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 This paper examines the role of magnetic field on fully developed natural 

convection flow in an annulus due to symmetric of surfaces. The transport 

equations concerned with the model under consideration are rendered  

non-dimensional and transformed into the ordinary differential equation 

using Laplace transform technique. The solution obtained is then transformed 

to time domain using the Riemann-sum approximation approach. The governing 

equations are also solved using implicit finite difference method so as to 

establish the accuracy of the Riemann-sum approximation approach at 

transient as well as at steady state solution. The solutions obtained are 

graphically represented and the effects of pertinent parameters on the flow 

formation are investigated in detail. The Hartmann number (M), is seen to 

have a retarding effect on the velocity, skin-frictions and the mass flow rate. 

Also, skin-friction at both surfaces and the mass flow rate within the annulus 

are found to be directly proportional to the radii ratio (λ). 
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NOMENCLATURE 

𝐵0 Constant magnetic flux density 

𝐶𝑝 Specific heat at constant pressure 

𝑔 Gravitational acceleration 

𝑘 Thermal conductivity of the fluid 

𝑀 Hartmann number 

𝑃𝑟 Prandtl number 

𝑄 Dimensionless mass flow rate 

𝑟1 Radius of the inner cylinder 

𝑟2 Radius of the outer cylinder 

𝑟′ Dimensional radial coordinate 

𝑅 Dimensionless radial coordinate 

𝑡 Dimensionless time  

𝑡′ Dimensional time 

𝑇0 Reference temperature 

𝑇𝑤 Temperature at both surfaces 

𝑢′ Axial velocity 

𝑈 Dimensionless axial velocity 
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Greek letters 

𝜃 Dimensionless temperature 

𝜐 Fluid kinematic viscosity 

𝜏 Skin-friction 

𝜎 Electrical conductivity of the fluid 

𝜌 Density 

𝜆 Radii ratio (𝑟2/𝑟1) 

𝛽 Coefficient of thermal expansion 

 

 

1. INTRODUCTION 

In recent times, the natural convection with simultaneous heat and mass transfer flow of 

magnetohydrodynamics fluid has attracted many researchers in view of its various applications in 

astrophysics, geophysics, meteorology, aerodynamics, magnetohydrodynamics power generators and pumps, 

boundary layer control energy generators, accelerators, aerodynamics heating, polymer technology, 

petroleum industry, purification of crude oil, and in material processing such as metal forming, continuous 

casting wire, magnetohydrodynamics (MHD) bearings, MHD flow meters, geothermal energy excitations  

and plasma controls. Others include the study of stellar and solar structures, interstellar matter, and radio 

propagation through the ionosphere and so forth [1-9]. 

The study of MHD flow problem in an annulus was first discussed by Globe [10] who considered 

fully developed laminar MHD flow problem in an annulus. In his work, he studied the problem of steady 

flow of an electrical conducting incompressible fluid in an annular space between two infinitely long circular 

cylinders under the radial impressed magnetic fluid. Later on, Georgantopoulos and Goudas [11] studied  

the free convection effects on the hydromagnetic oscillatory flow in the Stokes problem past an infinite 

porous vertical limiting surface with constant suction. Again, the analytical solutions for transient fully 

developed natural convection in open-ended vertical concentric annulus was presented by Al-Nimr [12]. 

Later on, Al-Nimr [13] carried out analytical solutions for fully developed MHD natural-convection flow in 

the open-ended vertical concentric porous annulus. Al-Nimr and Database [14] presented the closed forms on 

transient fully developed free convection solutions, corresponding to four fundamental thermal boundary 

conditions in the vertical concentric annulus, while Sheikholeslami and Gorji-Bandpy [15] examined  

the numerical solution for free convection of ferrofluid in a cavity heated from below in the presence of 

external magnetic field. Sheikholeslami et al. [16] investigated MHD natural convection of nanofluid in  

a concentric annulus between a cold outer square cylinder and a heated inner circular. 

