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Wind turbines have often connected to small powstesns, operating in
parallel to diesel generators, as is typically thse in autonomous wind—
diesel installations or small island systems wiijhhwind potential. Hence,
the modeling and analysis of the dynamic behaviowind—diesel power
systems in presence of wind power will be importdnt this paper, the

system under study is modeled by a set of dynamtcadgebraic equations

(DAE). Dynamic behavior of a wind-diesel systemingestigated by the
proposed dynamic model. Wind-diesel system consistgind turbines that

are connected to synchronous diesel generator hoa sransmission line
with local load. Dynamic stability of autonomousndi-diesel systems are
discussed with emphasis on the eigenvalue analysis the effective

parameters on system stability. In this regardddisanode bifurcation and
hopf bifurcation are also investigated.
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1. INTRODUCTION

As result of environmental concern, the penetratidnrenewable power in power systems is
increasing. Wind energy is one way of electricalggation from renewable sources that uses windresb
to convert the energy contained in flowing air irglectrical energy. Wind power is the world’s faste
growing energy source with a average growth overphst 7 years of 26% and a foreseeable penetration
12% of global electricity demand by 2020 [1]. Inmgacountries wind power expands, and covers a #yead
increasing part of these countries power demands dévelopment is due to strong worldwide available
wind resources, environmental concerns, and theadwaol cost efficiency of new wind technologies. As
more and more attention is paid to the increaseimd farm, a number of problems should be investigan
more detail especially in weak systems.

Increasing of wind farms penetration in power sysjastifies the need for development of accurate
wind turbine model, evaluating their influence dahds improving the planning and exploitation ofotlieal
network. Actually, one of the used wind farm cortsem power systems is based on fixed speed wind
turbines with directly grid coupled squirrel cageluction generator connected to the wind turbirterro
through gearbox. This generator presents very srotdtional speed variations because of the onbedp
variations that can occur are changes in the rgltpr and therefore these wind turbines are consitl¢o
operate at fixed speed. A squirrel cage inducti@megator consumes reactive power, and therefore
compensating capacitors are added to generatedinetion generator magnetizing current, thus imiprgv
the power factor. The dynamic behavior of wind farhas been usually represented by a suitable model,
including the modeling of all wind turbines and the&rnal electrical network [2—4But Wind turbines are
often connected to small power systems. The obdsi always to maximize the wind penetration, hil
maintaining an acceptable level of service quatlitythe consumers and ensuring good dynamic response
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characteristics and a sufficient stability margincase of disturbances. A variety of operating eoutrol
problems associated with the wind—diesel systeme baen identified and studied in the relevantdiigre.
Each type of problem requires a different modefipgroach and poses widely varying analysis requngsn
[5]. The modeling and analysis of the dynamic béraef wind—diesel power systems has been the stibje
of numerous publications (e.g. [6—15]), dealinghbwith small autonomous installations and relagidatger
systems, comprising a conventional power stati@hraaltiple wind turbines or wind farms.

Dynamic modeling of wind-diesel system have noefidly discussed in recent literatures. In this
paper a complete dynamic model is presented foawonomous wind-diesel system and the dynamic
stability of a sample system is discussed in detiil emphasis on the modal analysis.

The rest of this paper is organized as followstisec2 describes system components modeling.
Section 3 explains rotor reference frame quantitissformation to the stator-flux oriented refereframe.
Differential-algebraic equations (DAE) of systere gresented in section 4 and after verificatioproposed
model by simulation, dynamic stability of study &ya are studied in details. Conclusions are finalde in
section 5.

2. SYSTEM COMPONENTS AND MODELING

The single line diagram of the sample system idatlegh in Figure 1.The complete model of study
system is constructed from a number of componditits. sample system consists of a wind farm withdixe
speed wind turbines implemented with squirrel cangliction generators that are connected to a 1.5 MW
diesel generator through a short transmission @umpensating capacitor bank and local load areexiad
to the wind farm bus and local load bus respegtivdultiple wind turbines in the wind farm are recpd to
aggregate. For the dynamic stability study, an egaged model is sufficient to represent the emiingl farm
at point of common coupling. The system parametees given in appendix A. The models of system
components are illustrated in the following subtiess.

