivalent Indian power system. The results 

offered by the proposed algorithm are compared with those offered by other 

evolutionary computation algorithms reported in the recent state of the art 

literature and the superiority of the proposed algorithm is demonstrated. 

Keywords: 

Bacterial foraging algorithm 

Hybrid algorithms 

Optimal reactive power 

dispatch 

Particle swarm optimization 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

P. Lokender Reddy,  

Department of Electrical Engineering,  

University college of Engineering,  

Osmania University, Hyderabad, India. 

Email: lokender.p@uceou.edu 

 

 

1. INTRODUCTION 

Power system design should ensure good quality of reliable power supply which means voltages 

should be within the specified limits. The voltages at a node are very sensitive to net reactive power  

of the node. So the reactive power optimization is the way to improve the voltage profile. The optimization  

of power system is becoming complex because smaller safety margins in generation and transmission due to 

not matching the generation and transmission facilities with the ever growing demand of power 

supply.Optimal reactive power dispatch (ORPD) is a multi-objectivenonlinear optimization problem with 

multiple constraints. There are many conventional techniques such as linear programming, interior point 

method, non linear programming, quadratic programming etc. are proposed in the literature [1-4]. However, 

these conventional optimization techniques have several drawbacks such as being trapped in local optima, 

sensitive to initial conditions and it requires very complex computations of derivative information of 

objective function.Evolutionary computation algorithms are good alternatives to overcome the drawbacks  

of conventional algorithms because of their approach of beginning the search with a population of points and 

random in nature. There are numerous evolutionary computation techniques proposed in the literature [5-7] 

such as bacteria foraging algorithm, particle swarm optimization, gravitational search algorithm etc., for 

https://creativecommons.org/licenses/by-sa/4.0/
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optimal power flow problem with different objective functions. All these algorithms proved better than their 

conventional counter parts. But each of these algorithms also has their own advantages and disadvantages.  

The concept of hybrid algorithm [8-11] is introduced to effectively use the advantages of the two 

algorithms and also to overcome their disadvantages. In BFA, during the process of chemotaxis, it depends on 

random search which may delay in obtaining global solution. PSO also has the problem of falling in to local 

optimum and premature convergence. The randomness in chemotaxis can be overcome by the velocity updating 

strategy of PSO based on global best and personal best, it improves the speed of convergence random 

introduction of new solutions in elimination and dispersal of BFA helps to avoid premature convergence of 

PSO. Amged Saeed El-Wakeel et al., [12] implemented hybrid BF-PSO algorithm by introducing velocity 

updating strategy after first random tumble. Faqing Zhao et al., [13] applied differential mutation to overcome 

tumble failure of BFA and slow convergence in chemotaxis step. In this paper, hybrid BF-PSO is proposed by 

completely replacing the chemotaxis step of BFA with velocity and position updating strategy of PSO algorithm 

to solve the optimal reactive power dispatch. The proposed algorithm is tested on a standard IEEE 30 bus test 

system and a practical 24 bus EHV southern region equivalent Indian power system. The evolutionary 

computation algorithms are random in nature, consistent results are desirable for practical applications. The 

proposed algorithm is intended to give consistent results with faster convergence. 

 

 

2. PROBLEM FORMULATION 

2.1. Real power loss objective (Ploss) 
The load flow solution gives all bus voltage magnitudes and angles. Then, the real power loss can be 

calculated as follows; 
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where Ploss is the total real power loss, Nline is total number of transmission lines. Vi and Vj are the voltage 

magnitudes at the two ends of the Kth line. ɵi and ɵj are the voltage angles at the two ends of the Kth line.  

𝑔𝑘 is conductance of the Kth line. 

 

2.2 Voltage stability objective (Vstability) 
Voltage stability is measured using L-index; 
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where j indicates all load buses. vi and vj are voltages at ith and jth  buses. Load flow solution is required to 

compute L-index. Fjican be obtained from the Ybus matrix as follows; 
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(3) 

 

where IG, IL, and VG, VL represent currents and voltages at the generator buses and load buses. Rearranging 

the above equation we get; 

 

 
(4) 

 

where FLG=-[YLL]-1[YLG] are the required values. The L-index values are obtained for all load busses for  

a given load. The range of L-index value is [0 1]. As it approaches zero, it indicates improved stability  

and better system security. As it is closer to 1, it indicates closer to voltage collapse. So lower L-index is 

desirable and it should not exceed the maximum limit for any of the load buses.  

