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 Wind turbines have often connected to small power systems, operating in 
parallel to diesel generators, as is typically the case in autonomous wind–
diesel installations or small island systems with high wind potential. Hence, 
the modeling and analysis of the dynamic behavior of wind–diesel power 
systems in presence of wind power will be important. In this paper, the 
system under study is modeled by a set of dynamic and algebraic equations 
(DAE). Dynamic behavior of a wind-diesel system is investigated by the 
proposed dynamic model. Wind-diesel system consists of wind turbines that 
are connected to synchronous diesel generator via short transmission line 
with local load. Dynamic stability of autonomous wind–diesel systems are 
discussed with emphasis on the eigenvalue analysis and the effective 
parameters on system stability. In this regards, saddle node bifurcation and 
hopf bifurcation are also investigated. 
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1. INTRODUCTION 

As result of environmental concern, the penetration of renewable power in power systems is 
increasing. Wind energy is one way of electrical generation from renewable sources that uses wind turbines 
to convert the energy contained in flowing air into electrical energy. Wind power is the world’s fastest 
growing energy source with a average growth over the past 7 years of 26% and a foreseeable penetration 
12% of global electricity demand by 2020 [1]. In many countries wind power expands, and covers a steadily 
increasing part of these countries power demand. This development is due to strong worldwide available 
wind resources, environmental concerns, and the improved cost efficiency of new wind technologies. As 
more and more attention is paid to the increase of wind farm, a number of problems should be investigated in 
more detail especially in weak systems. 

Increasing of wind farms penetration in power system justifies the need for development of accurate 
wind turbine model, evaluating their influence and thus improving the planning and exploitation of electrical 
network. Actually, one of the used wind farm concepts in power systems is based on fixed speed wind 
turbines with directly grid coupled squirrel cage induction generator connected to the wind turbine rotor 
through gearbox. This generator presents very small rotational speed variations because of the only speed 
variations that can occur are changes in the rotor slip, and therefore these wind turbines are considered to 
operate at fixed speed. A squirrel cage induction generator consumes reactive power, and therefore 
compensating capacitors are added to generate the induction generator magnetizing current, thus improving 
the power factor. The dynamic behavior of wind farms has been usually represented by a suitable model, 
including the modeling of all wind turbines and the internal electrical network [2–4]. But Wind turbines are 
often connected to small power systems. The objective is always to maximize the wind penetration, while 
maintaining an acceptable level of service quality to the consumers and ensuring good dynamic response 
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characteristics and a sufficient stability margin in case of disturbances. A variety of operating and control 
problems associated with the wind–diesel systems have been identified and studied in the relevant literature. 
Each type of problem requires a different modeling approach and poses widely varying analysis requirements 
[5]. The modeling and analysis of the dynamic behavior of wind–diesel power systems has been the subject 
of numerous publications (e.g. [6–15]), dealing both with small autonomous installations and relatively larger 
systems, comprising a conventional power station and multiple wind turbines or wind farms.  

Dynamic modeling of wind-diesel system have not carefully discussed in recent literatures. In this 
paper a complete dynamic model is presented for an autonomous wind–diesel system and the dynamic 
stability of a sample system is discussed in detail with emphasis on the modal analysis.   

The rest of this paper is organized as follows: section 2 describes system components modeling. 
Section 3 explains rotor reference frame quantities transformation to the stator-flux oriented reference frame. 
Differential-algebraic equations (DAE) of system are presented in section 4 and after verification of proposed 
model by simulation, dynamic stability of study system are studied in details. Conclusions are finally made in 
section 5. 
 
 
2. SYSTEM COMPONENTS AND MODELING 

The single line diagram of the sample system is depicted in Figure 1.The complete model of study 
system is constructed from a number of components. The sample system consists of a wind farm with fixed 
speed wind turbines implemented with squirrel cage induction generators that are connected to a 1.5 MW 
diesel generator through a short transmission line. Compensating capacitor bank and local load are connected 
to the wind farm bus and local load bus respectively. Multiple wind turbines in the wind farm are required to 
aggregate. For the dynamic stability study, an aggregated model is sufficient to represent the entire wind farm 
at point of common coupling. The system parameters are given in appendix A. The models of system 
components are illustrated in the following sub-sections. 

