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 An equilibrium simulation model was developed by applying Aspen Plus to 

evaluate the performance of 28 wood and woody biomass (W&WB) 

gasification in a downdraft gasifier integrated with power production unit. 

The developed simulation model does not focus the gasification process as a 

closed box, it considers important processes in gasification like drying, 

pyrolysis, combustion, gasification and integrated with power production 

plant (combustion chamber plus gas turbine). The results for the 28 W&WB 

alternatives show that the net power produced from 1-ton feedstock entering 

to the gasification system is between the interval [0-400 kW/ton] and among 

them, gasification system derived from Tamarack bark biomass significantly 

outranks all other systems by producing 363 kW/ton, owing to the favorable 

results obtained in the performance analysis. Moreover, effect of various 

operating parameters such as gasification temperature and air to fuel ratio 

(AFR) on the system performance was carried out. Finally, the developed 

model is applied as an effective tool to assess the impact of so many 

biomasses and operating parameters on output power. 
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1. INTRODUCTION 

The finite nature of fossil fuels, high prices and their negative effects on environment and public 

health, are encouraging to find renewable energy sources and alternative technologies to produce power [1-3]. 

Biomass is a renewable energy option that is abundant and can create low net CO2 emission and it has also 

the greatest potential to substitute for transportation fuels [4-7]. Woody biomass is also one of the important 

energy sources and it is currently the most important source of renewable energy, globally. In 2010 

worldwide use of woody biomass as energy resource was about 3.8 Gm3 (30 EJ/year), which consisted of 1.9 

Gm3 (16 EJ/year) for household fuel wood and 1.9 Gm3 (14 EJ/year) for large-scale industrial sector. During 

this period, global primary energy consumption and global renewable energy consumption were 541 EJ and 

71 EJ, yearly. Hence, in 2010 woody biomass formed roughly 9% of world primary energy consumption and 

65% of world renewable primary energy consumption [8, 9]. 

Gasification has attracted attention as one of the most efficient methods for utilizing woody 

biomass, as CO2 emission has become an important global issue [10-14]. Biomass gasification means 

incomplete combustion of biomass resulting in production of combustible gases consisting of carbon 

monoxide (CO), hydrogen (H2) and traces of methane (CH4) [15-20]. This mixture is called syngas. Syngas 

can be used directly to run internal combustion engines, it can be consumed as substitute for furnace oil for 
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heat production and can be used as chemical feedstock to produce methanol [21-25]. Therefore, the 

development of small-scale, woody biomass gasification is a great social need in a resource-poor country or 

for regions which are far from the central energy networks and require district heat and power systems [11, 

26, 27]. The primary aim of this work is to develop a steady state computer model by using Aspen Plus for 

performance analysis of 28 wood and woody biomass (W&WB) gasification in a downdraft gasifier 

integrated with power production. The objective is to find the most efficient W&WB for power production. 

Then as a sensitivity analysis we examine the effect of operating parameters of temperature and air to fuel 

ratio (ARF) to know where the overall system is optimal to reach the maximum net output power. 

 

 

2. MATERIAL AND METHODS 

A simulation model relied on equilibrium approach is developed for wood and woody biomasses 

(W&WB) gasification linked with power generation plant by employing Aspen Plus. In order to compute 

physical properties of the components in the gasification, equation of state of PR-BM, Penge Robinson-

Boston-Mathias alpha is applied. In addition, for modeling of enthalpy and density of biomass and ash as 

non-conventional materials, HCOALGEN and DCOALIGT models are used. It is worth to say that 

MCINCPSD stream includes 3 streams of MIXED, NCPSD & CIPSD classes, to define the biomass structure 

and ash streams that are not in Aspen Plus database [12, 28-33]. Figure 1 shows the flow chart of the system 

simulated in Aspen Plus. The feedstock stream has been described as a nonconventional material and it was 

defined by determination of the elemental and proximate analysis of feedstock. In order to have a detailed 

study, 28 W&WB were considered as feedstock for gasifier. Table 1 shows the proximate and elemental 

analyses of all these feedstocks [34-49]. Temperature through the drying is around 150 °C to reduce moisture 

of the original biomass to less than 5 wt%. This step is done by utilizing a RSTOIC, stoichiometric reactor in 

Aspen Plus. RSTOIC module is practical for chemical reactions with known stoichiometry [50-51]. 

