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 In this article, we present a comparative study between pulse width 

modulation (PWM) and neural space vector modulation (NSVM) strategy 

associated with a neuro-sliding mode control (NSMC) of stator reactive and 

stator active power command of a doubly fed induction generator (DFIG). 

The obtained results showed that, the proposed NSMC with NSVM strategy 

have rotor current with low harmonic distortion and low powers ripples than 

PWM strategy. 
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1. INTRODUCTION 

In recent years, sliding mode control (SMC) has drawn much attention from research groups and 

industry. The SMC theory was proposed by Utkin in 1977 [1]. The principle advantage of the SMC is that the 

robustness and simple control. On the other hand, the SMC has a major inconvenience called the chattering 

phenomenon created by the discontinuous part of command [2]. In order to minimize this effect, artificial 

intelligence strategies like fuzzy logic (FL) and artificial neural networks (ANN) are used to improve the 

performance of SMC technique. In [3], fuzzy sliding mode controller (FSMC) was designed for the doubly 

fed induction machines control. Second order sliding mode controller and neural networks are combined to 

command active and reactive power of DFIG based wind turbine systems [4].  

Traditionally, the space vector modulation (SVM) technique is widely used in AC inverters. 

However, this strategy reduces the total harmonic distortion (THD) compared to pulse width modulation 

(PWM) technique. In addition, this strategy is difficult to implement. However, this technique has essential 

drawbacks such as the need of sector and angle calculatation [5] and important powers ripples. In [6], the 

authors propose a novel SVM technique based on FL controller (FSVM) to control active and reactive 

powers of a DFIG. In this paper, we use the neural space vector modulation (NSVM) to control the powers of 

a DFIG. These proposed strategies reduce the THD value of rotor current and powers ripples. 

 

 

2. MODEL OF THE WIND TURBINE 

In The wind turbine input power is given by [7, 8]: 
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The mechanical power can be written as [9]: 
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Where, C1=0.5176, C2=116, C3=0.4, C4=5, C5=21, C6=0.0068. 

ρ: is air density. 

Vvent: Wind speed (m/s). 

Pmax: Maximum power in (watts). 

R: Radius of the turbine in (m). 

Cp: The aerodynamic coefficient of power. 

λ: The tip speed ratio. 

β: The blade pitch angle in a pitch-controlled wind turbine. 

 

 

3. MODELING OF THE DFIG 

The mathematical models of three phases DFIG in the Park frame are written as [10-12]: 
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The dq synchronous reference frame equations of the rotor flux and stator may be written also as: 
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The torque is expressed as [13]: 
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The stator active and stator reactive powers can be expressed as: 
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4. NEURAL SPACE VECTOR MODULATION 

The disadvantage of the conventional SVM strategy are explained in [14]. The details about this 

strategy can be established in [15-17]. The proposed SVM inverter as shown in Figure 1. This modulation 

strategy is simple scheme and easy implementation, based on following steps [18]: 

a. Calculates the minimum voltages (min (V1, V2, V3)) 

b. Calculates the maximum voltages (max (V1, V2, V3)) 

c. Add the maximum and minimum voltages (max (V1, V2, V3) + min (V1, V2, V3)). 

d. The last step is to compare step-3 waveforms with Vp (VTriangle), and generates the pulses for that 

switch presents in the 3 phase voltage source converter circuit. 

In this article, we propose new SVM strategy based on neural networks (NN) to get better the 

performances of DFIG machine. Figure 2 the simulation block of two-level inverter controlled by NSVM 

strategy for a DFIG-based wind turbine. 

The theory of NSVM inverter is similar to traditional SVM strategy. However, the hysteresis 

controllers are replaced by NN regulators. This modulation method based on neural organization has 

advantage of reduce the harmonic distortion of rotor current and reduce the powers ripples. On the other 

hand, The NSVM technique is simple modulation and easy to implement. 

 

 

 
 

Figure 1. Traditional SVM strategy 
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Figure 2. NSVM strategy 

 

 

The NN regulators contain 3 layers: input layers, hidden layers and output layers. On the other hand, 

the number of the neurons in the output and input layers depends on the number of the selected output and 

input variables. This method based on NN control has the advantage of simplicity and easy implementation. 

The construction of the NN regulator to realize the SVM method applied to DFIG adequately was a NN with 

one linear input node, 8 neurons in the hidden layer, and one neurone in the output layer, as shown in  

Figure 3. The construction of Layer 1 and layer 2 is shown in Figure 4 and Figure 5 respectively. 

 

 

 
 

Figure 3. Neural network structure for SVM inverter 

 

 

 
 

Figure 4. Architecture of layer 1 
 

 

 
 

Figure 5. Architecture of layer 2 
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The convergence of the network in summer obtained by using the value of the parameters grouped 

in the Table 1. 

 

 

Table 1. Parameters of the LR for Hysteresis Controllers 
Parameters of the LM Values 

Number of hidden layer 12 

TrainParam.Lr 0.005 

TrainParam.show 50 
TrainParam.eposh 1000 

Coeff of acceleration of convergence (mc) 0.9 

TrainParam.goal 0 

TrainParam.mu 0.9 

Functions of activation Tensing, Purling, gensim 

 

 

5. NEURO-SLIDING MODE CONTROL 

In this section, we propose a novel robust control of the DFIG based on neural network and SMC 

which is NSMC. However, the SMC command is one of the most interesting nonlinear command approaches 

[19, 20]. The SMC technique based on the theory of variable structure systems (VSS). Since the robustness is 

the best advantage of the SMC command. On the other hand, the disadvantage of SMC controllers is the 

chattering effect.  