 

 
Figure 1. Single line diagram of the sample system 

 
2.1 Wind turbine model 

The behavior of wind turbine can be represented by modeling the rotor and drive train. Applying the 
actuator disk theory [16, 17], the rotor model provides the aerodynamic torque extracted from the wind by 
the following equation: 
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Where ρ (kg/m3) is the air density, R (m) is the rotor disk radius or blade length; Vw (m/s) is the wind speed 
and Cp (λ, β) is the power coefficient which is a function of the tip speed ratio λ and the blade pitch angle β 
for pitch regulated wind turbines that is supposed in this paper and Cp (λ, β) is [17]:  

( ) λβ
λ

βλ λ
6

5

43
2

1, cecc
c

cC i

c

i
p +








−−=

−

     (2) 

 Where:  

1

035.0

08.0

11
3 +

−
+

=
ββλλi

       (3) 

 
Diesel  

Generator         

Capacitor 
 Bank 

Wind Farm 

Local 
 Load Bus 

V2∠θ2 

 

Grid Bus 
V3∠θ3 

 

Local Load 

Transmission Line 
       

|V1|∠θ1 
 

Wind 

Transformer 1 
Transformer 2 



IJAPE  ISSN: 2252-8792 � 
 

Dynamic Modeling of Autonomous Wind–Diesel system with Fixed-Speed Wind Turbine (Najafi Hamid Reza) 

49

Representative values of ci coefficients are: 

.0068.0,21,5,4.0,116,5176.0 654321 ====== cccccc  

The maximum value of Cp (cpmax = 0.48) is achieved for β=0 degree and for λ=8.1. This particular value of λ 
is defined as the nominal value (λ_nom) .The tip speed ratio is defined as: 

w

t

V

Rωλ =          (4) 

where ωt (rad/s) is the blade angular speed. 
 
2.2 Drive train model 
The drive train model is usually represented by two masses [18, 19] as shown in Figure 2. 

 

Figure 2. Drive train model 

The first mass stands for the wind turbine rotor (blades, hub and low-speed shaft), while the second mass 
stands for generator rotor (high-speed shaft). The equations of the two-mass model in per unit are given here: 
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Where θtg is the angle between the turbine rotor and the generator rotor, ωt, ωg, Ht and Hg are the turbine and 
generator rotor angular speed and inertia constant, respectively. K and D are the drive train stiffness and 
damping constants, respectively. Tw is the torque provided by the wind and Te is the electromagnetic torque. 
All parameters are in per unit. 
 
2.3 Pitch angle control model 

A Proportional-Integral (PI) controller is used to control the blade pitch angle in order to limit the 
electric output power to the nominal mechanical power. The pitch angle is kept constant at zero degree when 
the measured electric output power is under its nominal value. When it increases above its nominal value, the 
PI controller increases the pitch angle to bring back the measured power to its nominal value. The control 
system is illustrated in the Figure 3. 

 

Figure 3. Control scheme of pitch regulated wind turbines 

Mathematical description of pitch control block is given below: 
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)()( refmeasii PPK
dt

d −=β        (10) 

Where KP and Ki are the PI controller gains, Pref and Pmeas are the reference power and output power of wind 
turbine respectively. 
 
2.4 SCIG model  

Two main induction generator models are used when performing power system dynamic studies: 
• A detailed model which includes electromagnetic transients both in the stator and the rotor circuits, 

containing four electromagnetic state variables. 
• A simplified model that neglects stator transients, containing two electromagnetic state variables. The 

later model is sometimes referred in the literatures as the third order model, accounting for the two 
electric state variables and the generator speed. Hence, the detailed model is referred as the fifth order 
model. This paper uses a well-known simplified model by neglecting stator flux linkage transients that is 
common when performing stability studies [21, 22]. Thus the differential equations of induction 
generator model can be expressed by: 
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The generator electrical torque is calculated as:                                                             

qsqdsde ieieT ′+′=         (15) 

where de′  and qe′  are the d-q components of the internal equivalent thevenin voltage, dsi  and qsi  are the stator 

current components , oT ′  is the open circuit transient time constant , siX ′  is the transient reactance ,siX  and 

riX  are the stator and rotor leakage reactance's and miX  is the magnetizing reactance. The sub indexes s, r 

and i stand for the rotor, stator and induction generator quantities, respectively, and the sub indexes d, q stand 
for the components aligned with the d- and q- axis. S is the slip of induction generator defined as S = (ωs- 
ωg)/ ωs while variables ωs and ωg are the synchronous and generator rotor angular speed, respectively. All 
variables are in per unit value. 
 
