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 In this paper, descending viewer method (DVM) projected for finding and 

fault tolerant control of stator inter-turn short circuit faults in doubly-fed 

induction generators based in wind turbine. A process has been developed 

that allows the way from ostensible controllers designed for strong condition, 

to vigorous controllers designed for defective condition. Finally value of the 

rotor resistance estimated & is based on the use of the error between real and 

probable value of doubly fed induction generator (DFIG) in faulty condition, 

this will perk up the performance of this viewer. Simulation results show the 

reliability of the proposed DVM approach. 
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1. INTRODUCTION 

Now a day‟s Wind energy generation is an economic & one of the alternative source energy sources 

[1-7]. Systems such as DFIG-wind turbine, which have non-linear dynamics, have the regulator demean 

during wide variations of wind speed. Many techniques do not make use of the precise nonlinear DFIG-wind 

turbine model in the control design. Accordingly, the acquired controllers are usually not supported by 

recognized stability analysis and their performance cannot be particularly enumerated. Fault exposure and 

localization unit notice the incidence of fault and verify its temperament [8-19]. It can be recognized by 

examine the transform of the rotor resistance and suitable assessment has to be proceeded i.e. admitting the 

evasion or else cease the machine to perform a remedial protection. In this paper, DVM projected for finding 

and fault tolerant control of stator inter-turn short circuit faults in doubly-fed induction generators based in 

wind turbine. A process has been developed that allows the way from ostensible controllers designed for 

strong condition, to vigorous controllers designed for defective condition. Finally value of the rotor resistance 

estimated & is based on the use of the error between real and probable value of DFIG in faulty condition, this 

will perk up the performance of this viewer. Simulation results show the reliability of the proposed DVM 

approach. Figure 1 shows block diagram of speed and reactive power controls of DFIG. 

 

 

2. MODELLING OF DOUBLY FED INDUCTION GENERATOR 

In the stator [7], [18-24] orientation frame (αs-βs), the mechanical/electrical energy alteration 

process is described by the equations [10], [16-28] of DFIG are given by:  
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Stator and rotor flux equations of are defined as below:  
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Electromagnetic torque articulated by:  
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Figure 1. Block diagram of speed and reactive power controls of DFIG 
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Standard vector control with stator flux [18], [28-29] of the DFIG is shown in Figure 2. The stator 

flux vector will be associated on the„d‟ axis & the stator voltage vector on the „q‟ axis, this final restriction is 

complimentary to acquire a easy control model. 

 

 

 
 

Figure 2. Respective position of the references (αs, βs) and (αr,βr) 

 

 

In a fixed reference frame (αs-βs) [12], [14-17] DFIG electrical equations in the state-space can be 

articulated as below:  
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where Rs and Rr are the stator and rotor resistance, respectively. Ls, Lr and Lm are the stator and rotor full 

inductance, the magnetization inductance, respectively. The electromagnetic torque [15], [26-28] equation 

can be written as,  
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An inter-turn fault for a stator phase winding is a consequence of the worsening of insulation 

between the individual coils. A Short circuit in stator phase winding alters the symmetrical stator current. To 

forecast the electrical performance from the stator supply due to an inter-turn fault, it would emerge that the 

impedance of the short-circuited stator winding has been diminished [5-33]. The degree to which its 

impedance will be diminished is depend on the rigorousness of the fault. To simulate the failure, the 

impedance of the stator phase winding is diminished by placing a resistor in parallel with the winding, as 

shown in Figure 3 [22-23]. Stator resistance matrix redrafted as follows, yet, the matrix of stator  

voltages unaffected. 

 

 

 
 

Figure 3. Stator winding configuration with the inter-turn short circuit fault in phase „A‟ 
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« » fraction of the number of shorted turns of phase « a » , then we have a strong portion of a fraction 

1  of turns and the phases "b" and "c" are also strong. New inductance stator matrix [20-25] is given as 

follows:  
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Matrix of mutual inductances [2-30] is given as follows& Rotor inductance matrix [21], [24-25] 

remains equal to that of the strong cases.  
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3. DESCENDING VIEWER METHOD  

If the system is noticeable, then the intention of the viewer is to provide the most excellent 

evaluation of the state variables from the measurements on the output “y” and the input “u”. 

The viewer [32-33] defined as follows,  
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A nonlinear system is considered [6-19] by the following equation, 
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The system is noticeable, & the system (10), the viewer [3-8-11-13] is decided by descending  

mode by:  
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where  .sign  is sign function and is the then slide surface is given by, 
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PxPRN  is a matrix to be indicated. 

Therefore, the dynamics of the observation error turn into as follows:  

 

sIu),(f-u),f( 


xxx  
(15) 

 

The descending surface 0S is striking if: 
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0. 


ii SS  for pi ,....2,1 . 

 

This circumstance describes the area for which the slip mode is present. In the duration of slip, the 

dynamics of the estimation error are condensed from the order n (preliminary system) to the order of pn   

(condensed order equal system). Then the assets of this condensed dynamics are examined. The method of 

equivalent control has been utilized for the examination. The purpose of the expression of the condensed 

dynamic range is based on the computation of the equivalent sI
~

switching vector on the switching surface. 

As of the condition of invariance 0S and 0
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Matrix NC  is invertible, then, 
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The replacement of sI
~

in (15) has permitted us to acquire the condensed dynamics as, 
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At last, the viewer amalgamation selects the matrices N and   so as to make sure that the same 

time the magnetism of the sliding surface and stability of the condensed dynamic range. 