In other work, Singh et al. [17] studied natural convection in vertical concentric annulus under  

a radial magnetic field, where they observed that both velocity and temperature are more in case of 

isothermal condition compared with constant heat flux case when gap between cylinders is less or equal to 

radius of inner cylinder. Nirmal et al. [18] studied an exact solution for unsteady magnetohydrodynamic free 

convection flow with constant heat flux and concluded that the magnetic field has a retarding effect on  

the velocity while the skin-friction at the plate increases with it. Furthermore, Jha et al. [19] considered fully 

developed MHD natural convection flow in a vertical microchannel with the effect of the transverse magnetic 

field in the presence of velocity slip and temperature jump at the annular micro-channel, they established that 

increase in curvature radius leads to an increase in the mass flow rate.  

In a related article, Abbas et al. [20] investigated application of drug delivery in magnetohydrodynamics 

peristaltic blood flow of nanofluid in a non-uniform channel, while Bhatti et al. [21] considered combined 

effect of magnetohydrodynamics and partial slip on peristaltic blood flow of Ree-Eyring with wall properties. 

An analysis to investigate the combined effects of heat and mass transfer on free convection unsteady 

magnetohydrodynamics (MHD) flow of the viscous fluid embedded in a porous medium was later presented 

by Ali et al. [22]. Most recently, two-dimensional magnetohydrodynamic flow of a viscous fluid over  

a constant wedge immersed in a porous medium was studied by Kudenatti et al. [23], they found that MHD 

effects on the boundary layer are exactly the same as the porous medium in which both reduce the boundary 

layer thickness. This paper is devoted to investigate the role of magnetic field on fully developed natural 

convection flow of an incompressible and electrically conducting fluid filled between two vertical coaxial 

cylinders, when the two cylinders are subjected to constant heating. 

 

 

2. RESEARCH METHOD 

Consider a transient laminar fully developed natural convection flow of an incompressible, viscous 

and electrically conducting fluid in an annulus of infinite length under the influence of transverse magnetic 

field. The z-axis is taken along the axis of the cylinder in the vertically upward direction and 𝑟′-axis is in  
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the radial direction. A magnetic field of strength 𝐵0 is assumed to be uniformly applied in the direction 

perpendicular to the direction of flow. In the present physical situation, the inlet fluid temperature is 

maintained at 𝑇0, while a constant uniform heating of 𝑇𝑤  is applied at the outer surface of the inner cylinder 

and at the inner surface of the outer cylinder such that 𝑇𝑤 > 𝑇0 as presented in Figure 1. The flow is assumed 

to be fully developed both thermally and hydrodynamically, and the viscous dissipation, radiation,  

and compressibility effects are neglected. Following the work of Jha et al. [24] the momentum and energy 

equations governing the present physical situation is given by (1) and (2). 
 

 

 
 

Figure 1. Schematic diagram of the problem 

 

 

𝜕𝑢′

𝜕𝑡′
= 𝜈 [

𝜕2𝑢′

𝜕𝑟′2 +
1

𝑟′

𝜕𝑢′

𝜕𝑟′
] −

𝜎𝐵0
2

𝜌
𝑢′ + 𝑔𝛽(𝑇′ − 𝑇0) (1) 

 

𝜕𝑇′

𝜕𝑡′
=

𝑘

𝜌𝑐𝑝

[
𝜕2𝑇′

𝜕𝑟′2 +
1

𝑟′

𝜕𝑇′

𝜕𝑟′
] (2) 

 

The relevant dimensional initial and boundary conditions are; 

 

𝑡′ ≤ 0         𝑢′ = 0,     𝑇′ = 𝑇0  for   𝑟1 ≤ 𝑟′ ≤ 𝑟2 

𝑡′ ≥ 0         {
  𝑢′ = 0,     𝑇′ = 𝑇𝑤        at   𝑟′ = 𝑟1

  𝑢′ = 0,     𝑇′ = 𝑇𝑤         at   𝑟′ = 𝑟2
  

(3) 

 

Introducing the following dimensionless quantities in (1) and (2). 