2.5 Dynamic model of the synchronous generator 

The full detailed mathematical model of a synchronous machine takes into account several effects 
introduce by different rotor circuits, and consist of seven nonlinear differential equations for each machine. 
In stability study, the complete mathematical description is complicated, unless some simplifications were 
used [21, 23, 24, and 25].  Neglecting the stator transient and damper winding are common simplification 
assumptions. In this paper suppositions are used, in other words, the two axis model is employed in the 
modeling and the saturation effect is neglected [25]. The voltage equations of a synchronous generator in the 
d-q reference frame (as shown in Figure 4) are given by: 
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Figure 4. Dynamic equivalent circuit of synchronous generator (two-axis model) 
 

Differential equation of the excitation system is derived directly from Figure 5. This figure shows a simple 
static exciter. 
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Figure 5. Block diagram of a static exciter 

Mechanical equations are given by:             
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Where, dE′ and qE′  are the internal voltage components of the equivalent Thevenin.dI  and qI , the stator 

current components, doT′ is the d-axis transient open circuit time constant , qoT′ is the q-axis transient open 

circuit time constant , fdE is the excitation voltage, qd xx , are the reactance components , dx′ and qx′ are the 

transient reactance components ,SR  is the stator resistance,3V and refV are the terminal voltage and reference 

voltage respectively, exex TK ,  are the excitation system parameters,D and H are the damping constant and 

inertia constant respectively, MT  and ω  are the input mechanical torque and synchronous machine speed 

respectively. In this paper, local load is modeled by a constant impedance load. 
 
 
3. TRANSFORMATION OF SYSTEM VARIABLES TO A COMMON REFE RENCE FRAME 

Since, study system has two machines, all system variables must be referred to a common reference 
frame. In this paper, stator reference frame is chosen as a common reference frame. 

 
3.1 SCIG rotor reference frame quantities  

Transformation matrix from SCIG rotor reference frame (d-q) to the stator-flux oriented reference 
frame (D-Q) and transition angle are given by: 
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At above equations, IMdF ,  and IMqF ,  are the quantities of induction machine (SCIG) rotor reference frame, 

IMDF ,  and IMQF , are transformed quantities at the stator-flux oriented reference frame. The diagram of 

such transformation is shown in Figure 6. 

 
 

Figure 6. Schematic diagram of SCIG quantities transformation 
 

After this transformation, the SCIG dynamic equations can be obtained as follow: 

 QSQSsisiD
o

D eSIXXe
T

e
dt

d ′+′−−′
′

−=′ ω2])([
1

)(      (24)  

DSDSsisiQ
o

Q eSIXXe
T

e
dt

d ′−′−+′
′

−=′ ω2])([
1

)(      (25) 

QSQDSDe IeIeT ′+′=         (26) 

Equivalent circuit of SCIG in stator-flux oriented reference frame is depicted in Figure 7. 

 
Figure 7. Equivalent circuit of SCIG in stator-flux oriented reference frame 

 
Algebraic equations of equivalent circuit of SCIG are given by: 
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Where, siR  is the stator resistance of induction generator. Output power of wind turbine is given by:                                                                
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3.2 Synchronous machine rotor reference frame quantities  

Transformation matrix from rotor reference frame (d-q) to the stator-flux oriented reference frame 
(D-Q) for synchronous machine (SM) and transition angle are given by: 
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Where SMdF ,  and SMqF ,  are the quantities of rotor reference frame,SMDF ,  and SMQF ,  are quantities of the 

stator-flux oriented reference frame. The diagram of such transformation is shown in Figure 8. 
 