o= \YAVE/ Local
,,” \\\ l 1| & Load Bus Grid Bus
/. *\ Wind V2 Z 92 V3 Z 93

Transmission Line I

Diesel
Generator

Transformer 2

Transformer 1

Wind Farm

Capacitor v
Bank

Local Load

Figure 1. Single line diagram of the sample system

2.1 Wind turbine model

The behavior of wind turbine can be representethbgleling the rotor and drive train. Applying the
actuator disk theory [16, 17], the rotor model pdeg the aerodynamic torque extracted from the veipnd
the following equation:

T. :%pﬂR3VW2—CP(/]"8) 1)

v A
Wherep (kg/m3) is the air density, R (m) is the rotorkdiadius or blade length; Vw (m/s) is the wind spee

and Cp &, B) is the power coefficient which is a function akttip speed ratia and the blade pitch ange
for pitch regulated wind turbines that is suppoisetthis paper and CA.(p) is [17]:

o
C N
Cp(/l.ﬂ)=cl(/]—?-cs/3-c4je A+l @)

Where:

11 0035
A A+0088 g° )
i 083 pB°+1
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Representative values gfcoefficients are:
¢, =05176¢c, =116¢c; = 04,c, =5,¢c5 = 21, ¢4 =0.0068
The maximum value o€, (Comax= 0.48) is achieved fop=0 degree and fot=8.1. This particular value of
is defined as the nominal value filon) .The tip speed ratio is defined as:
1= Ra,
V,

w
wherew; (rad/s) is the blade angular speed.

(4)

2.2 Drive train model
The drive train model is usually represented by masses [18, 19s shown in Figure 2.

Figure 2. Drive train model

The first mass stands for the wind turbine rotdaqks, hub and low-speed shaft), while the secoasism
stands for generator rotor (high-speed shaft). quations of the two-mass model in per unit aremivere:

d

2Hta(cq)=Tw—K(6’tg)—D(a4 -(1-Swx) (5)
d

—2ngsa(8)= K(6g) +D(a - L-S)ak) - T, (6)

d

a(é’tg)=a4-wg=cq-(1—8)ws ©)

Whered is the angle between the turbine rotor and thegear rotor w;, wg H; andHg are the turbine and
generator rotor angular speed and inertia constaspectivelyK andD are the drive train stiffness and
damping constants, respectively, is the torque provided by the wind afgdis the electromagnetic torque.
All parameters are in per unit.

2.3 Pitch angle control model

A Proportional-Integral (PI) controller is useddontrol the blade pitch angle in order to limit the
electric output power to the nominal mechanical @owhe pitch angle is kept constant at zero degtemn
the measured electric output power is under itsinahvalue. When it increases above its nominal@athe
PI controller increases the pitch angle to bringkbtne measured power to its nominal value. Therobn
system is illustrated in the Figure 3.

Pmeas +

— Kp

Pref

1/s

Figure 3. Control scheme of pitch regulated wintines

Mathematical description of pitch control bloclgisen below:
B=K P (Pmeas_ Pt )+ lgi (8)

lgi =K, J.(Pmeas_ Pret )dt )
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d
a (lgl ) = Ki (Pmeas_ Pref ) (10)

WhereKp andK; are the PI controller gainB,; andP,.cssare the reference power and output power of wind
turbine respectively.

2.4 SCIG model
Two main induction generator models are used wiegfopming power system dynamic studies:

e A detailed model which includes electromagnetingiants both in the stator and the rotor circuits,
containing four electromagnetic state variables.

« A simplified model that neglects stator transiemisntaining two electromagnetic state variablese Th
later model is sometimes referred in the litersguas the third order model, accounting for the two
electric state variables and the generator speedcé{ the detailed model is referred as the fifteo
model. This paper uses a well-known simplified mdxeneglecting stator flux linkage transients tisat
common when performing stability studies [21, 2Zhus the differential equations of induction
generator model can be expressed by:

d , 1., . )
a(ed):_F[Ed (X _Xsi)lqs]+swseq (11)
o]
d o\ 1 7 Iy 7
a(eq) = _F[eq +(Xg = Xgi)lgs] — Savs € (12)
(o]
Where:
Tc; :_xl‘i +F:r<mi (13)
Ws ki
X2
XL=(X.+X, )———m 14
Sl ( SI ml) Xn +Xm| ( )

The generator electrical torque is calculated as:
—_ I [
Te - edlds +eq| qs (15)

where €, and €, are the d-q components of the internal equivateenin voltagej,, andi, are the stator
current componentsT, is the open circuit transient time constarX, is the transient reactancX, and

X, are the stator and rotor leakage reactance'sXands the magnetizing reactance. The sub indexes

andi stand for the rotor, stator and induction genergt@ntities, respectively, and the sub indekepstand
for the components aligned with the d- and g- aRii& the slip of induction generator defined®s (ws
wg) ws while variablesws andwy are the synchronous and generator rotor angusedspespectively. All
variables are in per unit value.