 

2.3. Control variables 

The control variables considered to minimize the objective function aretransformer taps settings of on 

load tap changing (OLTC) transformers, generator excitation settings and switchable VAR compensating settings. 
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2.4. Constraints 
These control variables have their upper and lower limits. These constraints have to be considered 

while performing the optimization; 

 

𝑡𝑖𝑗𝑚𝑖𝑛  ≤  𝑡𝑖𝑗  ≤  𝑡𝑖𝑗𝑚𝑎𝑥 , 𝑖 Є 𝑇 

𝑉𝑖𝑚𝑖𝑛  ≤  𝑉𝑖  ≤  𝑉𝑖𝑚𝑎𝑥 , 𝑖 Є 𝑁 𝑔 

𝑄𝑐𝑖𝑚𝑖𝑛  ≤  𝑄𝑐𝑖  ≤  𝑄𝑐𝑖𝑚𝑎𝑥 ,   𝑖 Є 𝑁𝑞𝑐 

(5) 

 

where tij represents the tap settings of OLTC transformer connected between buses i-j buses, Ng represents 

set of generator buses, Vi is the voltage of ith generator bus, Qci is ith bus’s reactive power compensation 

capacity and Nqc represents set of load buses, which have reactive power support. One more thing need to be 

considered while minimizing the objective functions is the dependent variables, reactive power output  

of the generators and voltage of all load buses. They should also not exceed their limits. 

 

𝑄𝑔𝑖𝑚𝑖𝑛  ≤  𝑄𝑔𝑖  ≤  𝑄𝑔𝑖𝑚𝑎𝑥 ,   𝑖 Є 𝑁𝑔 

𝑉𝑖𝑚𝑖𝑛  ≤  𝑉𝑖  ≤  𝑉𝑖𝑚𝑎𝑥 , 𝑖 Є 𝑁𝐿 
(6) 

 

𝑄𝑔𝑖  is the reactive power generated by the ith generator. Vi represents the voltage magnitude at ith load bus 

and NL is number of load buses.The values of the control variables set to their bounds if they exceed.  

The dependent variable constraints are dealt by using penalty factors. By considering the constraints with 

penalties, the objective functions becomes as follows; 
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β1 and β2 are penalty factors. Vilim, Qgilim can be expressed as; 
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3. HYBRID BACTERIA FORAGIN-PARTICLE SWARM OPTIMIZATION ALGORITHM 

3.1. Basic PSO algorithm 
In PSO algorithm, search begins with a population of randomly generated particles, where each 

particle is a potential solution. The population is updated in every iteration by adding velocity. Velocity is 

updated by the following equation, where pbest is personal best through iterations and gbest is the overall 

best of the population. 

 

𝑣𝑖(𝑡 + 1) =   𝑤. 𝑣𝑖(𝑡)  +  𝐶1𝑟1 (𝑝𝑏𝑒𝑠𝑡 – 𝑥𝑖(𝑡)) +  𝐶2 𝑟2 𝑟𝑎𝑛𝑑(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) 

𝑥𝑖(𝑡 + 1)  =  𝑥𝑖(𝑡)  + 𝑣𝑖(𝑡) 
(10) 

 

Where w is inertia weight, C1 and C2 are accelerating factors, r1 and r2 are random numbers in the range [0,1], 

xi is theposition of ithparticle and vi  is the velocity to be added to the ith  particle. 

 

3.2. Basic BF algorithm 

In the original BFA, evolution of initial population of bacteria follows foraging strategy of bacteria 

which consists of chemotactic step, reproduction step and elimination and dispersion step. Chemotactic step 

simulates the movement of E.coli bacteria through tumbling and swimming via flagella. The chemotaxis 

movement of the bacterium can be represented as: 
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where 𝑒𝑖(𝑗, 𝑘, 𝑙)is the position vector of ith bacterium for the jth chemotactic step, kth reproduction step  

and lth elimination and dispersal step. 𝑐(𝑖) is the random step size specified by the tumble. ɸ(𝑗) is angle  

of direction at jth tumble step. If the fitness at the position 𝑒𝑖(𝑗 + 1, 𝑘, 𝑙)is greater than the fitness at  

the position 𝑒𝑖(𝑗, 𝑘, 𝑙) then the bacterium takes another few steps in the direction specified by swim length.  

If the fitness at position 𝑒𝑖(𝑗 + 1, 𝑘, 𝑙) is less than the fitness at the position𝑒𝑖(𝑗, 𝑘, 𝑙) then the bacterium does 

not go for swim, it finds another direction through tumble. Many such tumble failures results in slowing 

down the algorithm.  