 

𝑡 =
𝑡′𝜈

𝑟1
2 , 𝑅 =

𝑟′

𝑟1
 , 𝜆 =

𝑟2 

𝑟1
  , 𝑀2 =

𝜎𝐵0
2𝑟1

2

𝜌𝜈
  , 𝜃 =

(𝑇′−𝑇0)

(𝑇𝑤 −𝑇0)
  , 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
 

𝑈 = 𝑢′𝜈[𝑔𝛽(𝑇𝑤 − 𝑇0)𝑟1
2]−1  

(4) 

 

Equations (1) and (2) in dimensionless form are obtained as follows: 

 
𝜕𝑈

𝜕𝑡
=

𝜕2𝑈

𝜕𝑅2 +
1

𝑅

𝜕𝑈

𝜕𝑅
− 𝑀2𝑈 + 𝜃  (5) 

 

𝑃𝑟
𝜕𝜃

𝜕𝑡
=

𝜕2𝜃

𝜕𝑅2 +
1

𝑅

𝜕𝜃

𝜕𝑅
  (6) 

 

The initial and boundary conditions in dimensionless form are: 

 

𝑡 ≤ 0         𝑈 = 0,     𝜃 = 0  for   1 ≤ 𝑅 ≤ 𝜆  (7) 
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𝑡 > 0         {
    𝑈 = 0,   𝜃 = 1           at  𝑅 = 1
  𝑈 = 0,     𝜃 = 1         at  𝑅 = 𝜆

  (8) 

 

The physical quantities used in (1) to (6) are defined in the nomenclature. The solution of (5) and (6) 

with the associated initial and boundary conditions (7) and (8) can be obtained by using the Laplace 

transform technique. Defining the following transform variables. 

 

𝑈(𝑅, 𝑠) = ∫ 𝑈(𝑅, 𝑡)𝑒−𝑠𝑡𝑑𝑡,      �̅�(𝑅, 𝑠) = ∫ 𝜃(𝑅, 𝑡)𝑒−𝑠𝑡𝑑𝑡,      
∞

0

∞

0
  (9) 

 

Where the Laplace parameter, (𝑠 > 0) in (5) and (6) are transformed into the Laplace domain using  

the initial condition (7) to obtain. 

 
𝑑2𝑈

𝑑𝑅2 +
1

𝑅

𝑑𝑈

𝑑𝑅
− (𝑀2 + 𝑠)𝑈 = −�̅�  (10) 

 
𝑑2�̅�

𝑑𝑅2 +
1

𝑅

𝑑�̅�

𝑑𝑅
− 𝑠𝑃𝑟�̅� = 0  (11) 

 

Applying Laplace transform technique (9) on the boundary conditions (8), we have: 

 

𝑈 = 0,     �̅� = 1
𝑠⁄        at  𝑅 = 1

𝑈 = 0,     �̅� = 1
𝑠⁄         at  𝑅 = 𝜆

  (12) 

 

The solution of (10) and (11) in Laplace domain subject to the boundary conditions (12) are: 

 

𝑈(𝑅, 𝑠) = 𝐶3𝐼0(𝑅𝛿) + 𝐶4𝐾0(𝑅𝛿) − [
𝐶1𝐼0(𝑅√𝑠𝑃𝑟)+𝐶2𝐾0(𝑅√𝑠𝑃𝑟)

𝑠(𝑃𝑟−1)−𝑀2 ]    (13) 

 

�̅�(𝑅, 𝑠) = 𝐶1𝐼0(𝑅√𝑠𝑃𝑟) + 𝐶2𝐾0(𝑅√𝑠𝑃𝑟)  (14) 

 

Equation (13) and (14) are to be inverted in order to obtain their solutions in the time domain.  