2.5 Dynamic model of the synchronous generator

The full detailed mathematical model of a synchimmachine takes into account several effects
introduce by different rotor circuits, and consi$tseven nonlinear differential equations for eawchine.
In stability study, the complete mathematical diggiem is complicated, unless some simplificatiomsre
used [21, 23, 24, and 25]. Neglecting the statamsient and damper winding are common simplifozati
assumptions. In this paper suppositions are usedtHer words, the two axis model is employed i@ th
modeling and the saturation effect is neglected. [PBe voltage equations of a synchronous genenmattre
d-q reference frame (as shown in Figure 4) arergbxe

d _, 1 ' '

E(Eq):T_,[_Eq_(Xd ~Xg)lg + Eql (16)
do

d, . 1 ' '

E(Ed):T_,[_Ed +(Xq_xq)|q] 17)
qo
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Figure 4. Dynamic equivalent circuit of synchrongesnerator (two-axis model)

Differential equation of the excitation system &rided directly from Figure 5. This figure showsimple
static exciter.

d
Texa(Efd) = Kex(vref _V3) - Efd (19)

+ K
Vet g > Eq
1+sT,

Vi

Figure 5. Block diagram of a static exciter
Mechanical equations are given by:

2H d T 1] I I

EE(W):TM ~Eala ~Eqlq =(%g = Xa)l gl g = D(w— ) (20)
94 =w- (21)
dt “

Where, E;and E; are the internal voltage components of the eqgeitalheveninl, and | , the stator
current componentsJ, is the d-axis transient open circuit time constai}, is the g-axis transient open
circuit time constantE, is the excitation voltages,, X, are the reactance components; and x; are the
transient reactance componeni; ,is the stator resistandgand V,, are the terminal voltage and reference
voltage respectively T, are the excitation system parametBlgnd H are the damping constant and

inertia constant respectively,,, and & are the input mechanical torque and synchronowshima speed
respectively. In this paper, local load is modddgdh constant impedance load.

3. TRANSFORMATION OF SYSTEM VARIABLES TO A COMMON REFE RENCE FRAME
Since, study system has two machines, all systerablas must be referred to a common reference
frame. In this paper, stator reference frame isehas a common reference frame.

3.1 SCIG rotor reference frame quantities
Transformation matrix from SCIG rotor referenceniea(d-q) to the stator-flux oriented reference
frame (D-Q) and transition angle are given by:

Dynamic Modeling of Autonomous Wind—-Diesel systémRixed-Speed Wind Turbine (Najafi Hamid Reza)
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Fa.im _ {Sin(ﬁ) - COSG)} Fo.m 22)
Foqm cos@) sin@) || Fom
0 = [(wy —ws)dt (23)

At above equationds |y and F \, are the quantities of induction machine (SCIGpraeference frame,

Fo.m and Fq )y are transformed quantities at the stator-flux dednreference frame. The diagram of

such transformation is shown in Figure 6.
Q
'y

e, + je,

Figure 6. Schematic diagram of SCIG quantitiessfamation

After this transformation, the SCIG dynamic equationshoanbtained as follow:

d, 1., , ,
a(eD): _F[eo —(Xg = Xg) lgs] +2Sws & (24)
(o]
d, .. 1_, , )
a(eo)— _F[eQ +(Xg = Xg) I ps] —2Sws €, (25)
(o]
Te =€l ps +€5l0s (26)

Equivalent circuit of SCIG in stator-flux orientegference frame is depicted in Figure 7.

Ri X
—ww—fmn——o

+J|
e + je, <> -Velﬁ

@
Figure 7. Equivalent circuit of SCIG in stator-floxiented reference frame

Algebraic equations of equivalent circuit of SCI(@ given by:
=Rl ps = Xl gs + V4 COSE,) (27)

eb =Rl gs + Xl ps +V;Sin(6,) (28)

Where, R;; is the stator resistance of induction generatatp@ power of wind turbine is given by:
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Preas= REQE (I 5g + jl 09 '} =i €0S@) | ps +V;SiNE@)) | s (29)

3.2 Synchronous machine rotor reference frame quantitie
Transformation matrix from rotor reference framegjdto the stator-flux oriented reference frame

(D-Q) for synchronous machine (SM) and transitiogla are given by:

Fasm _ [Sin(é_) - COS@} Fosm (30)
Fasm cos@P) sin(d) Faswm
0 = [(w— wg)dt (31)

Where F,, and F, are the quantities of rotor reference frafg,, and F, are quantities of the
stator-flux oriented reference frame. The diagrdsuch transformation is shown in Figure 8.