 

3.3. Proposed hybrid BF-PSO algorithm 

BF-PSO algorithm combines the PSO ability of exchanging social information and BFA ability to find 

new solution by elimination and dispersion. The tumble direction in chemotactic movement of BFA is 

calculated by using global best and each bacteria personal best as done in PSO. It avoids complex 

calculations and also randomness which delay the convergence. In reproduction step, all bacteria, which are 

gone through chemotactic step, are sorted and best half of bacteria are retained and worst half of bacteria die. 

To reduce the chance to trap in local minimum, which is the case in PSO algorithm, certain number  

of replicated bacteria is randomly dispersed in to the search space at a certain rate. This measure can increase 

the rate of achieving optimal solution and avoid premature convergence. 

 

3.4. The pseudo code of the HBFPSO algorithm 
Read line data, bus data, write NR load flow subroutine to calculate objective function Ploss 

and Lj index. 

Initialize PSO and BFA parameters C1, C2, inertia, population size, maximum number of 

iteration of PSO(max iter), reproduction steps and number of elimination and dispersion 

steps and probability of elimination and dispersion(Ped)  

generate initial population randomly . 

for l=1: no of elimination and dispersion steps. 

      for k=1: no of reproduction steps 

            for j=1: max iter 

           Check for control variable constraints 

           Get the fitness value of objective function (7-8) from NR load flow subroutine.  

          Compute pbest and gbest.  

          Update velocity and position of each bacteria(10).   

            end for j  

        sort bacteria according to the fitness 

        remove the worst half and replace with best half 

      end for k 

     replace certain bacteria with new ones with the probability of Ped 

end for l 

 printing of  the results. 
 

 

4. RESULT AND DISCUSSION 

Simulations are conducted for BFA, PSO and HBFPSO algorithms in MATLAB R2009b software 

on a 1.9GHz, 4GB RAM, i3 processor personal computer. The obtained results are also compared with other 

evolutionary algorithms reported in the literature such as artificial bee colony algorithm (ABC) [14], bat 

algorithm (BA) [14], grey wolf optimizer (GWO) [14] and ant lion optimizer (ALO) [14]. Evolutionary 

computation techniques are random in nature so 30 consecutive runs are executed and best, worst, mean  

and standard deviation of the results are presented. 

 

4.1. IEEE 30 bus system 

Bus data, line data and initial values of control variables are taken from [15]. It consists of 30 buses, 

41 branches, 6 generators, 4 OLTC transformers, and 9 buses with capacitor banks. Buses 1, 2, 5, 8, 11, 

and 13 are generator buses. Capacitor bank is installed at buses 10,12, 15, 17, 20, 21, 23, 24, and 29. 

Branches (4-12), (6-9), (6-10), and (28-27) are equipped with OLTC transformers. The allowable range for 

the voltages of generator buses and load buses is [0.95 1.1] Operating range of all OLTCs is [0.9 1.1].  

The range of capacitor banks in MVAR is [0 5].  

The simulation results for Ploss objective are given in Table 1. The Proposed HBFPSO algorithm 

reduced the power loss from initial 5.812MW to 4.527MW which indicates 22% reduction from base case. 

There is 0.06MW power loss reduction from the best of other evolutionary algorithms (4.59MW by ALO) 
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presented in the literature. Proposed algorithm is also giving lowest L-index value in comparison with all 

other evolutionary computation techniques. Optimal settings of controllers are presented in the Table 1. 

 

 

Table 1. Optimal settings of control variables, Plossand maximum L-index for Ploss objective 
  Initial BA  GWO  ABC  ALO  BFA PSO HBFPSO 

Generator 

excitations 

V1 1.05 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

V2 1.04 1.094 1.0938 1.0971 1.0953 1.0887 1.0956 1.0951 

V5 1.01 1.074 1.0737 1.0866 1.0767 1.0701 1.0783 1.0759 
V8 1.01 1.076 1.0797 1.08 1.0788 1.069 1.0803 1.0773 

VG11 1.05 1.1 1.1 1.085 1.1 1.0612 1.1 1.1 

VG13 1.05 1.1 1.0944 1.1 1.1 1.095 1.1 1.1 
OLTC 

transformers 

T6-9 1.078 0.95 0.98 1.07 1.01 0.9792 1.075 1.0086 

T6-10 1.069 1.03 0.97 0.95 0.99 0.9091 0.9 0.9664 

T4-12 1.032 0.99 1.02 1.02 1.02 0.94 1 0.9834 
T28-27 1.068 0.97 0.99 1.01 1 0.9572 1 0.9757 

SVC 

settings 

QC10 0 5 2 5 4 4 5 5 

QC12 0 0 5 0 2 3 1 5 
QC15 0 5 4 2 4 1 1 5 

QC17 0 5 4 5 3 4 5 5 

QC20 0 0 4 4 2 2 5 5 
QC21 0 0 0 5 4 0 1 5 

QC23 0 0 5 4 3 3 5 5 

QC24 0 5 3 5 5 0 5 5 
QC29 0 0 3 4 5 4 5 4 

Objective 

function and 
statistical 

parameters 

Best Ploss 4.812 4.628 4.612 4.611 4.59 4.694 4.577 4.527 

worst Ploss NA NA NA NA NA 5.138 4.747 4.61 
Mean Ploss NA NA NA NA NA 4.906 4.644 4.552 