Due to the complex nature of these inversions, we adopt a numerical procedure used in Jha and Yusuf [25] as 

well as Jha and Apere [26] which is based on the Riemann-sum approximation. According to this technique, 

any function in the Laplace domain can be inverted to the time domain as follows: 

 

𝑃(𝑅, 𝑡) =
𝑒𝜀𝑡

𝑡
[

1

2
�̅�(𝑅, 휀) + 𝑅𝑒 ∑ �̅� (𝑅, 휀 +

𝑖𝑗𝜋

𝑡
) (−1)𝑗 𝑁

𝑗=1 ] , 1 ≤ 𝑅 ≤ 𝜆   (15) 

 

where Re refers to the real part of 𝑖 = √−1  the imaginary number. N is the number of terms used in  

the Riemann-sum approximation and 휀 is the real part of the Bromwich contour that is used in inverting 

Laplace transforms. The Riemann-sum approximation for the Laplace inversion involves a single summation 

for the numerical process its accuracy depends on the value of  휀 and the truncation error dictated by M. 

According to Tzou [27], the value of 휀𝑡  that best satisfied the result is 4.7. 

 

2.1.  Skin friction and mass flow rate 

The skin friction at 𝑅 = 1, 𝜏1̅(𝑅, 𝑠), and 𝑅 = 𝜆, 𝜏�̅�(𝑅, 𝑠) in Laplace domain is obtained by 

differentiating equations (13) and (14), respectively. While, the mass flow rate of the fluid through  

the annular gap in Laplace domain 𝑄 ̅̅̅̅ (𝑅, 𝑠), is obtained by evaluating the integral 2𝜋 ∫ 𝑅
𝜆

1
𝑈(𝑅, 𝑠)𝑑𝑅.  

The solutions are as follows: 

 

𝜏1̅ =
𝑑𝑈

𝑑𝑅
|

𝑅=1
= 𝛿(𝐶3𝐼1(𝛿) − 𝐶4𝐾1(𝛿)) − √𝑠𝑃𝑟 [

𝐶1𝐼1(√𝑠𝑃𝑟)−𝐶2𝐾1(√𝑠𝑃𝑟)

𝑠(𝑃𝑟−1)−𝑀2 ]  (16) 

 

𝜏�̅� = −
𝑑𝑈

𝑑𝑅
|

𝑅=𝜆
= 𝛿(𝐶4𝐾1(𝜆𝛿) − 𝐶3𝐼1(𝜆𝛿)) + √𝑠𝑃𝑟 [

𝐶1𝐼1(𝜆√𝑠𝑃𝑟)−𝐶2𝐾1(𝜆√𝑠𝑃𝑟)

𝑠(𝑃𝑟−1)−𝑀2 ]  (17) 

 

�̅� = 2𝜋 ∫ 𝑅
𝜆

1
𝑈(𝑅, 𝑠)𝑑𝑅 = 2𝜋 {[

𝐶3

𝛿
(𝜆𝐼1(𝜆𝛿) − 𝐼1(𝛿)) −

𝐶4

𝛿
(𝜆𝐾1(𝜆𝛿) − 𝐾1(𝛿))] −

1

𝑠(𝑃𝑟−1)−𝑀2 [
𝐶1

√𝑠𝑃𝑟
(𝜆𝐼1(𝜆√𝑠𝑃𝑟) − 𝐼1(√𝑠𝑃𝑟)) −

𝐶2

√𝑠𝑃𝑟
(𝜆𝐾1(𝜆√𝑠𝑃𝑟) − 𝐾1(√𝑠𝑃𝑟))]}  

(18) 
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where 𝐼0 , 𝐾0 , 𝐼1 , 𝐾1 are the modified Bessel function of first and second kind of order 0 and 1 respectively. 

In the same manner, the solutions are inverted to the time domain by applying the Riemann-sum 

approximation stated in (15). 

 

2.2.  Validation of the method 

The accuracy of the Riemann-sum approximation approach in (14) is validated by computing  

the steady-state solution for the velocity field. This is obtained by taking  
∂( )

∂t
= 0 in (5) and (6) which then 

reduces to the following ordinary differential equations. The implicit finite difference method has also been 

used to validate the Riemann-sum approximation approach, the advantage of this numerical procedure over 

others is that comparison can be made at both steady and transient state solution of the transport equations. 

