Probabilistic Q-margin Calculations Considering Dependency of Uncertain Load and Wind Generation

Jung-Uk Lim


This paper presents a novel probabilistic approach for computation of the reactive power margin (or Q-margin) of a power system with large-scale uncertain wind generation. Conventionally, Q-margin has been used as an index for indicating the system voltage stability level on system operation and planning. The conventional Q-margin method needs to be modified to fully accommodate uncertainties due to wind generation. This paper proposes a new Q-margin computation method using Q-matrix and the expected Q-margin (EQM). Q-matrix is a generic uncertainty matrix representing a discrete joint distribution of load and wind generation and the EQM, calculated from the Q-matrix, is a specific probabilistic variable that supersedes the conventional Q-margin. The proposed method is verified with the IEEE 39-bus test system including wind generation.


wind power, voltage stability, reactive power margin (Q-margin), discrete joint distribution

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Applied Power Engineering (IJAPE)
p-ISSN 2252-8792, e-ISSN 2722-2624

Web Analytics Made Easy - StatCounter IJAPE Visitors