 

 

 
 

Figure 1. Modules and streams of gasification simulated in Aspen Plus 

 

 

At the next stage, RYIELD, the yield reactor is simulated for feed pyrolysis. In this part, the studied 

biomass is transformed to volatile materials (VM) and char. VM includes mainly carbon, hydrogen, oxygen 

and nitrogen. Char also includes ash and carbon [12, 52-56]. After pyrolysis, RGibbs is applied for 

simulation of the biomass gasification. This reactor computes the syngas composition by minimizing the 

Gibbs free energy based on complete chemical equilibrium assumption [57-61]. Input streams to the RGibbs 

are decomposed biomass and air then combustion and reduction reactions will be occurred inside of the 

reactor. For combustion level, another RGibbs reactor needs to be simulated with minimum air mixing. This 

process will be also based on minimization of Gibbs free energy. To generate power, the combustion 

chamber has to be connected with a gas turbine [62-66]. The thermal content of the flue gas, achived as the 

combustion heat is recovered to preheat the input air to the combustion chamber as well as to supply the heat 

required in dryer. The recovered heat can be also utilized for convertion of water to high pressure steam to be 
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able generates extra power by steam driving a steam turbine [40, 41] (this part was not considered in this 

study). The solid lines and the dashed lines in the Figure 1 present the mass streams and heat streams, 

respectively. The system is also assumed to be auto-thermal that means a part of the feedstocks is combusted 

inside the gasifier to provide the heat required in situ. Heat is also obtained by the hot syngas and the 

combustion chamber then it is consumed wherever required. 

 

 

Table 1. Elemental and proximate analysis of 28 wood and woody biomasses [20-35] 
    Proximate analysis (wt%) Elemental analysis (wt%- dry basis) 
    M VM FC A C O H N S 

1 Alder-fir sawdust 52,6 76,6 19,2 4,2 50,9656 38,5116 5,8438 0,479 0 

2 Balsam bark 8,4 77,4 20 2,6 52,596 38,473 6,0388 0,1948 0,0974 

3 Beech bark 8,4 73,7 18,5 7,8 47,3908 38,5396 5,532 0,6454 0,0922 
4 Birch bark 8,4 78,5 19,4 2,1 55,803 34,9503 6,5593 0,4895 0,0979 

5 Christmas trees 37,8 74,2 20,7 5,1 51,7205 36,7263 5,5991 0,4745 0,3796 

6 Elm bark 8,4 73,1 18,8 8,1 46,7771 39,0575 5,3302 0,6433 0,0919 

7 Eucalyptus bark 12 78 17,2 4,8 46,3624 43,1256 5,4264 0,2856 0 

8 Fir mill residue 62,9 82 17,5 0,5 51,143 42,2875 5,97 0,0995 0 

9 Forest residue 56,8 79,9 16,9 3,2 51,0136 39,7848 5,2272 0,6776 0,0968 
10 Hemlock bark 8,4 72 25,5 2,5 53,625 37,83 5,7525 0,195 0,0975 

11 Land clearing wood 49,2 69,7 13,8 16,5 42,3345 35,738 5,01 0,334 0,0835 

12 Maple bark 8,4 76,6 19,4 4 49,92 39,648 5,952 0,384 0,096 
13 Oak sawdust 11,5 86,3 13,4 0,3 49,9497 43,7683 5,8823 0,0997 0 

14 Oak wood 6,5 78,1 21,4 0,5 50,347 42,6855 6,0695 0,2985 0,0995 
15 Olive wood 6,6 79,6 17,2 3,2 47,432 43,4632 5,2272 0,6776 0 

16 Pine bark 4,7 73,7 24,4 1,9 52,7778 39,1419 5,7879 0,2943 0,0981 

17 Pine chips 7,6 72,4 21,6 6 49,632 38,07 5,734 0,47 0,094 
18 Pine pruning 47,4 82,2 15,1 2,7 50,4987 40,1849 6,1299 0,4865 0 

19 Pine sawdust 15,3 83,1 16,8 0,1 50,949 42,8571 5,994 0,0999 0 

20 Poplar 6,8 85,6 12,3 2,1 50,5164 40,8243 5,9719 0,5874 0 
21 Poplar bark 8,4 80,3 17,5 2,2 52,4208 38,4354 6,5526 0,2934 0,0978 

22 Sawdust 34,9 84,6 14,3 1,1 49,2522 43,2193 5,934 0,4945 0 

23 Spruce bark 8,4 73,4 23,4 3,2 51,8848 38,72 6,0016 0,0968 0,0968 
24 Spruce wood 6,7 81,2 18,3 0,5 52,0385 40,994 6,0695 0,2985 0,0995 