90-5 -7

Figure 8. Schematic diagram of quantities transédiom

Thus, the synchronous machine dynamic equatioosramon reference frame are:

—(ED) JED[COE’@ S, e Al % % Xisingy

do Tc;o go do ZT' ZTC'|
o9 (32)
- - CO
+IQ[Lj 'I;:j co§) +x‘_|_é:<‘ sir’r(é)]+°'_|;|0
sin (6) co§(5) Xy =
E; i
(EQ) [Sln(25)(2T ZTd0)+0] Eql T T, 1-1pl T X sirf (4)
X, =X Xy X E., Sin@) &=
q d 2 | Xy _Xd fd
+ Téo cos(0)]+ Q[ 7 Zqu ]sin@d) + ——= T
2H d
o @7 ~Eblo gl XS5 +19) 1 olocostal-Dew-ax) - (39
4@ =w- ()
dt “s
Algebraic equations of above equations are given by
Ep =Rslp —Xglg +V3c086;) (36)
Eo =Rslg +Xglp +V3sin(@;) (37)

Dynamic Modeling of Autonomous Wind—-Diesel systémRixed-Speed Wind Turbine (Najafi Hamid Reza)
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4. DYNAMIC STABILITY OF STUDY SYSTEM
Power system dynamics are commonly expressed hffesedtial-algebraic equation (DAE) form
[24], [26] :

x= f(xy,p) (38)
0=g(xY,p) (39)

Where, the parameter gefines specific system configurations and opemationditions, such as loads,
generation, voltage setting points, etc. The dynastatex (slow modes) describes the generation dynamics
of power systems. The instantaneous variablé®st modes) satisfies algebraic constraint, siclpawver
flow equations, which is implicitly assumed to hareinstantaneously converging transient. We catyae
power system dynamics through eigenvalue solutjgiig However, it is difficult to analyze and siratg

the nonlinear DAE due to the instantaneous dynaaiare of algebraic constraints, which is only tiu¢he
approximation sense. Traditionally, we use implfaiiction theorem to solve for fast variable$o get a
reduced model in terms of slow dynamics locallyumx. Or we computey numerically at eackx. The
reduced Jacobian matrix of DAE is often used in dhalysis of power system dynamics [27], [28]. The
linearized dynamic expression of DAE is as belod][229]:

AX AX
=J (40)
B

fo f,
J= (41)
O« 9y

DAE can be reduced to an ODE (ordinary-differengiquiation) whengy is nonsingular, i.e., the algebraic
variableAly can be eliminated from (40) [24].

Ax=[f, - 1,0,0,1A, (42)

A=F =[f,-f,0,'0,] (43)
WhereA is called the reduced Jacobian matrix (RJM) as sepdo the unreduced Jacobian matrix (UJM)

The stability of an equilibrium point of the DAE stgm for a giverp depends on the eigenvalues of the

reduced Jacobian matr [24]. Through tracing the eigenvalue of matfix we can study the local
dynamic stability of the system [24], [21]. Thenme awo steps involved to identify the dynamic slibiof
power system as the paramgpeslowly changes. First, solve and trace the equilibrpoint along the path,
then form RIJM and analyze the eigenvalues at eguititgium point [24], [30], [31].In this researchand y
are defined as:

X=[%, %o Xaq]” =[d, S, 8,565,645, Ep, Eq,,0,E4]”
y:[yl,yz, ...... ,yll]r :[A’Vl’g'lDS'IQS’ﬁ’ID'lQ’VZ'g ,V3]T

4.1 Verification of model with study system simulation

Model verification has been performed using a Ri§gmvalue and study system simulation with
Matlam-Simulink software. Simulation results ar@wh in Figure 10 to Figurel6 that include the selir
cage induction generator slip, synchronous genesgteed, voltage at 1, 2, 3 buses, active powevid
turbine, synchronous generator and load diagrams.