 
Figure 8. Schematic diagram of quantities transformation 

 
Thus, the synchronous machine dynamic equations at common reference frame are: 
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Algebraic equations of above equations are given by: 
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4. DYNAMIC STABILITY OF STUDY SYSTEM 
Power system dynamics are commonly expressed by a differential-algebraic equation (DAE) form 

[24], [26] : 

),,( pyxfx =&          (38) 

),,(0 pyxg=           (39) 

Where, the parameter p defines specific system configurations and operation conditions, such as loads, 
generation, voltage setting points, etc. The dynamic state x (slow modes) describes the generation dynamics 
of power systems. The instantaneous variables y (fast modes) satisfies algebraic constraint, such as power 
flow equations, which is implicitly assumed to have an instantaneously converging transient. We can analyze 
power system dynamics through eigenvalue solutions [27]. However, it is difficult to analyze and simulate 
the nonlinear DAE due to the instantaneous dynamic nature of algebraic constraints, which is only true in the 
approximation sense. Traditionally, we use implicit function theorem to solve for fast variables y to get a 
reduced model in terms of slow dynamics locally around x. Or we compute y numerically at each x. The 
reduced Jacobian matrix of DAE is often used in the analysis of power system dynamics [27], [28]. The 
linearized dynamic expression of DAE is as below [24], [29]: 
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DAE can be reduced to an ODE (ordinary-differential equation) when yg  is nonsingular, i.e., the algebraic 

variable y∆ can be eliminated from (40) [24]. 
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WhereA  is called the reduced Jacobian matrix (RJM) as opposed to the unreduced Jacobian matrix (UJM) J. 
The stability of an equilibrium point of the DAE system for a given p depends on the eigenvalues of the 
reduced Jacobian matrixA  [24]. Through tracing the eigenvalue of matrixA , we can study the local 
dynamic stability of the system [24], [21]. There are two steps involved to identify the dynamic stability of 
power system as the parameter p slowly changes. First, solve and trace the equilibrium point along the path, 
then form RJM and analyze the eigenvalues at each equilibrium point [24], [30], [31].In this research x and y 
are defined as: 
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4.1 Verification of model with study system simulation 

Model verification has been performed using a RJM eigenvalue and study system simulation with 
Matlam-Simulink software. Simulation results are shown in Figure 10 to Figure16 that include the squirrel 
cage induction generator slip, synchronous generator speed, voltage at 1, 2, 3 buses, active power of wind 
turbine, synchronous generator and load diagrams. 

 

 
Figure 9. Synchronous generator speed (p.u) 
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Figure 10. Squirrel cage induction generator slips (p.u) 

 

 
Figure 11. Voltage at wind turbine bus (p.u)   

 

 
Figure 12. Voltage at synchronous generator bus (p.u) 

 

 
Figure 13. Voltage at load bus (p.u) 

0 10 20 30 40 50 60 70 80 90 100 110
-0.2

-0.15

-0.1

-0.05

0

time(s)

S
lip

 o
f 

w
in

d 
tu

rb
in

e

0 10 20 30 40 50 60 70 80 90 100 110
0.4

0.5

0.6

0.7

0.8

0.9

1

time(s)

V
ol

ta
ge

 a
t 

W
in

d 
tu

rb
in

e 
te

rm
in

al
 (

p.
u)

0 10 20 30 40 50 60 70 80 90 100 110
0.6

0.7

0.8

0.9

1

time(s)

V
ol

ta
ge

 a
t 

S
G

 B
us

 (
p.

u)

0 10 20 30 40 50 60 70 80 90 100 110
0.5

0.6

0.7

0.8

0.9

1

time(s)

vo
lta

ge
 a

t 
Lo

ad
 B

us
 (

p.
u)



      �          ISSN: 2252-8792 

IJAPE Vol. 1, No. 2, August 2012 :  47 – 64 

56

 
Figure 14. Active power of load (p.u) 

 

 
Figure 15. Active power of synchronous generator (p.u) 

 
All figures show stable operation of study system with parameters that are presented in appendix A. In Figure 
16 RJM eigenvalues are shown that all eigenvalues are in left of imaginary axis, therefore study system is 
stable. 
 

