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 We consider in this paper the problem of controlling an arbitrary linear 

delayed system with saturating input and output. We study the stability of 

such a system in closed-loop with a given saturating regulator. Using input-

output stability tools, we formulated sufficient conditions ensuring global 

asymptotic stability. 
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1. INTRODUCTION 

The presence of constraints on the input, output or states in industrial systems is illustrated by 

technological limitations such as limit devices or adjustment elements. These constraints make the control 

problem more complicated. Most of research activities have been interesting in stabilizing delayed input 

linear systems during the last two decades [1-6]. The control problem of constrained output systems 

represents one of actuality subjects. It may have two different aspects. In the first one, the output is really 

technologically limited, the system model includes an essential nonlinear static element and the system 

dynamics must be nonlinear because of this limitation. In the second case, the output is just analytically 

limited but technologically the constraint can be violated. The constraint does not affect the system model 

and the dynamics can or can not be linear. 

In this paper we are focusing on controlling linear delayed systems with both input and output 

saturation. In this situation, two main questions can be raised: how to develop a saturating regulator in order 

to stabilize a saturating delayed system? This issue is not yet solved. The second question is most important 

which is: is the closed-loop system of a given saturating delayed system and a saturating stabilizing regulator 

asymptotically globally stable?  

A similar research activities on the stabilization of a specific class of state saturating systems were 

formulated by [7] and especially by [8] using linear constrained regulators but in the non-delayed systems 

case. The class of systems considered in the present paper and the one in [7] and [8] differ in the fact that we 

are interested in systems with delayed inputs and also the constraint enters the system model. In [8] and [7], 

the authors supposed that the states are all available which allows using state-feedback regulator, but in our 

paper we consider an output-feedback regulator because only the system output is available. Finally, we have 

to notice that the problems in the present paper and in [7] are quite different from the classical control 
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problem of unsaturating output systems in presence of input saturation [9]. Indeed, in the problem of 

controlling output saturating delayed systems one has three main features describing the closed-loop system 

with saturating regulator: (1) the system is nonlinear; (2) the closed-loop system may be asymptotically 

globally stable even if the system is open-loop strictly unstable at the origin, and (3) all the signals of the 

closed-loop are bounded. Notice that in the saturating input case the system output is not a priori bounded, 

for this, the system should not be open-loop strictly unstable. In this paper we are focusing this control 

problem of systems with saturating input and output. Sufficient conditions for global stability of the resulting 

closed-loop system are formulated using input-output stability tools [9] - [10]. 

These conditions will show that the closed-loop system is asymptotically globally stable although 

the system is strictly unstable. This paper is organized as follows: Section 2 is devoted to formulate the 

control problem; the controller design is described in Section3; the resulting closed-loop system is analyzed 

in Section 4; the corresponding stabilization performances are illustrated by simulation in Section 5. 

 

 

2. CLASS OF CONTROL SYSTEM 

The input-output representation of a saturating input-delayed system can be modeled as follows: 

 

 ˆ ˆ ˆ( ) 1 ( ) ( ) ( ) ( )sx s A s y s B s e u s    (1.1) 

 

with ( ) ( , ( ))My t sat y x t  (1.2) 
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in presence of input constraint: 

 
 

( ) Mu t u  (3) 

 

where (u(t),y(t)) are the system input and output and (û(s),ŷ(s)) their Laplace transforms; Mu and 

My are two real positive constants. 

It is further assumed that: 

A1. A(s) is Hurwitz polynomial,  

A2. (sA(s), B(s)) are coprime. 

 

Note that in the case of unconstrained output (yM=∞), the system is controllable with a linear state 

feedback. Also, A(s) is not necessarily Hurwitz, i.e. the origin can be an unstable equilibrium. 

From (1)-(2) it’s easily seen that the system is can be represented around the origin by the  

linearized model: 

 

ˆ ˆ( ) ( ) ( ) ( )sA s y s B s e u s  (4) 

 

 

3. CLASS OF STABILIZING REGULATOR 

The control design method is the finite spectrum assignment (FSA) which is an extension to time-

delay systems case of the standard pole placement design technique. The starting step is an arbitrary choice, 

by the designer, of a pair of Hurwitz polynomials of the form:  
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There exists a pair of pseudo-polynomials R(s) and S(s) satisfying the Bezout equation:  
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( ) ( ) ( ) ( ) ( ) ( )ssR s A s S s B s e C s s    (6) 

 

Following the pole placement technique R(s) and S(s) are the unique solution of the Bezout equation 

of the form: 
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where 1( )R s  and 1( )S s  belong to G, the set of transfer functions of distributed and punctual 

delay operators (Appendix A in [1]). For 0i  , ( )s
iR e 

 and ( )s
iS e 

 belong to [ ]se R , the set of 

polynomials in se  . Unlike the case of non-delayed systems, the (finite-degree) operators R(s) and S(s) are 

presently pseudo-polynomials and, consequently, are analytical functions of s. 