13

1.2 1

Rotor Speed of SG(p.u)

1 I I I T I I I I
0 10 20 30 40 50 60 70 80 90 100 110

time(s)

Figure 9. Synchronous generator speed (p.u)
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Figure 13. Voltage at load bus (p.u)
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Figure 15. Active power of synchronous generatar)(p
All figures show stable operation of study systeitthyparameters that are presented in appendix &igare

16 RJM eigenvalues are shown that all eigenvalvesraleft of imaginary axis, therefore study systes
stable.

10 2

Imaginary Axis

o o
3

- S - )

Imaginary Axis

o -
-
S

'
—_

b *

-10 L I | L -2 I I |
-25 -20 -15 -10 -5 0 0.4 0.3 0.2 0.1 0

Real Axis

Real Axis
Figure 16 Eigenvalues of study system

The Jacobian matrix is of great importance to thalysis of dynamical systems. When analyzing the
Jacobian matrix, we need to obtain the equilibripmints of the system by solving equations {
0=f(XY,p),0=9g(XY, p)} simultaneously at first. After the equilibrium jmts are obtained, the

Jacobian matrix of the system evaluated at thelibgjum points that are mentioned. As is well kngwime
stability of the equilibrium points is determineg the eigenvalues of the Jacobian matrix evaluateithe
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equilibrium points. The stability of the equilibriupoints can be judged by observing if any eigamval
moves from the left side to the right side of tleenplex plane as a parameter is varied. The systaniose
its stability at different forms. Two important farof instability are saddle node bifurcation andotho
bifurcation. These types of instability are invgated for the study system under single parameteation
at next sections.

4.2. Saddle-Node Bifurcation (SNB)

At a Saddle-Node Bifurcation, two equilibrium painbne has a real positive and the other a realtiveg
eigenvalue, coalesce and disappear both the eiymsvbhecoming zero at the bifurcation. In a saddide
bifurcation, the region of attraction of the stabtguilibrium point shrinks due to an approaching timstable
equilibrium point and the stability is eventualtyst when the two equilibrium coalesce and disap &2
This implies that an SNB has a Jacobian with a kmpro eigenvalue. The saddle-node bifurcationblegs
linked to voltage collapse in [24], [30], [31], [B3and [34]. An important feature of the saddle-@od
bifurcation is the disappearance, locally, of atgbke bounded solution of the dynamic system [35ile
effect of stator resistance of SCIG on saddle-nbidercation is investigated and primary location of
eigenvalue is mentioned with star sign in Figure 17

T T T T T T T T T T
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Figure 17. Eigenvalues locus with SCIG stator tesise variation

As is shown in Figure 17, stator resistamadation has a weak effect on system stability ane of
the eigenvalues have moved from the left side ¢oripht side of the complex plane. Eigenvalues imary
with stator resistanceariation are presented in table 1 for better okstérn again.

Table 1. Eigenvalues varying with stator resistararé&tion

Rs=0.004843 Rg=0.704843 Rg=0.724843 Rs=0.804843
-24.9259 + 8.4559i -34.8192 -34.8623 -34.9892
-24.9259 - 8.4559i -18.1585 -18.1262 -18.0306

-2.9593 -4.5977 -4.6073 -4.6368

-0.1972 + 1.6445i
-0.1972 - 1.6445i
-0.0026 + 0.4852i
-0.0026 - 0.4852i
-0.3626
-0.0262 + 0.2596i
-0.0262 - 0.2596i
-0.0484

-0.2644 + 1.1623i
-0.2644 - 1.1623i
-0.0622 + 0.5891i
-0.0622 - 0.5891i
-0.1577 + 0.2404i
-0.1577 - 0.2404i
-0.2161
-0.0037

-0.2644 + 1.1566i
-0.2644 - 1.1566i
-0.0636 + 0.5906i
-0.0636 - 0.5906i
-0.1593 + 0.2434i
-0.1593 - 0.2434i
-0.2148
0.0000

-0.2644 + 1.1352i
-0.2644 - 1.1352j
-0.0686 + 0.5963i
-0.0686 - 0.5963i
-0.1640 + 0.2552i
-0.1640 - 0.2552i
-0.2113
0.0136