 
Figure 16 Eigenvalues of study system 
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equilibrium points. The stability of the equilibrium points can be judged by observing if any eigenvalue 
moves from the left side to the right side of the complex plane as a parameter is varied. The system can lose 
its stability at different forms. Two important form of instability are saddle node bifurcation and hopf 
bifurcation. These types of instability are investigated for the study system under single parameter variation 
at next sections. 
 
4.2. Saddle-Node Bifurcation (SNB) 
At a Saddle-Node Bifurcation, two equilibrium points, one has a real positive and the other a real negative 
eigenvalue, coalesce and disappear both the eigenvalues becoming zero at the bifurcation. In a saddle-node 
bifurcation, the region of attraction of the stable equilibrium point shrinks due to an approaching the unstable 
equilibrium point and the stability is eventually lost when the two equilibrium coalesce and disappear [32]. 
This implies that an SNB has a Jacobian with a simple zero eigenvalue. The saddle-node bifurcation has been 
linked to voltage collapse in [24], [30], [31], [33], and [34]. An important feature of the saddle-node 
bifurcation is the disappearance, locally, of any stable bounded solution of the dynamic system [35]. The 
effect of stator resistance of SCIG on saddle-node bifurcation is investigated and primary location of 
eigenvalue is mentioned with star sign in Figure 17. 
 

 

Figure 17. Eigenvalues locus with SCIG stator resistance variation 

 
As is shown in Figure 17, stator resistance variation has a weak effect on system stability and one of 

the eigenvalues have moved from the left side to the right side of the complex plane. Eigenvalues varying 
with stator resistance variation are presented in table 1 for better observation again. 

 

Table 1. Eigenvalues varying with stator resistance variation 

RSI=0.804843 RSI=0.724843 RSI=0.704843 RSI=0.004843 
-34.9892 
-18.0306 
-4.6368 

-0.2644 + 1.1352i 
-0.2644 - 1.1352i 
-0.0686 + 0.5963i 
-0.0686 - 0.5963i 
-0.1640 + 0.2552i 
-0.1640 - 0.2552i 

-0.2113 
0.0136 

-34.8623 
-18.1262 
-4.6073 

-0.2644 + 1.1566i 
-0.2644 - 1.1566i 
-0.0636 + 0.5906i 
-0.0636 - 0.5906i 
-0.1593 + 0.2434i 
-0.1593 - 0.2434i 

-0.2148 
0.0000 

-34.8192 
-18.1585 
-4.5977 

-0.2644 + 1.1623i 
-0.2644 - 1.1623i 
-0.0622 + 0.5891i 
-0.0622 - 0.5891i 
-0.1577 + 0.2404i 
-0.1577 - 0.2404i 

-0.2161 
-0.0037 

-24.9259 + 8.4559i 
-24.9259 - 8.4559i 

-2.9593 
-0.1972 + 1.6445i 
-0.1972 - 1.6445i 
-0.0026 + 0.4852i 
-0.0026 - 0.4852i 

-0.3626 
-0.0262 + 0.2596i 
-0.0262 - 0.2596i 

-0.0484 

 
 
4.3. Hopf Bifurcation (HB) 

As we know, a SNB is characterized by a zero eigenvalue at the origin of the complex plane. There 
is another type of stable equilibrium points that can become unstable following a parameter variation that 
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force a pair of complex eigenvalues to cross the imaginary axis in the complex plane [32]. This type of 
oscillatory instability is associated with nonlinear systems and it is known as Hopf Bifurcation (HB). Figure 
18 shows the loci of the eigenvalues near the Hopf bifurcation point. In Figure18, the effect of rotor 
inductance of squirrel cage induction generator on Hopf-Bifurcation is investigated. 
 

 
Figure 18 Eigenvalues locus with rotor inductance variation 

 
Eigenvalues varying with rotor inductance variation are presented in table 2 for better observation again. 
 