The basic idea of SMC technique is first to draw the states of the system in an area properly and 

then design a law control that will always keep the system in this region [21]. The SMC method goes through 

three stages, as follows: 

a. Choice of switching surface 

b. Convergence condition 

c. Control calculation 

Many paper proposed SMC method to command the reactive and active powers of a DFIG-based 

wind turbine systems. In [22], the author proposes the design of a robust SMC based on nonlinear modeling 

of variable speed wind turbine system. 

Yahdou et al., In 2016 [23] used second order sliding mode control to command stator reactive and 

stator active powers of a dual-rotor wind turbine system using a matrix converter. Boudjema et al. In 2012 

[24] used robust command to command the DFIG machine. In [25], the high order SMC method was 

proposed by Levant.  
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Where Ps ref and Qs ref are the expected active and reactive power reference. 

The first order derivate of (11), gives: 
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The equivalent command vector V
eq

 can express by: 
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To obtain good performances, dynamic and a commutation around the surface, the command vector 

is imposed as follows: 
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V
n
dq  is the saturation function defined by : 
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Where K determine the ability of overcoming the chattering. 

 

The SM will exist only if the following condition is met: 
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The disadvantage of SMC strategy is that the discontinuous command signal produces chattering. In 

order to improve the SMC command and eliminate the chattering phenomenon, we propose to use the NN 

regulators. The Neuro-Sliding Mode Controllers (NSMC) is a modification of the SMC technique, where the 

switching regulator term sat(S(x)), has been replaced by NN regulator input as given below. 
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The proposed NSMC strategy, which is designed to command the stator reactive and stator active 

powers of the DFIG machine, is shown in Figure 6. 

 

 

 
 

Figure 6. Block diagram of the DFIG control with NSMC strategy 

 

 

For the two proposed neuro-sliding mode controllers in Figure 7, the structure of the NN with one 

linear input node, 8 neurons in the hidden layer and one neuron in the output layer. 
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The training used is that of the algorithm, Gradiant descent with momentum & Adaptive LR. The 

number of iteration count maximum 2000 with an iteration step of 50. Figure 8 represents the SMC strategy 

of DFIG driven by a two-level NSVM inverter. 

 

 

 
 

Figure 7. Neural network structure for reactive and active powers 

 

 

 
 

Figure 8. NSMC control of a DFIG using NSVM strategy 

 

 

6. SIMULATION RESULTS 

In this section, simulations are investigated with a 1.5MW DFIG connected to a 398V/50Hz grid. 

The DFIG parameters are presented in the Table 2. The proposed command schemes will be tested and 

compared in two different configurations: robustness against parameters variations and reference tracking. 

 

 

Table 2. The DFIG Parameters 
Parameters Rated Value Unity 

Nominal power 1.5 MW 

Stator voltage 398/690 V 
Stator frequency 50 Hz 

Number of pairs poles 2  

Stator resistance 0.012 Ω 
Rotor resistance 0.021 Ω 

Stator inductance 0.0137 H 

Rotor inductance 0.0136 H 
Mutual inductance 0.0135 H 

Inertia 1000 Kg m2 

Viscous friction 0.0024 Nm/s 

 

 

6.1. Reference tracking test 

Figures 9-14 show the obtained simulation results. For the proposed command strategies, the stator 

reactive and active power tracks almost perfectly their references values. Moreover, the NSMC-NSVM 

control strategy reduced the powers ripples compared to the NSMC-PWM control scheme  

as shown in Figures 11-12. On the other hand, Figures 13-14 shows the harmonic spectrums of one phase 

rotor current of the DFIG obtained using Fast Fourier Transform method for NSMC-PWM and  
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NSMC-NSVM one respectively. It can be clear observed that the THD is reduced for NSMC-NSVM control 

method (THD=0.82%) when compared to NSMC-PWM (THD=0.17%). 

 

 

 
 

Figure 9. Reactive power (reference tracking test) 

 

 

 
 

Figure 10. Active power (reference tracking test) 

 

 

 
 

Figure 11. Zoom in the reactive power (reference tracking test) 

 

 

 
 

Figure 12. Zoom in the active power (reference tracking test) 
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Figure 13. THD of one phase rotor current for NSMC-PWM control (reference tracking test) 

 

 

 
 

Figure 14. THD of one phase rotor current for NSMC-NSVM control (reference tracking test) 
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NSMC-PWM command scheme compared to NSMC-NSVM command as shown in Figures 19-20. On the 

other hand, the THD value of rotor current in the NSMC-NSVM has been minimized significantly. Table 3 

shows the comparative analysis of THD value. Thus it can be concluded that the NSMC-NSVM command 

scheme is more robust than the NSMC-PWM command. 

 

 

 
 

Figure 15. Active power (robustness test) 

 

 

 
 

Figure 16. Reactive power (robustness test) 
 

 

 
 

Figure 17. Zoom in the active power (robustness test) 
 
 

 
 

Figure 18. Zoom in the reactive power (robustness test) 
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Figure 19. THD of one phase rotor current for NSMC-PWM control (robustness test) 

 

 

 
 

Figure 20. THD of one phase rotor current for NSMC-NSVM control (robustness test) 

 

 

Table 3. Comparative analysis of THD value 

 
THD (%) 

NSMC-PWM NSMC-NSVM 
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7. CONCLUSION 

This article presents interesting simulation results of an advanced control scheme using NSMC and 

NSVM strategy for a DFIG-based wind turbine system. These simulation results show clearlly that for the 

same operation conditions, the DFIG stator active and reactive powers control presents good performances 

with NSMC using NSVM technique with fewer ripples compared to the conventional PWM and  

SVM strategies. 
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