 
𝑑2𝑈

𝑑𝑅2 +
1

𝑅

𝑑𝑈

𝑑𝑅
− 𝑀2𝑈 = −𝜃  (19) 

 
𝑑2𝜃

𝑑𝑅2 +
1

𝑅

𝑑𝜃

𝑑𝑅
= 0  (20) 

 

These are solved under the boundary conditions (8) to obtain the expressions for the steady-state 

velocity field, steady-state temperature field, steady-state skin frictions as well as the mass flow rate of  

the fluid. The solutions are respectively; 

 

𝑈(𝑅) = 𝐶5𝐼0(𝑀𝑅) + 𝐶6𝐾0(𝑀𝑅) +
1

𝑀2  (21) 

 

𝜃𝑠(𝑅) = 1  (22) 

  

𝜏1𝑠 =
𝑑𝑈

𝑑𝑅
|

𝑅=1
= 𝑀(𝐶5𝐼1(𝑀) − 𝐶6𝐾1(𝑀))  (23) 

 

𝜏𝜆𝑠 = −
𝑑𝑈

𝑑𝑅
|

𝑅=𝜆
= 𝑀(𝐶6𝐾1(𝜆𝑀) − 𝐶5𝐼1(𝜆𝑀))  (24) 

 

𝑄𝑠 = 2𝜋 ∫ 𝑅𝑈(𝑅, 𝑡)𝑑𝑅
𝜆

1
= 2𝜋 [

𝐶5

𝑀
(𝜆𝐼1(𝜆𝑀) − 𝐼1(𝑀)) −

𝐶6

𝑀
(𝜆𝐾1(𝜆𝑀) − 𝐾1(𝑀)) +

1

2𝑀2 (𝜆2 − 1)]  (25) 

 

The constants 𝐶5 𝑎𝑛𝑑 𝐶6 in (25) are stated by: 

 

𝛿 = √𝑀2 + 𝑠  

𝐸1 = 𝑠[𝐼0(𝜆√𝑠𝑃𝑟)𝐾0(√𝑠𝑃𝑟) − 𝐼0(√𝑠𝑃𝑟)𝐾0(𝜆√𝑠𝑃𝑟)]  

𝐸2 = 𝑠[𝑠(𝑃𝑟 − 1) − 𝑀2][𝐼0(𝛿)𝐾0(𝜆𝛿) − 𝐼0(𝜆𝛿)𝐾0(𝛿)]  
𝐸3 = 𝑀2[𝐼0(𝜆𝑀)𝐾0(𝑀) − 𝐼0(𝑀)𝐾0(𝜆𝑀)]  

𝐶1 =
[𝐾0(√𝑠𝑃𝑟)−𝐾0(𝜆√𝑠𝑃𝑟)]

𝐸1
  

𝐶2 =
[𝐼0(𝜆√𝑠𝑃𝑟)−𝐼0(√𝑠𝑃𝑟)]

𝐸1
  

𝐶3 =
[𝐾0(𝜆𝛿)−𝐾0(𝛿)]

𝐸2
  

𝐶4 =
[𝐼0(𝜆𝛿)−𝐼0(𝛿)]

𝐸2
  

𝐶5 =
[𝐾0(𝜆𝑀)−𝐾0(𝑀)]

𝐸3
  

𝐶6 =
[𝐼0(𝑀)−𝐼0(𝜆𝑀)]

𝐸3
  

 

The numerical values of the velocity obtained using the Riemann-sum approximation approach, 

implicit finite difference method and those obtained from the exact solution of the steady-state choosing 

value of 𝑀 = 2, 𝜆 = 2. Is presented in Table 1. The comparison between the results, shows that at large time 

(steady-state) there is an excellent agreement between the Riemann-sum approximation approach and the 

implicit finite difference. 
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Table 1. Numerical values of the velocity obtained using Riemann-sum approximation approach, implicit 

finite difference and exact solution for different values of R 
  Velocity 

t R Riemann-sum  

approximation 

Implicit finite 

Difference 

Exact 

solution 

0.2 1.2 0.0478 0.0478 0.0624 

 1.4 0.0652 0.0651 0.0870 

 1.6 0.0633 0.0632 0.0837 
 1.8 0.0434 0.0434 0.0553 

0.4 1.2 0.0608 0.0608 0.0624 

 1.4 0.0846 0.0846 0.0870 
 1.6 0.0814 0.0814 0.0837 

 1.8 0.0540 0.0540 0.0553 

0.6 1.2 0.0623 0.0623 0.0624 
 1.4 0.0868 0.0868 0.0870 

 1.6 0.0835 0.0835 0.0837 

 1.8 0.0552 0.0552 0.0553 
Steady state 1.2 0.0624 0.0624 0.0624 

 1.4 0.0870 0.0870 0.0870 

 1.6 0.0837 0.0837 0.0837 
 1.8 0.0553 0.0553 0.0553 

 