Table 2. Eigenvalues varying with rotor inductance variation 
Teta_load= -0.4510 Teta_load= -0.2510 Teta_load=0.2510 Teta_load=0.4510 
-24.6927 + 9.7788i 
-24.6927 - 9.7788i 

-2.9445 
-0.1401 + 1.6916i 
-0.1401 - 1.6916i 
0.0043 + 0.6558i 
0.0043 - 0.6558i 

-0.3792 
-0.0554 + 0.2395i 
-0.0554 - 0.2395i 

-0.0029 

-24.8950 + 9.0041i 
-24.8950 - 9.0041i 

-3.0977 
-0.1655 + 1.6454i 
-0.1655 - 1.6454i 
0.0028 + 0.5850i 
0.0028 - 0.5850i 

-0.3780 
-0.0546 + 0.2407i 
-0.0546 - 0.2407i 

-0.0058 

-25.0194 + 8.2401i 
-25.0194 - 8.2401i 

-3.0991 
-0.1943 + 1.6199i 
-0.1943 - 1.6199i 
-0.0087 + 0.4414i 
-0.0087 - 0.4414i 

-0.3661 
-0.0349 + 0.2585i 
-0.0349 - 0.2585i 

-0.0318 

-24.9259 + 8.4559i 
-24.9259 - 8.4559i 

-2.9593 
-0.1972 + 1.6445i 
-0.1972 - 1.6445i 
-0.0026 + 0.4852i 
-0.0026 - 0.4852i 

-0.3626 
-0.0262 + 0.2596i 
-0.0262 - 0.2596i 

-0.0484 

In addition, the effect of other system parameters on Hopf bifurcation or saddle-node bifurcation can 
be investigated. As an example, the effect of line length on Hopf-Bifurcation is shown at Figure 19, when the 
line length is varied from 10 Km to 40 Km. 

 

 
Figure 19 Eigenvalues locus with line length variation 
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Eigenvalues varying with line length variation are presented in table 3 for better observation again. 
 

Table 3. Eigenvalues varying with line length variation 
Line length=25 Km Line length=17..935Km Line length=15 Km Line length=10 Km 
-24.3351 +10.6635i 
 -24.3351 -10.6635i 

  -2.4321           
  -0.1943 + 1.5376i 
  -0.1943 - 1.5376i 

  -0.3171           
  -0.1194 + 0.3239i 
  -0.1194 - 0.3239i 
0.0623 + 0.2490i 
0.0623 - 0.2490i 

  -0.0261 

-24.6119 + 9.7161i 
 -24.6119 - 9.7161i 

  -2.6725           
  -0.1962 + 1.5842i 
  -0.1962 - 1.5842i 

  -0.3407           
  -0.0425 + 0.3554i 
  -0.0425 - 0.3554i 
0.0000 + 0.2964i 
0.0000 - 0.2964i 

  -0.0370 

-24.7277 + 9.2780i 
 -24.7277 - 9.2780i 

  -2.7764           
  -0.1967 + 1.6054i 
  -0.1967 - 1.6054i 
  -0.0154 + 0.4084i 
  -0.0154 - 0.4084i 

  -0.3492           
-0.0217 + 0.2765i 
-0.0217 - 0.2765i 

  -0.0413 

-24.9259 + 8.4559i 
-24.9259 - 8.4559i 

-2.9593 
-0.1972 + 1.6445i 
-0.1972 - 1.6445i 
-0.0026 + 0.4852i 
-0.0026 - 0.4852i 

-0.3626 
-0.0262 + 0.2596i 
-0.0262 - 0.2596i 

-0.0484 

 
4.4. Voltage stability  

Voltage stability is defined as the ability of a power system to maintain steady voltages at all buses 
in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability 
is a problem in power networks, which are heavily load, faulted, or with insufficient reactive power supply. 
Main reason for voltage instability is the increased of the load, for that reason, voltage stability is also called 
load stability problem.  

 

 
Figure 20. Voltage collapse phenomena by Zload-V curve 

 

 
Figure 21 Eigenvalues of RJM with Zload variation 
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Voltage Collapse is the process by which the sequence of events accompanying voltage instability 
leads to a blackout or abnormally low voltages in a significant part of the power system [21]. Load models 
are important in voltage collapse studies. The sensitivity of the loading margin with respect to parameters of 
a load model can be used to estimate the effect on the loading margin of using more detailed models [36]. 
Voltage stability is usually represented by P-V curve. In this paper, voltage collapse phenomena are shown 
by Zload-V curve (as shown in Figure 20) that the local load is modeled by constant impedance. The nose 
point is called the point of voltage collapse (POVC). At this point voltage drops rapidly with an increase of 
the power load and Jacobian becomes singular. Power-flow solutions fail to converge beyond this limit, 
which indicate voltage instability and can be associated with a saddle-node bifurcation point. 
In general, voltage stability can also examine by eigenvalues of RJM (see Figure 21, 22). 
 