 

 

4. DVM PROJECTED FOR FINDING AND FAULT TOLERANT CONTROL OF STATOR 

INTER-TURN SHORT CIRCUIT FAULTS IN DOUBLY-FED INDUCTION GENERATOR 

The descending method viewer for the evaluation of the doubly-fed induction generator flows  

as follows, 

 

 

 (19) 

 

 
 








































































S

Tvr

S

T
r

r

r

r

mr

S

T
r

r

r

r

mr

S

T
r

m
s

s
r

mrm

S

T
r

m
s

s

m

r

mr

Ixxqx
J

f

J

T
xxxxdx

Ivxpxx
L

R
x

L

LR
x

Ivxpxx
L

R
x

L

LR
x

Iv
b

L
v

L
x

La

LR
xpx

b

L
xax

Iv
b

L
v

L
xpx

b

L
x

La

LR
xax

51

.

4

.

3

.

2

.

1

.

55514235

53424

54313

1
45322

1
54311













rs

m
rs

r

m
rs

s LL

L
LLb

L

L
RR

L
a

2

2

2

1   ,  ,
1











 





IJAPE ISSN: 2252-8792  

Descending Viewer Method for Fault Tolerant Control (K. Lenin) 

205 

With  and  

 

 and 

















222

111

xxS

xxS

 
 

,  symbolize the descending surfaces. 

The increase: ,  ,  ,  ,  ,  are computed to guarantee the asymptotic 

convergence of the error estimation & given by:  
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such as: 

 

 and  

 

The residual signal is computed as follows,
 

][


 yyr  & 0r as the detection threshold (lower 

limit), which is defined according to several pre-specified system performance. The object is to find out the 

mechanism of adjustment of the speed and the resistance of the rotor. The viewer structure is based on the 

DFIG model in the stator reference. 

 

 

5. SIMULATION STUDY  

5.1.  Phase 1 strong operation 
To illustrate the performance of the projected control, several modes of operation have been viewed 

Figure 4 and 5. The primary mode match up to the over speed operation. Then it treated as the strong 

functioning. Finally, the study bang of the following disturbances: variation of the rotor resistance and stator 

inter-turn short circuit fault. 

 

 

 
 

Figure 4. Rotation speed and electromagnetic torque of the DFI 
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Figure 5. Active and reactive stator power with variation of wind speed 

 

 

 

Figure 6. Rotor currents ( rdi  , rqi ) with variation of wind speed 

 

 

 

Figure 7. Stator currents
 
( sI  , sI ) with variation of wind speed 

 

 

5.2. Process with stator inter-turn short circuit fault and for variation of the rotor resistance 

Figures 8, 9, 10, 11 indicates the stator inter-turn short circuit fault and rotor resistance variation. 

Figure 12 shows principle of an adaptive descending viewer method. 

 

 Figure 8. Rotation speed and observed rotor resistance of the DFIG 
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Figure 9. Active and reactive stator power 

 

 

 

Figure 10. Park‟s rotor currents ( rdi  , rqi ) 

 

 

 

Figure 11. Stator Current ( sI  , sI ) 

 

 
 

Figure 12. Principle of an adaptive descending viewer method 
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The current rotational speed of the ripple relative to the strong operation is noted, and in 

accumulation it is not affected by the variation of the rotor resistance. The active and reactive stator power, 

direct, quadrature rotor currents and the stator phase current have oscillations of elevated amplitudes than 

those corresponding to the strong operation. This augment is due to the stator inter-turn short circuit fault. As 

following, the control with descending viewer method has high-quality performances of heftiness and 

accuracy of function in dilapidation against stator inter-turn short circuit fault and the rotor  

resistance variation. 

 

 

6. CONCLUSION 

In this research paper, descending method viewer method applied to DFIG, based on the assessment 

of the value of the rotor resistance. The assessment of the rotor resistance is based on the use of the error 

between real and estimated value of DFIG in flawed condition & it need to perk up the performances of this 

viewer. In flawed conditions, the machine is unbalanced and noteworthy augment of stator and rotor currents 

is formed. In the proposed control system, the speed remains equal to its reference value and the overshoot 

currents cannot be evaded. When the current is not beyond the tolerable level, the DFIG prolong to activate 

with besmirched performance until its revamp. So, it‟s constantly obligatory to accomplish early on fault 

detection to control the damage. The universal control scheme introduces elevated performances of heftiness 

and steadiness with accuracy. The rotor resistance Rr estimated with little error& the estimation of rotor 

resistance can be helpful for improving the vibrant characters of controller by the adaptive descending viewer 

method.  
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APPENDIX 

 

 

Table 1. Different Parameters for Model of the DFIG 
Electrical Index Value 

Rated power Ps 7500W 

Stator resistance Rs 0.440 Ω 

Rotor resistance Rr 0.59 Ω 
Stator leakage inductance Ls 0.0072 H 

Rotor leakage inductance Lr 0.0079 H 

Magnetizing inductance Lm 0.0070 H 
Number of pole pairs P 2 

Inertia J 0.31102 kg. m2 

Viscous friction fv 0.00654 kg.m2.s-1 

 

 

https://www.sciencedirect.com/science/journal/00190578/63/supp/C
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Table 2. Variation of Wind Speed 

 

 

 

 

 

Table 3. The Degree of Short-circuit 

 

 

 

 

Table 4. Change in 1rR  
t (s ) 0 1.29 

1rR (Ω) rR  rr RR %50  

 

t (s ) 0 4 7 

V(m/s)  10  12  14 
Qsref (var) 0 0 0 

t (s ) 0 0.9 


(%) 0.10 4 