4.3. Hopf Bifurcation (HB)

As we know, a SNB is characterized by a zero eigkrmvat the origin of the complex plane. There
is another type of stable equilibrium points thah decome unstable following a parameter variatia
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force a pair of complex eigenvalues to cross thagimary axis in the complex plane [32]. This tyde o
oscillatory instability is associated with nonlinestems and it is known as Hopf Bifurcation (HBigure
18 shows the loci of the eigenvalues near the Hwfafrcation point. In Figurel8, the effect of rotor
inductance of squirrel cage induction generatoHopf-Bifurcation is investigated.
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Figure 18 Eigenvalues locus with rotor inductanagation
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Eigenvalues varying with rotor inductance variatése presented in table 2 for better observati@nag

Table 2. Eigenvalues varying with rotor inductamaeation
Teta load=0.2510 Teta load=-0.2510

Teta load=0.4510 Teta load=-0.4510

-24.6927 + 9.7788i

-24.9259 + 8.4559i
-24.9259 - 8.4559i
-2.9593
-0.1972 + 1.6445i
-0.1972 - 1.6445i
-0.0026 + 0.4852i
-0.0026 - 0.4852i
-0.3626
-0.0262 + 0.2596i
-0.0262 - 0.2596i
-0.0484

-25.0194 + 8.2401i
-25.0194 - 8.2401i
-3.0991
-0.1943 + 1.6199i
-0.1943 - 1.6199i
-0.0087 + 0.4414i
-0.0087 - 0.4414i
-0.3661
-0.0349 + 0.2585i
-0.0349 - 0.2585i
-0.0318

-24.8950 + 9.0041i
-24.8950 - 9.0041i
-3.0977
-0.1655 + 1.6454i
-0.1655 - 1.6454i
0.0028 + 0.5850i
0.0028 - 0.5850i
-0.3780
-0.0546 + 0.2407i
-0.0546 - 0.2407i
-0.0058

-24.6927 - 9.7788i
-2.9445
-0.1401 + 1.6916i
-0.1401 - 1.6916i
0.0043 + 0.6558i
0.0043 - 0.6558i
-0.3792
-0.0554 + 0.2395i
-0.0554 - 0.2395i
-0.0029

In addition, the effect of other system parametergiopf bifurcation or saddle-node bifurcation can
be investigated. As an example, the effect of lémgth on Hopf-Bifurcation is shown at Figure 1%hem the
line length is varied from 10 Km to 40 Km.
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Figure 19 Eigenvalues locus with line length vamiat
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Eigenvalues varying with line length variation gresented in table 3 for better observation again.

Table 3. Eigenvalues varying with line length vioa
Line length=15 Km Line length=17..935Km

Line length=25 Km

Line length=10 Km

-24.9259 + 8.4559i

-24.9259 - 8.4559i
-2.9593
-0.1972 + 1.6445i
-0.1972 - 1.6445i
-0.0026 + 0.4852i
-0.0026 - 0.4852i
-0.3626
-0.0262 + 0.2596i
-0.0262 - 0.2596i
-0.0484

-24.7277 + 9.2780i
-24.7277 - 9.2780i
-2.7764
-0.1967 + 1.6054i
-0.1967 - 1.6054i
-0.0154 + 0.4084i
-0.0154 - 0.4084i
-0.3492
-0.0217 + 0.2765i
-0.0217 - 0.2765i
-0.0413

-24.6119 + 9.7161i
-24.6119 - 9.7161i
-2.6725
-0.1962 + 1.5842i
-0.1962 - 1.5842i
-0.3407
-0.0425 + 0.3554i
-0.0425 - 0.3554i
0.0000 + 0.2964i
0.0000 - 0.2964i
-0.0370

-24.3351 +10.6635i
-24.3351 -10.6635i
-2.4321
-0.1943 + 1.5376i
-0.1943 - 1.5376i
-0.3171
-0.1194 + 0.3239i
-0.1194 - 0.3239i
0.0623 + 0.2490i
0.0623 - 0.2490i
-0.0261