As  deg ( ) ( ) 2 1sS s B s e n   , it follows that deg (sA(s)R(s))=deg(C(s)Ʌ(s))=2n which implies that 

deg(R(s))=n-1, because deg( ( )) 1sA s n   and furthermore as ( )sA s  and ( ) ( )C s s  are monic, (i.e. their 

higher degree term coefficient equals 1). 

With all the above notations, the saturated linear regulator is given the alternative form: 

 

( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( )

( ) ( )

s sR s S s
v s u s y s

s s

 
 

 
 (7.1) 

 

ˆ ˆ( ) ( ( ))u s sat v s  (7.2) 

 

This defined regulator is determined by the choice of the polynomials C and Ʌ. 

We are focusing on the following problem: given a delayed system (1-3) and a regulator (7), based 

on the choice of polynomials C and Ʌ, is the resulting closed-loop system globally asymptotically stable? 

This problem is related to two issues: 

a) Does the stabilizing regulator, for a given system (1-3), exist? 

b) If it does, how can we design it? 

To our knowledge these issues are not yet soved. 

Remarks: (i) if we temporarily consider that the system (1-2) is not subject to the constraint (3), i.e. (uM=∞). 

Then, the above defined regulator reduces to the standard regulator
( )

ˆ ˆ( ) ( )
( )

S s
u s y s

sR s
  . If we have also 

yM=∞, then the closed-loop system is transformed to a linear system whose poles are those of C(s). 

(ii) From the above system and regulator, it follows that the signals v(t) and x(t) are bounded whatever the 

C(s) polynomial’s choice. So from (1-2) and (7), it follows, for all t, that: 
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 (8) 

 

iii) Due to this structural boundedness, some unstable systems can be globally asymptotically stabilized. But 

in the case of unconstrained output, the signals are not a priori bounded and the system is globally stabilized 

only if its poles are all in the right half plane. 

 

 

4. CLOSED-LOOP SYSTEM ANALYSIS 

First, let us point out a sector property for the saturation function ([9] page 417). 

LEMMA 1 Consider an arbitrary positive real β and a real function Φ(β,.) defined as follows: 
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Φ(β,z)=z – sat(β,z) for any real z (9.1) 

 

then, for any z  [-zM,zM] and any zM > β one has: 

 

20 . ( , )z z z     where M

M

z

z





  (9.2) 

 

which means that Φ(β,.) belongs to sector [0 β], when restricted to the interval [-zM,zM]. 

 

The main result is described by the following theorem. 

 

THEOREM 1 Consider the closed-loop control system consisting of system (1-2) submitted to assumptions 

A1 and A2 and the saturated regulator (7). Then, if one has: 
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then, all signals v(t), u(t), x(t) and y(t) belong to L2. 

where γp is the Lp-gain of an Lp-stable operator. 
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In the sequel, the notations will be simplified by not writing explicitly the dependence on s of all 

polynomials and pseudo-polynomials. Also we’ll avoid the symbol “^” for the Laplace transforms unless 

necessary. Thus, depending on the context, the letter x will be either the signal x(t) or its Laplace transform. 

 

PROOF: 

Let us define these new errors: 

,v v u x x y     (12) 

 

By considering all the above notations, equations (1) and (7.1) are written as follows: 

sR S
v u y  

 
 (13.1) 

sx Ay Be u    (13.2) 
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Multiplying by-A both sides of (13.1), one has:  

 

sAR AS
Av u y  

 
 

 

Now, operating S/Ʌ on both sides of (13.2) yields 

 

sS SA SB
x y e u  

  
 

 

Using (6), adding these two last equations gives 

 

S
x Av Cu 


 (14) 

 

Using the fact that u v v   and rearranging terms, one has: 

 

C A S
v v x

C C


 


  

 

(14) can be equivalently written as follows: 

 

1
C A S

v v x
C C




  


 (15) 

 

where 1 is a transfer function of a signal arising from initial conditions. 

As C and Ʌ are Hurwitz, 1 vanishes exponentially, which implies that 1 2L  . 

Operating sBe   on both sides of (13.1) and yields 

 

s s ssBR BS
Be v e u e y      

 
 (16.1) 

 

Operating sR/Ʌ on both sides of (13.2) and yields 

 

ssR RA RB
x s y s e u  

  
 (16.2) 

 

Using (12), adding (16.1) and (16.2) gives: 

 

2
sC sR B

x x e v
C C

 
  


 (17) 

 

where 2 2L  . 

