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 In this work amplified brain storm optimization (ABS) algorithm and 
quantum based brain storm (QBS) optimization algorithm is applied to solve 
the problem. A node is arbitrarily chosen from the graph as the preliminary 

point to form a Hamiltonian cycle. At generation t and t+1, Lt and Lt+1 are the 
length of Hamiltonian cycle correspondingly. In the QBS algorithm a 
Quantum state of an idea is illustrated by a wave function  ( ⃗  )  as an 
alternative of the position modernized only in brain storm optimization 
algorithm. Monte Carlo simulation method is used, to measure the position 
for each idea from the quantum state to the traditional one. Proposed ABS 
algorithm and QBS optimization algorithm has been tested in standard IEEE 
57 bus test system and real power loss reduced effectively. 
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1. INTRODUCTION 

In this work minimizing true power loss is the main objective of the problem. A variety of methods 

[1-6] have been applied to solve the problem. Subsequently various evolutionary methods [7-16] applied to 

solve the problem, in that  many algorithms stuck in local optimal solution In this work amplified brain storm 

optimization (ABS) algorithm and quantum based brain storm (QBS) optimization algorithm is used for 

solving optimal reactive power problem. Brain storm optimization (BSO) algorithm gets trapped into local 

optima when applied to different optimization problems. In the mathematical field of graph theory, a 
Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. In the 

proposed algorithm Hamiltonian cycle will improve the explore abilities and also stay away from local 

optimal solution. In QBS algorithm completely, the mechanism of quantum behavior, which causes uncertain 

of every idea lead to a superior capability to bounce out of the local optimal solution. Proposed ABS 

algorithm and QBS optimization algorithm has been tested in standard IEEE 57 bus test system. 

 

 

2. PROBLEM FORMULATION 

2.1.  Real power loss 
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2.2.  Amplification of voltage profile 
 

 

Voltage deviation given by: 
 

 

2.3.  Constraint (equality) 
 

 

2.4.  Constraints (inequality) 
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3. AMPLIFIED BRAIN STORM OPTIMIZATION ALGORITHM 
BSO [17] gets trapped into local optima when applied to different optimization problems. In the 

projected amplified brain storm optimization algorithm Hamiltonian cycle has been applied to improve the 

search abilities and also to avoid of trap in local optimal solution. A node is arbitrarily chosen from the graph 

as the preliminary point to form a Hamiltonian cycle. At generation t and t+1, Lt and Lt+1 are the length of 
Hamiltonian cycle correspondingly. Their ratio r at generation t(rt) can be described as: 

 

 

Hamilton cycle algorithm as follows: 
 
Commence 

Step 1: node v1 chosen as initial point,. 

Step 2:             is chosen and      is picked with least weight linking  , then the               
is obtained. 

Step 3: when i+1<n, subsequently i+1 is used to substitute i, and revisit  to Step 2; 

condition not occurred , then revisit to the final Hamiltonian cycle                 then  go 
back to Step 4. 

Step 4:       ( ) ;            ( )  (    )   (        )   (      )   (      ) 

Then    (  {             })  {             } 
End if 

End for 

Step 5: C is substituted by C1, and revisit Step 4.  

Step 6: compute the extent of the Hamiltonian cycle C.  

End for i 

 

In the proposed amplified brain storm optimization (ABSO) algorithm Hamiltonian cycle will 

improve the explore abilities and also stay away from local optimal solution. 

 
Commence 

Step 1: “n” potential solutions are arbitrarily engendered 

Step 2: “n” individuals are clustered into “m” clusters 

Step 3: “n” individuals will be appraised  

Step 4: In every cluster rank the individuals then the most excellent individual’s are 

recorded as cluster center Step 5: Between 0 and 1 arbitrarily a value will be engendered; 

If the value is smaller than a probability; then  

i. a cluster center  has been Arbitrarily chosen; ii. To swap the certain cluster center 

arbitrarily engender an individual 
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Step 6: new-fangled individuals are engendered 

Calculate the Hamiltonian cycle C and its extent Lt by Hamilton algorithm  

{ 

Commence 

Step 1: node v1 chosen as initial point,  

Step 2:              is chosen and      is picked with least weight linking  , then the 

              is obtained. 
Step 3: when i+1<n, subsequently i+1 is used to substitute i, and revisit  to Step 2 

Step 4: for all i and j in cycle C, if 1< i+1<j<n, then 

             ( )  

           ( )  (    )   (        )   (      )   (      )  

Then    (  {             })  {             } 
End if 

End for 

Step 5: C is substituted by C1, and revisit Step 4.  

Step 6: compute the extent of the Hamiltonian cycle C. 

End for “i” 

} 

When t>1 then calculate value of the    by    
    

  
    

End if 

Execute decision optimization procedure  

{ 

Commence 

                     or              
Arbitrarily engender nr individuals;  

End if 

End 

} 

Calculate the population according to the recently modernized positions; 

t = t+1. 

Step 7: when “n” new-fangled individuals are engendered, then go to Step 8; or else go to 

Step 6. 

Step 8:end conditions met ; or else go to Step 2. 

End 

 
 

4. QUANTUM BASED BRAIN STORM OPTIMIZATION ALGORITHM 

In BSO algorithm population is indicated as swarm moreover every individual is described as an 

idea. Originally, every idea is arbitrarily initialized inside the exploration space. Subsequently most excellent 

one in every cluster is selected as the cluster centre. Sporadically, an arbitrarily chosen centre is swapped by 

a recently engendered idea, by that the swarm has been kept away from the local optimum. 
 