 

3. RESULTS AND DISCUSSION 

In order to have a clear insight of the physical problem under consideration, a numerical 

computation is performed using the mathematical laboratory software (MATLAB) to compute and generate 

graphs for the velocity field, temperature field, skin-frictions and mass flux for different values of  

the governing parameters, so as to comment on their relative contribution to the flow formation. In this work, 

two different cases of fluid are been examined these include air with 𝑃𝑟 = 0.71 and water with 𝑃𝑟 = 7.0. 

The effect of variation of the governing parameters 𝑀, Pr 𝑎𝑛𝑑 𝜆 on the flow formations are presented in 

Figures 2-9. Unless otherwise stated, the value 𝑡 = 0.2, 𝑀 = 2 𝑎𝑛𝑑 𝜆 = 2  are selected arbitrarily to study  

the effect of various parameters on the flow behavior. The influence of Prandtl number and time on  

the temperature profiles is shown in Figure 2. It is revealed in Figure 2 that fluid temperature increases as 𝑃𝑟 

and 𝑡 increases. It is concluded from Figure 2 that the reduction in fluid temperature is directly proportional 

to the decrease in thermal diffusivity. Figure 3 shows that an increase in the values of the Hartmann number 

𝑀 causes retardation to the fluid flow indicating the fact that the imposition of magnetic field slow down the flow.  

 

 

  
  

Figure 2. Temperature distribution for different 

values of 𝑡 (𝑀 = 2.0) 

Figure 3. Velocity distribution for different values 

of 𝑀 (t=0.2) 

 

 

This remark is consistent with the physical fact that the Lorentz force that appears due to  

the interaction of the magnetic field and the fluid velocity resists the corresponding fluid flow, resulting in 

the velocity to decrease gradually. Figure 3 also indicates how the velocity field is affected corresponding to 

an increase in the values of 𝑃𝑟. We recall that an increase in 𝑃𝑟 in Figure 2 signifies a fall in thermal 

diffusivity for the model under consideration. It is learnt from Figure 3 that when the thermal diffusivity of 

the fluid is reduced, the flow gets decelerated largely which may be attributed to the fact that a low thermal 

diffusivity leads to a corresponding decrease in the kinetic energy of the molecules of the fluid, which in turn 
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affects the fluid velocity adversely. Figure 3 also revealed that the fluid velocity increases with increase in 

time till it attains steady state. It is worthy to note that 𝑃𝑟 has no effect on the velocity and temperature 

profiles at steady state. 

Figures 4 and 6 present variation of skin-friction at outer surface of the inner cylinder (𝑅 = 1)  
and the inner surface of the outer cylinder (𝑅 = 𝜆) respectively for different values of the Hartmann 

number (𝑀). It is obvious from these Figures 4 and 6 that skin-friction decreases with increase in Hartmann 

number (𝑀) on both surfaces for both cases of 𝑃𝑟. Fluid with 𝑃𝑟 = 0.71 is observed to induces higher 

friction at both surfaces of the cylinders in comparison with fluid with 𝑃𝑟 = 7.0 which is physically true, 

since higher velocity results in friction at the walls. In addition, it is clear that skin friction at both cylinders 

for air attains steady state faster than water. This suggests that if one considers to reduce the friction at the 

surfaces, fluids with higher Prandtl numbers like water (𝑃𝑟 =  7) should be considered. Variation of skin-

friction profiles at the outer surface of the inner cylinder and the inner surface of the outer cylinder for 

different values of radii ratio (𝜆) are shown respectively in Figures 5 and 7. It is obvious from both Figures 5 

and 7 that skin-friction on both cylinder increases with (𝜆). A keen scrutiny of the Figures 5 and 7 reveal that 

the skin-friction is independent of time for 𝑃𝑟 = 0.71 except as 𝑡 tends to zero.  