4.4.Voltage stability

Voltage stability is defined as the ability of aw®r system to maintain steady voltages at all buses
in the system after being subjected to a disturbdram a given initial operating condition. Voltaggbility
is a problem in power networks, which are heawlgd, faulted, or with insufficient reactive poweipply.
Main reason for voltage instability is the incredied the load, for that reason, voltage stabiktyaiso called
load stability problem.
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Figure 20. Voltage collapse phenomena RysX/ curve
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Figure 21 Eigenvalues of RIM with,4 variation
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Voltage Collapse is the process by which the serpi@fi events accompanying voltage instability
leads to a blackout or abnormally low voltages isigmificant part of the power system [21]. Loadd=ls
are important in voltage collapse studies. Theiseitg of the loading margin with respect to pareters of
a load model can be used to estimate the effe¢ch@moading margin of using more detailed modefy.[3
Voltage stability is usually represented by P-Vveurin this paper, voltage collapse phenomena lzoers
by Z..rV curve (as shown in Figure 20) that the localdlas modeled by constant impedance. The nose
point is called the point of voltage collapse (PQVA&t this point voltage drops rapidly with an ireise of
the power load and Jacobian becomes singular. Pftaversolutions fail to converge beyond this limit,
which indicate voltage instability and can be a&sed with a saddle-node bifurcation point.
In general, voltage stability can also examine ipgmvalues of RIM (see Figure 21, 22).

Imaginary Axis

Real Axis
Figure 22 Eigenvalues of RIM with, variation with zoom in eigenvalues locus nearzém

4.5. Participation Factors
The eigenvalue sensitivity with respect to a phalsparameter gives an estimate of the eigenvalue

shift when such parameter is changed. Thus, eij@msznsitivity may also be used to obtain redumreidy
models of physical systems. Several methods haea peoposed to analyze the connection between a
system variable and its modes [37-41]. One of thmethods, the participation factor approach, hanbe
extensively used for the analysis of power syst88s42]. The participation factors are very museful in
small-signal stability analysis both in case ofdlbeode and inter-area mode. The absolute value of
participation factors reveals which machines awelired in a particular mode and machines could giood
step that might create problem in the power systeanticipation factors are sensitivity of eigeneswith
respect to diagonal terms in RIM which are defiagd
_ oA

0a,,
Where/ , a are the ' eigenvalue and"kdiagonal element in RIM. When all the eigenvaluescalculated,

it is also possible to obtain the participationtéms and it is evaluated in the following way. Meand W be
the right and left eigenvector matrices respectivelich that:

Pyi (53)

AV = AV, (54)
WA= WA (55)
Then the participation factor; f the K" state variable to th& eigenvalue can be defined as:
W.. V.
P =5~ (56)
W Vi

In case of complex eigenvalues, the amplitude ofiedement of eigenvectors is used [24]:
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In this section participation factor for two sceparare investigated in tables 4 and 5.

Table 4. Participation factors in Stable operation

Eigenvalue

-24.6119 + 9.7161i
-24.6119 - 9.7161i
-2.6725
-0.1962 + 1.5842i
-0.1962 - 1.5842i
-0.3407
-0.0425 + 0.3554i
-0.0425 - 0.3554i
0.0000 + 0.2964i
0.0000 - 0.2964i
-0.0370

omega_t (x10) 0.0000 0.0013 0.0001 0.0089 0.0002 0.0001 0.3575 0.1043 0.0027 0.0001 0.0977

S(x10% 0.0005 0.1337 0.0014 0.0382 0.0007 0.0000 0.0407 0.0119 0.0001 0.0000 0.0545
Teta_tg 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0012
beta_i 0.0127 0.1353 0.0247 0.0287 0.0004 0.0009 0.0064 0.0006 0.0017 0.0016 0.4390
(=5} 0.0002 0.0024 0.0007 0.0004 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0008

& (x10%) 0.0963 0.0708 0.4156 0.8532 0.1298 0.0003 0.1209 0.0189 0.0052 0.0199 0.0354
Ep 0.5259 0.1489 0.0989 0.0066 0.0001 0.0001 0.0023 0.0005 0.0005 0.0015 0.0081
Eq 0.1541 0.0436 0.0105 0.0006 0.0000 0.0000 0.0005 0.0001 0.0001 0.0003 0.0014
Omega 0.0040 0.0004 0.0051 0.0018 0.0000 0.0000 0.0005 0.0001 0.0001 0.0002 0.0001
delta 0.0002 0.0000 0.0023 0.0017 0.0000 0.0000 0.0015 0.0003 0.0002 0.0007 0.0034
= 0.3028 0.4202 0.7742 09559 0.0018 0.0001 0.0170 0.0030 0.0001 0.0070 0.0622

Table 5. Participation factors in Hopf -Bifurcationcurrence with line length variation

Eigenvalue

-24.9259 + 8.4559i
-2.9593
-0.1972 + 1.6445i
-0.1972 - 1.6445i
-0.0026 + 0.4852i
-0.0026 - 0.4852i
-0.3626
-0.0262 + 0.2596i
-0.0262 - 0.2596i
-0.0484