    
       

      (   )  (11) 

 

    
  

   
      
  

   
      
    (12) 

 

  is a factor used in the evolution  process and can be articulated as, 
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Quantum state of an idea is illustrated by a wave function  ( ⃗  ) as an alternative of the position 

modernized only in Brain storm optimization algorithm. By using Schrödinger equation probability density 

function of the position is identified such that each idea is located. Monte Carlo simulation method is used, to 
measure the position for each idea from the quantum state to the traditional one.  
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Step a: Initialize the parameters. 

Step b: Arbitrarily produce “n” ideas Step c: By k-means algorithm cluster “n” ideas. 

Step d: With a predetermined probability modernize the centre of a capriciously chosen 

cluster. 

Step e: Individual generation created. 

Step f: Quantum mechanism is exploited based on the chosen idea 

Step g: Crossover operator is implemented  

Step h: evaluate the new-fangled idea with the older one,  

Step i: If “n” ideas have been engender, then go to Step 9. Or else go to Step 5. 

Step j: Stop whether the present number of iterations Nc attain the Ncmax. or else, go to  

 
 

5. SIMULATION STUDY 

Proposed ABS optimization algorithm and QBS optimization algorithm has been tested, in IEEE 57 

Bus system [18]. Table 1 shows the comparison results.  

 

 

Table 1. Simulation results of IEEE-57 system 
Control variables  Base case MPSO [19] PSO [19] CGA [19] AGA [19] ABS QBS 

𝑉  1  1.040  1.093  1.083 0.968  1.027 1.019 1.020 

𝑉  2  1.010  1.086  1.071  1.049  1.011 1.025 1.022 

𝑉  3  0.985  1.056  1.055  1.056  1.033 1.027 1.019 

𝑉  6  0.980  1.038  1.036  0.987  1.001  1.021 1.012 

𝑉  8  1.005  1.066  1.059  1.022  1.051  1.027 1.037 

𝑉  9  0.980  1.054  1.048  0.991  1.051 1.035 1.028 

𝑉  12  1.015  1.054  1.046  1.004  1.057 1.049 1.046 

𝑇 𝑝 19  0.970  0.975  0.987  0.920  1.030 0.908 0.900 

𝑇 𝑝 20  0.978  0.982  0.983  0.920  1.020 0.906 0.911 

𝑇 𝑝 31  1.043  0.975  0.981  0.970  1.060 0.909 0.916 

𝑇 𝑝 35  1.000  1.025  1.003   NR* NR* 1.013 1.014 

𝑇 𝑝 36  1.000  1.002   0.985  NR* NR* 1.015 1.012 

𝑇 𝑝 37  1.043  1.007  1.009  0.900  0.990 1.006 1.017 

𝑇 𝑝 41  0.967  0.994  1.007  0.910  1.100 0.947 0.936 

𝑇 𝑝 46  0.975  1.013  1.018  1.100  0.980 1.019 1.014 

𝑇 𝑝 54  0.955  0.988  0.986 0.940  1.010 0.921 0.920 

𝑇 𝑝 58  0.955  0.979  0.992  0.950  1.080 0.937 0.932 

𝑇 𝑝 59  0.900  0.983  0.990  1.030  0.940 0.926 0.921 

𝑇 𝑝 65  0.930  1.015  0.997 1.090 0.950 1.006 1.013 

𝑇 𝑝 66  0.895  0.975  0.984  0.900  1.050 0.934 0.926 

𝑇 𝑝 71  0.958  1.020  0.990  0.900  0.950 1.006 1.052 

𝑇 𝑝 73  0.958  1.001  0.988  1.000  1.010 1.013 1.007 

𝑇 𝑝 76  0.980  0.979  0.980  0.960  0.940 0.947 0.923 

𝑇 𝑝 80  0.940  1.002  1.017  1.000  1.000 1.009 1.037 

𝑄  18  0.1  0.179  0.131  0.084  0.016 0.150 0.147 

𝑄  25  0.059  0.176  0.144  0.008  0.015 0.142 0.138 

𝑄  53  0.063  0.141  0.162  0.053  0.038 0.127 0.121 

𝑃  (MW)  1278.6  1274.4  1274.8  1276  1275 1272.99 1272.04 

𝑄  (Mvar)  321.08  272.27  276.58 309.1 304.4 272.57 272.12 

Reduction in PLoss (%)  0  15.4  14.1  9.2  11.6 25.32 27.88 

Total PLoss (Mw)  27.8  23.51  23.86  25.24  24.56  20.760 20.049 

NR* - Not reported. 

 
 

6. CONCLUSION 

In this paper ABS optimization algorithm and QBS optimization algorithm successfully solved the 

optimal reactive power problem. In projetced ABS algorithm to escape BSO from local optima and to 

maintain the optimization process Hamiltonian cycle has been utilized. In the mathematical field of graph 

theory, a Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. In 

QBS approach by using Schrödinger equation probability density function of the position is identified such 

that each idea is located. Monte Carlo simulation method is used, to measure the position for each idea from 

the quantum state to the traditional one. Proposed ABS algorithm and QBS optimization algorithm has been 

tested in standard IEEE 57 bus test system and simulation results show the projected algorithms reduced the 

real power loss efficiently. 
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