 

Equations (15) and (17) are represented by Figure 1 as the system with feedbacks below where: 

 

1 1
S

U x
C

 


; 2 2
sB

U e v
C

     

This system consists of a main feedback and two internal feedbacks, referred to as feedbacks F1 and 

F2. The whole system stability analysis will be done in three steps. 

 

Step 1: stability of feedback F1: 

The forward pathway of this feedback is a linear time-invariant system with transfer function (A-

C)/C. The return pathway is the nonlinear operator Φ(uM,.) which, using lemma 1, belongs to [0,αu]. Using 

the circle criterion [9] – [15], one can get that F1 is L2-stable if 
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0 2

( ) ( ) 1
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( ) u
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 (18.1) 

 

Now, let consider the operator G1 such that  1 1( ) ( )v t G U t . Then, if we apply the loop 

transformation theorem ([2] pages 341-343), we can easily get the L2-gain of G1 as follows: 
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which is nothing but 0 . 

Step 2: stability of feedback F2: 

In a similar manner, one can show that F2 is L2-stable if 

 

0 2

( ) ( ) ( ) 1
inf Re

( ) ( ) y

C j j j R j

C j j 

   

   

  
  

 
 (18.3) 

 

Furthermore, let G2 denote the operator  2 2( ) ( )x t G U t  such that 
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Step 3: Main feedback stability: applying the small gain theorem on Figure 1, it follows that this feedback is 

L2-stable provided that 

 

2 1 2 2 2 2
γ ( )γ ( )γ 1sSB

G G e
C

 
 

   
 

which is nothing but the condition (10.3). Then it follows that 1 2, ,U U x  and v  belong to L2 as 

1 2 2, L   . 

Finally, since feedbacks F1 and F2 are L2-stable, we deduce from (15) and (17) that 2x L  and 

2v L . 

 

 

REMARKS 

a) In case where conditions (10.1) and (10.2) hold, the global asymptotic stability at the origin is guaranteed. 

Recall that all the signals are bounded i.e. 
, ,M M Mu u y y v v  

 and Mx x . Then global 

stability means that all signals converge to zero for all initial conditions. 

b) The design procedure of the stabilizing regulator could be composed of three steps which are: choosing 

polynomials C and Ʌ, solving Bezout equation (6) and computing pseudo-polynomials R and S and 

finally checking conditions (10.1) and (10.2). If these hold keep the obtained regulator. Else, make a 

different choice of C and go back to second step. 

c) Although conditions (10.1) and (10.2) do not allow characterization of stabilizable systems (in terms of 

zeros, poles,...) outside the left half plane. This is illustrated by the example in section simulation. 
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Figure 1. Block diagram of the feedback system described by equations (15) and (17) 

 

 

5. SIMULATION 

We consider the simple saturating linear delayed system described as follows: 

 

 ( ) ( ) ( ); ( ) , ( )Mx t Ay t Bu t y t sat y x t     

with 

1; 1; 1 ; 1M MA s B s s y u        (19) 

 

Notice that the system is strictly unstable. By solving (6) to obtain the regulator parameters R and S 

with polynomials ( ) 0.2s s    and 

 

0C(s) = s + c where 00 1c  , (20) 

 

one gets  

 

( ) 0.32 sS s s e   and ( ) 1R s   (21) 

 

In the rest of the section, we will show that there exists a set of values of the parameter 0c , so that 

conditions (10) hold. From (19) and (20) one gets 
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From (8), it can be checked that  
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 Necessarily we have to specify the value of 0c  to get vM. So according to (11.1), one gets 
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5 1
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      (23.1) 

 

and 
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      (23.2) 

 

It is easily checked using (22) and (23.1) that the first part of condition (10.1) is satisfied. Similarly 

we get using (20) and (21): 
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Equations (23.2) and (24) show that condition (10.2) holds for any 0<c0<1. Now, one has to 

compute the involved gains to analyze the condition (10.3). 
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which, using the first part of (11.4) follows that 
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Furthermore, equations (19)-(21) yield 
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Applying the above theorem, the L2-stability of the closed-loop system is achieved provided 
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This condition is satisfied by the value 00 0.6 1c   . The performances of the resulting regulator 

are illustrated in the following Figure 2. 

 

 

  
  

Figure 2. Closed-loop signals 

 

 

6. CONCLUSION 

We have interested in control system including an output saturating delayed linear system and a 

saturating regulator. We have shown that this association can be represented by a nonlinear feedback schema. 

Analyzing stability of this feedback leads to examine the closed- loop asymptotic global stability. Using tools 

of input-output stability approach, sufficient conditions for L2-stability are then obtained. These conditions 

that concern both the regulator and the system parameters did not give an easy characterization of the class of 

systems that can be globally asymptotically stabilized. However, it has been verified that a saturating system 

that’s strictly unstable can be globally asymptotically stabilized. 
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