 

 

  
  

Figure 4. Variation of skin friction(𝜏1) for different 

values of 𝑀 

Figure 5. Variation of skin friction(𝜏1) for different 

values of 𝜆(𝑀 = 2) 

 

 

  
  

Figure 6. Variation of skin friction(𝜏𝜆) for different 

values of M(𝜆 = 2) 

Figure 7. Variation of skin friction(𝜏𝜆) for different 

values of 𝜆(𝑀 = 2) 

 

 

Figure 8 reveals the mass flow rate plotted against Hartmann number (𝑀) for different values of 

time (𝑡). It is observed that the mass flow rate decreases as Hartmann number (𝑀) increases but increases 

with time (𝑡). Figure 9 illustrations variation of mass flow rate for different values of radii ratio (𝜆). It is 

evident that mass flow rate increases with increase in radii ratio (𝜆) for both cases of (𝑃𝑟). It is worthy to 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

t

S
k
in

 f
ri
c
ti
o
n
 (
 1

)

 

 

Pr = 0.71

Pr = 7.0

M = 1.0, 1.5, 2.0, 2.5, 3.0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

S
k
in

 f
ri
c
ti
o
n
 (
 1

)

 

 

Pr = 0.71

Pr = 7.0

 = 1.4, 1.6, 1.8, 2.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

S
k
in

 f
ri
c
ti
o
n
 (
 

)

 

 

Pr = 0.71

Pr = 7.0

M = 1.0, 1.5, 2.0, 2.5, 3.0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

S
k
in

 f
ri
c
ti
o
n
 (


)

 

 

Pr = 0.71

Pr = 7.0

 = 1.4, 1.6, 1.8, 2.0



Int J Appl Power Eng ISSN: 2252-8792  

 

Transient development of MHD natural convection flow in vertical concentric annulus (Basant K. Jha) 

65 

note that mass flow rate is constant for different values of radii ratio (𝜆) in the case 𝑃𝑟 = 0.71, but increases 

with time (𝑡) for 𝑃𝑟 = 7.0. Figures 8 and 9 lead us to conclude that the parameters 𝑃𝑟 and 𝑀 have significant 

contributions in regulating the amount of total discharge of fluid through the annulus and they may be 

suitably chosen to control the mass flux. 

 

 

  
  

Figure 8. Variation of mass flow rate (𝑄) for 

different values of M(𝜆 = 2) 

Figure 9. Variation of mass flow rate (𝑄) for 

different values of 𝜆(𝑀 = 2) 

 

 

4. CONCLUSION 

A semi-analytical study is conducted to examine the role of magnetic field on an incompressible  

and an electrically conducting fluid filled within two coaxial cylinders. The Laplace transform technique  

and Riemann-sum approximation method have been used to obtain the solution of the governing equations. 

The influence of Hartmann number (𝑀), Prandtl (𝑃𝑟), radii ratio (𝜆), and time (𝑡) on the velocity field, 

temperature distribution, skin frictions and mass flow rate have been extensively discussed. The main 

findings in the present research are: 

a. It is found that an increase in Hartmann number (𝑀) has a retarding effect on the velocity field, mass 

flow rate and skin-friction at both surfaces. 

b. It is worthy to conclude that an increase in the radii ratio (𝜆) increases the skin-friction at both surfaces. 

c. Air is established to have higher fluid velocity, mass flow rate and skin-friction on both surfaces in 

comparison with water. 

d. Generally, Air (𝑃𝑟 = 0.71) attains steady state temperature faster, due to its higher thermal diffusivity 

(See Figure 3) in comparison with water (𝑃𝑟 =  7.0). 

e. Skin-friction at both surfaces and Mass flow rate are seen to be independent of time except at small value 

of time (𝑡). 
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