 
Figure 22 Eigenvalues of RJM with Zload variation with zoom in eigenvalues locus near the zero 

 
4.5. Participation Factors 

The eigenvalue sensitivity with respect to a physical parameter gives an estimate of the eigenvalue 
shift when such parameter is changed. Thus, eigenvalue sensitivity may also be used to obtain reduced-order 
models of physical systems. Several methods have been proposed to analyze the connection between a 
system variable and its modes [37-41]. One of these methods, the participation factor approach, has been 
extensively used for the analysis of power systems [39, 42]. The participation factors are very much useful in 
small-signal stability analysis both in case of local mode and inter-area mode. The absolute value of 
participation factors reveals which machines are involved in a particular mode and machines could go out of 
step that might create problem in the power system. Participation factors are sensitivity of eigenvalues with 
respect to diagonal terms in RJM which are defined as: 

kk

i
ki a

p
∂
∂= λ

         

(53) 

Where iλ , kka are the ith eigenvalue and kth diagonal element in RJM. When all the eigenvalues are calculated, 

it is also possible to obtain the participation factors and it is evaluated in the following way. Let V and W be 
the right and left eigenvector matrices respectively, such that: 

iii vAv λ=          (54)  

i
t
i

t
i wAw λ=          (55)   

Then the participation factor Pij of the kth state variable to the ith eigenvalue can be defined as: 

i
t
i

ikki
ki vw

vw
p =           (56) 

In case of complex eigenvalues, the amplitude of each element of eigenvectors is used [24]: 
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        (57) 

In this section participation factor for two scenarios are investigated in tables 4 and 5. 
 
 

Table 4. Participation factors in Stable operation 

   

Table 5. Participation factors in Hopf -Bifurcation occurrence with line length variation 

  
From tables four and five can easily investigate state variables effect on eigenvalues that is bolded in each 
column of tables.  
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Eigenvalue 
 
 
 
 

State 
Variables 

 

0.0977 0.0001 0.0027 0.1043 0.3575 0.0001 0.0002 0.0089 0.0001 0.0013 0.0000 omega_t (×10-4) 
0.0545 0.0000 0.0001 0.0119 0.0407 0.0000 0.0007 0.0382 0.0014 0.1337 0.0005 S(×10-3) 

0.0012 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 Teta_tg 

0.4390 0.0016 0.0017 0.0006 0.0064 0.0009 0.0004 0.0287 0.0247 0.1353 0.0127 beta_i 

0.0008 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0004 0.0007 0.0024 0.0002 eD 
0.0354 0.0199 0.0052 0.0189 0.1209 0.0003 0.1298 0.8532 0.4156 0.0708 0.0963 eQ (×10-3) 
0.0081 0.0015 0.0005 0.0005 0.0023 0.0001 0.0001 0.0066 0.0989 0.1489 0.5259 ED 

0.0014 0.0003 0.0001 0.0001 0.0005 0.0000 0.0000 0.0006 0.0105 0.0436 0.1541 EQ 
0.0001 0.0002 0.0001 0.0001 0.0005 0.0000 0.0000 0.0018 0.0051 0.0004 0.0040 Omega 

0.0034 0.0007 0.0002 0.0003 0.0015 0.0000 0.0000 0.0017 0.0023 0.0000 0.0002 delta 

0.0622 0.0070 0.0001 0.0030 0.0170 0.0001 0.0018 0.9559 0.7742 0.4202 0.3028 Efd 
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Eigenvalue     

 
 
 
 

State 
Variables 

 

0.2002 0.0002 0.0051 0.0929 0.2105 0.0001 0.0002 0.0099 0.0001 0.0014 0.0000 omega_t (×10-4) 

0.0976 0.0000 0.0001 0.0310 0.0599 0.0000 0.0008 0.0466 0.0012 0.1086 0.0008 S(×10-3) 