Standard deviation NA NA NA NA NA 0.1169 0.0564 0.002 

 Lmax 0.1716 0.1247 0.1303 0.1326 0.1307 0.1193 0.1186 0.115 

 

 

The simulation results for Vstability objective are given in Table 2. The proposed HBFPSO 

algorithm reduced the maximum of L-index value from initial 0.1716 to 0.1132, which is lowest in 

comparison with PSO, BFA, and other evolutionary computation algorithms from the literature. It is also 

giving better Ploss for Vstability objective. Optimal settings of controllers are presented in the Table 2.  

The statistical parameters clearly indicate the consistency of the proposed algorithm, there is significant 

reduction in standard deviation and mean values of the proposed algorithm in comparison to basic 

algorithms. The convergence characteristics are shown in Figure 1. 

 

 

Table 2. Optimal settings of control variables, maximum L-index and Ploss for Vstability objective 
  Initial BA GWO ABC ALO BFA PSO HBFPSO 

Generator 

excitations 

VG1 1.05 1.097 1.0965 1.0829 1.0992 1.0912 1.1 1.1 

VG2 1.04 1.093 1.0807 1.073 1.0948 1.0813 1.0982 1.0914 

VG3 1.01 1.049 1.0693 1.0759 1.0975 1.0173 1.1 1.1 
VG4 1.01 1.071 1.0624 1.0744 1.0997 1.0721 1.1 1.0683 

VG5 1.05 1.06 1.0977 1.1 1.0979 1.0306 0.95 1.0999 

VG6 1.05 1.097 1.0927 1.0804 1.1 1.0655 1.1 1.0794 
OLTC 

transformers 

T6-9 1.078 1.09 0.96 1.03 1.04 0.9 0.9 1.0043 

T6-10 1.069 0.9 1.01 0.92 0.95 0.9236 0.9 0.9017 

T4-12 1.032 1.1 0.97 0.92 0.98 0.9 0.975 0.9546 
T28-27 1.068 0.93 0.94 0.97 0.97 0.9269 0.975 0.9648 

SVC 

settings 

QC10 0 3 2 5 5 3 5 4.9103 

QC12 0 4 1 5 3 3 5 4.6458 
QC15 0 3 1 5 3 0 5 4.8684 

QC17 0 5 2 4 4 4 5 4.9459 

QC20 0 5 2 5 3 2 5 4.3441 
QC21 0 0 1 3 2 0 5 4.8882 

QC23 0 0 4 4 1 3 5 4.9987 

QC24 0 0 4 4 2 1 1 4.6363 
QC29 0 3 4 5 4 1 5 4.9072 

 Ploss(MW) 5.812 5.0748 4.8269 4.9688 4.8693 5.9247 5.825 4.88 

Objective 
function and 

statistical 

parameters 

Best Lmax 0.1716 0.1191 0.118 0.1161 0.1161 0.1174 0.1142 0.1132 

Worst Lmax NA NA NA NA NA 0.1258 0.1198 0.1153 

Mean Lmax NA NA NA NA NA 0.1212 0.1157 0.1142 

STD NA NA NA NA NA 0.0022 0.0015 0.0006 
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Figure 1. Convergence characteristics of BFA, PSO and HBFPSO for Ploss  and Vstability objectives 
 

 

4.2. 24 node system 

24 bus EHV southern region equivalent Indian power system shown in Figure 2. It consists  

of 4 generator buses, 16 transmission lines, 8 load buses, 11 transformers, 4 shunt capacitors and 17 shunt 

reactors. Reactive power sources are installed at buses 5, 6, 7 and 8. Branches (14-8), (16-5), (19-6), (20-7), 

(22-13), (23-9), and (18-10) are equipped with OLTC transformers. Lower and upper bound’s for generator 

voltages are 0.95pu to 1.1pu with a step size of 0.0125. Discrete tap positions of transformer being 0.900 to 

1.05 in steps of 0.0125. Maximum operating limits for capacitors are 25, 20, 30, 20 (in MVAr) at the buses 5, 

6, 7, 8 respectively and a step size of 5. The simulations are conducted at heavy load condition by increasing 

20% of reactive load from its base load condition. The objective values are shown in bold because they are 

the quantities of interest in comparison. 
 