-24.9259 - 8.4559i

omega_t (x10) 0.0000 0.0014 0.0001 0.0099 0.0002 0.0001 0.2105 0.0929 0.0051 0.0002 0.2002

S(x10% 0.0008 0.1086 0.0012 0.0466 0.0008 0.0000 0.0599 0.0310 0.0001 0.0000 0.0976
Teta_tg 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0016
beta_i 0.0131 0.1099 0.0206 0.0357 0.0004 0.0003 0.0023 0.0009 0.0039 0.0035 0.4466
(=5} 0.0002 0.0020 0.0006 0.0004 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0009

€ (x10%) 0.1012 0.0512 0.4228 0.3386 0.0159 0.0111 0.1600 0.0176 0.0194 0.0417 0.2008
Ep 0.2873 0.1453 0.0644 0.0023 0.0001 0.0002 0.0024 0.0006 0.0008 0.0017 0.0071
Eq 0.1273 0.0755 0.0079 0.0009 0.0001 0.0000 0.0006 0.0001 0.0000 0.0001 0.0012
Omega 0.0071 0.0003 0.0070 0.0040 0.0000 0.0000 0.0008 0.0000 0.0000 0.0001 0.0000
delta 0.0003 0.0000 0.0028 0.0037 0.0000 0.0000 0.0018 0.0001 0.0001 0.0004 0.0024
= 0.5645 0.4892 0.7970 0.9482 0.0019 0.0004 0.0146 0.0024 0.0001 0.0048 0.0463

From tables four and five can easily investigasestariables effect on eigenvalues that is boldegach
column of tables.
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5. CONCLUSION

In this paper, wind-diesel system is modeled byet af nonlinear first order differential and
algebraic equations and the proposed dynamic mimdektigates dynamic behavior of the system. The
proposed model is verified by simulation and eigdm® analysis. In this paper, it is also shown tiaw
eigenvalue based methods can be applied to dyrstatidity analysis of a wind-diesel system. Usihgse
eigenvalues, corresponding eigenvectors and paation factors are obtained. It is seen from eigeres
analysis that the stability of the system can balyaed by using eigenvalues locus. It is found frthra
eigenvalue analysis that which of the eigenvalues positive real part, so the system is unstaldewvdrich
state has the highest participation factor. Twodrtamt types of instability, i.e. saddle node kiation and
Hopf bifurcation are analyzed by proposed dynamiodeh System dynamic voltage stability is also
investigated by using reduced Jacobian matrix (RJM)

List of Abbreviations

DAE  Dynamic and Algebraic Equations
Pl Proportional-Integral

SCIG Squirrel Cage Induction Generator
RJIM Reduced Jacobian Matrix

UM Unreduced Jacobian Matrix

SNB  Saddle-Node Bifurcation

HB Hopf Bifurcation
POVC Point Of Voltage Collapse

APPENDIX A

Table (A.1). Drive Train System & Pitch Control S, Parameters

Drive Train System & Pitch Control System Parameters

K 0.55 Hq 45
D 0.01 K, 5
H, 0.75 K; 25

Table (A.2). Transmission line parameters
Transmission Line Parameters &a\=20%

R 0.1153 Ohm /km (0.029 p.u)
L 1.05x10° (0.099 p.u)
Length 104m

Table (A.3). Transformer Parameters

Transformer Parameters &.5=4 MVA

V primary 460/575 V R secondary 8.5x10°
\% secondary 20 kv L primary 625)(104
R primary 85X105 L secondary 625>(104

Table (A.4). Synchronous generator parameters
Vbas=460°" , Frequency=68 , Sias=10"" S, =2.5""

R 0.017 (p.u) T 0.213

Xd 3.23 H 0.3468

Xq 2.79 F 0.009238
X'q 0.21 P 2 (Round Pole)
X'q 1.03 Tex 0.1

T'wo 1.7 Kex 50
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Table (A.5). Squirrel cage induction generator pagers

Vias=575", Frequency=68, Sas=10"", Viini=9™, Sor=3.33""

Re " 0.004843(p.u) Xm(p-U) 2.77
R 0.004377(p.u) Xi(p.u) 0.1791
X 0.1248(p.u) P(pole pairs) 3

Table (A.6): Load parameters

Load parameters (b!s;zd“’, p=g")

z 1.8 (p.u)
Cosfp) 0.4510
connection Star(Y)
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