0.0016 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 Teta_tg 

0.4466 0.0035 0.0039 0.0009 0.0023 0.0003 0.0004 0.0357 0.0206 0.1099 0.0131 beta_i 
0.0009 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0004 0.0006 0.0020 0.0002 eD 

0.2008 0.0417 0.0194 0.0176 0.1600 0.0111 0.0159 0.3386 0.4228 0.0512 0.1012 eQ (×10-3) 
0.0071 0.0017 0.0008 0.0006 0.0024 0.0002 0.0001 0.0023 0.0644 0.1453 0.2873 ED 

0.0012 0.0001 0.0000 0.0001 0.0006 0.0000 0.0001 0.0009 0.0079 0.0755 0.1273 EQ 
0.0000 0.0001 0.0000 0.0000 0.0008 0.0000 0.0000 0.0040 0.0070 0.0003 0.0071 Omega 

0.0024 0.0004 0.0001 0.0001 0.0018 0.0000 0.0000 0.0037 0.0028 0.0000 0.0003 delta 

0.0463 0.0048 0.0001 0.0024 0.0146 0.0004 0.0019 0.9482 0.7970 0.4892 0.5645 Efd 
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5. CONCLUSION 
In this paper, wind-diesel system is modeled by a set of nonlinear first order differential and 

algebraic equations and the proposed dynamic model investigates dynamic behavior of the system. The 
proposed model is verified by simulation and eigenvalue analysis. In this paper, it is also shown that how 
eigenvalue based methods can be applied to dynamic stability analysis of a wind-diesel system. Using those 
eigenvalues, corresponding eigenvectors and participation factors are obtained. It is seen from eigenvalue 
analysis that the stability of the system can be analyzed by using eigenvalues locus. It is found from the 
eigenvalue analysis that which of the eigenvalues has positive real part, so the system is unstable and which 
state has the highest participation factor. Two important types of instability, i.e. saddle node bifurcation and 
Hopf bifurcation are analyzed by proposed dynamic model. System dynamic voltage stability is also 
investigated by using reduced Jacobian matrix (RJM). 
 
 
List of Abbreviations 

DAE Dynamic and Algebraic Equations 
PI Proportional-Integral 
SCIG Squirrel Cage Induction Generator 
RJM Reduced Jacobian Matrix 
UJM Unreduced Jacobian Matrix 
SNB Saddle-Node Bifurcation 
HB Hopf Bifurcation 
POVC Point Of Voltage Collapse 
 
 
APPENDIX A 
 

Table (A.1). Drive Train System & Pitch Control System Parameters 
Drive Train System & Pitch Control System Parameters 

4.5 Hg 0.55 K 
5 Kp 0.01 D 
25 K i 0.75 H t 

 

Table (A.2). Transmission line parameters 
Transmission Line Parameters & Vbase=20kV 

0.1153   Ohm /km   (0.029 p.u) R 

1.05×10-3                 (0.099 p.u) L 
10 km Length 

 

Table (A.3). Transformer Parameters 
 
 
 
 
 
 

 
Table (A.4). Synchronous generator parameters 
Vbase=460volt , Frequency=60HZ , Sbase=10MVA ,Snom=2.5MVA  

0.213 T'qo 0.017  (p.u) Rs 
0.3468 H 3.23 xd 

0.009238 F 2.79 xq 

2 (Round Pole) P 0.21 x'd 

0.1 Tex 1.03 x'q 

50 Kex 1.7 T'do 

 

Transformer Parameters & Snom=4 MVA 

8.5×10-5 R secondary 460/575 V V primary 

6.25×10-4 L primary 20 kV V secondary 

6.25×10-4 L secondary 8.5×10-5 R primary 
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Table (A.5). Squirrel cage induction generator parameters 

Vbase=575volt,  Frequency=60HZ,   Sbase=10MVA ,   Vwind=9 m/s,  Snom=3.33MVA  
2.77 Xm(p.u) 0.004843(p.u) Rs 

0.1791 Xr(p.u) 0.004377(p.u) Rr 
3 P(pole pairs) 0.1248(p.u) Xs 

 

Table (A.6): Load parameters 

Load parameters ( Vbase=20kV,  P=5MW) 
1.8 (p.u) Z 
0.4510 Cos(φ) 
Star(Y) connection 
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