 

 
 

Figure 2. 24 Bus equivalent EHV Indian power system 
 

 

Table 3 shows the simulation results for both objectives Ploss and Vstability. The proposed HBFPSO 

method reduced the real power loss value from base value 73.62MW to 53.69MW. The reduction offered by 

proposed algorithm is nearly 20MW from base case. The proposed HBFPSO algorithm is proven superior 

when compared to other evolutionary algorithms PSO and BFA in terms of best, average and worst values. 

There is only slight reduction 0.05MW in terms of best value offered by HBFPSO to the best Ploss offered 

by PSO but there is a significant reduction 0.55MW in terms of Mean values. The low value of standard 

deviation indicates the consistency of proposed algorithm for multiple runs. It can also be noted that  

the proposed algorithm is giving lowest values of the voltage stability index (VL) for Ploss objective when 

compared to basic algorithms. Convergence characteristics are shown in Figure 3. 
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Table 3. Optimal control variables settings and power system parameters for Ploss objective 
Controller Initial settings Ploss  objective Controller Vstability objective 

PSO BFA HBF-PSO  PSO BFA HBF-PSO 

T16-5 1 0.95 0.9625 0.95 T16-5 0.9 0.9 0.9125 

T19-6 1 0.975 0.9625 0.975 T19-6 0.9125 0.9625 0.925 
T20-7 1 0.975 0.9875 0.9625 T20-7 0.9125 1.05 0.9125 

T14-8 1 0.9625 0.9875 0.975 T14-8 0.9 0.975 0.9125 

T23-9 1 0.975 1.0375 0.975 T23-9 0.9375 0.95 0.9375 
T18-10 1 1 0.9625 0.9875 T18-10 0.9375 1.05 0.9375 

T22-13 1 0.9625 0.95 0.9625 T22-13 0.9 0.9 0.9 

QC5 0 25 25 25 QC5 15 25 25 
QC6 0 20 20 20 QC6 20 20 20 

QC7 0 30 30 30 QC7 25 25 30 

QC8 0 20 20 20 QC8 20 20 20 
V1 1 1.05 1.05 1.05 V1 1.05 1.05 1.05 

V2 1 1.05 1.0375 1.05 V2 1.05 1.0375 1.05 

V3 1 1.05 1.0375 1.05 V3 1.05 1.0375 1.05 
V4 1 1.05 1.05 1.05 V4 1.05 1.05 1.05 

Vmin 0.794 0.9684 0.964 0.9658 Vmin 1.0431 1.0134 1.0408 

Lmax 0.633 0.4528 0.4587 0.4527 Lmax 0.4388 0.4495 0.4378 
VL 3.1424 1.7353 1.7908 1.7309 Ploss 61.85 60.21 60.24 

Ploss(best) 73.62 53.74 55.54 53.69 VL(best) 1.6694 1.7689 1.6587 

Ploss(worst) NR 56.16 58.844 54.46 VL(worst) 1.7869 1.9571 1.748 

Ploss(Mean) NR 54.36 57.39 53.81 VL(Mean) 1.707 1.837 1.6868 

STD NR 0.542 0.951 0.235 STD 0.0313 0.0484 0.0238 

 

 

The voltage stability index (ΣL2) offered by the proposed HBFPSO method is 1.6587, which is 48% 

less from base case. In comparison with other evolutionary algorithms, the best value offered by HBFPSO  

is 0.65% less when compared with PSO, 6% less when compared with BFA algorithm. The Mean value  

of 30 runs of HBPSO is 1.6868 which is 1.2% less compared to PSO and 8% less compared to BFA. Better 

Mean values of the proposed HBFPSO and the low value of standard deviation indicates the consistency  

of proposed algorithm for multiple runs. 

 

 

  
  

Figure 3. Convergence characteristics of BFA, PSO and HBFPSO for Ploss and Vstability objectives 

 

 

5. CONCLUSION 

Reactive power optimization with hybrid BF-PSO is proposed for the minimization of two 

objectives real power loss and voltage stability index.  The proposed algorithm is tested on standard IEEE 30 

bus system and a practical 24 bus Indian power system. Results obtained for multiple runs show that  

the proposed hybrid algorithm is not only giving better but more importantly giving consistent results when 

compared with basic BFA and PSO algorithms and also other evolutionary computation algorithms reported 

in the literature. The proposed hybrid algorithm is also successful in overcoming the limitations of basic PSO 

and BFA algorithm and achieve near optimal solution. 
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