25 Tamarack bark 8,4 69,5 26,3 4,2 54,606 30,656 9,7716 0,6706 0,0958 

26 Willow 10,1 82,5 15,9 1,6 49,0032 42,7056 6,0024 0,5904 0,0984 
27 Wood 7,8 84,1 15,7 0,2 49,5008 44,0118 6,0878 0,0998 0,0998 

28 Wood residue 26,4 78 16,6 5,4 48,6244 39,6374 5,7706 0,473 0,0946 

 

 

3. RESULTS AND DISCUSSION  

The simulation model results for the 28 W&WB alternatives, ranked regarding their contribution to 

output net power (
 net gas turbine compressorW W W= − ) for 1 ton feedstock are shown in Figure 2. This ordering 

is based on the net power that it is between the interval [0-400 kW/ton], values highlighting the lowest and 

the highest efficient options, respectively. Class 1 includes 5 wood and woody biomass gasification systems 

based on Land clearing wood, Fir mill residue, Forest residue, Eucalyptus bark and Alder-fir sawdust that 

produce the lowest amounts of output power (it is in the range of 0-100 kW/ton). Many of the studied 

W&WB gasification systems are located in class 2 which their output power is in span of 100-200 kW per 

one tone of feedstock. Class 3 contains 7 wood and woody biomass gasification systems relied on Spruce 

wood, Pine bark, Spruce bark, Balsam bark, Hemlock bark, Poplar bark and Birch bark which generate 

relatively higher net power.  

Obviously, the gasification system derived from Tamarack bark biomass significantly outranks all 

other systems from the viewpoint of power production (363 kW/ton), owing to the favorable results obtained 

in the performance analysis. This is mainly due to Tamarack bark has the highest percentage of carbon and 

hydrogen, see Figure 3. Percentage shares depicted in Figure 3 are contributions of carbon and hydrogen, 

oxygen, ash and nitrogen and sulphur in elemental analysis of each feedstock. Carbon and hydrogen are key 

elements in each biomass. So that the higher C and H2 content, the more carbon monoxide and hydrogen will 

be in the syngas and also leads to the improvement of heating value (LHV) of syngas. CO and H2 are 

combustible substances which are converted to flue gas (mainly CO2 and H2O) through the combustion 

chamber. Therefore, improving LHV of syngas leads to enter gases at high temperature to the gas turbine. 

Raising the turbine inlet temperature ameliorates output power from that as well as more net power will be 

resulted. 
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Figure 2. Net output power from 28 W&WB gasification systems based on 1 ton feedstock (gasifier 

temperature 900 ˚C and air to fuel ratio 2) 

 

 

 
 

Figure 3. Percentage shares of composing elements for different W&WBs 

 

 

The impact of temperature of gasifier on power generated from the 28 wood and woody biomass 

gasification systems, is presented in Figure 4. The sensitivity results in Figure 4 are all at fixed conditions of 

1-ton biomass input, air to fuel ratio (AFR) of 2 and temperature of gasifier in the range of 600-1500 ˚C. 

Obviously for all studied W&WBs, output power from each system is increased by growing temperature. At 

low temperature (600 ˚C), the present carbon in the feedstock is not completely oxidized, so the syngas 

product can not be in an acceptable quantity. In fact, at low temperature, CH4 and unburned carbon will stay 

in syngas then by growing temperature much more carbon is combusted and transformed to CO relied on 

partial combustion reaction. CH4 is also converted into H2 by reverse methanation reaction. Moreover, water 

gas reaction (WG) moves toward CO and H2 production at high temperature. So, increasing the temperature 

of gasifier is so proper for H2 and CO production which causes to the improvement of lower heating value 

(LHV) of product gas. Then, modified LHV of syngas makes higher quality gases entering to the combustion 

chamber as well as high temperature gasses entering to the gas turbine. Consequently, growing TIT, turbine 

inlet temperature increases power output from the system. However, at a specific temperature, yield of H2 

and CO are satisfied, both reach to an approximately fixed rates that is called the optimum temperature for 

the gasifier. Output power also increases in a gradual way near the optimum temperature. The optimum 

temperature of the down draft gasifier for W&WB is in the range of 900-1000 ˚C. 
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Figure 4. Impact of temperature of gasifier on power for 28 W&WBs 

 

 

Changes in the air values used in the system have a critical impact on the quality and composition of 

the product gas and following the generated power. The amont of air arriving the gasifier can be represented 

in the form of air to fuel ratio (AFR), which is the amount of air needed to burn a unit of dry biomass. The 

effect of AFR on power produced for the gasification systems derived from 28 wood and woody biomasses, 

is shown in Figure 5. In this assessment, the operating conditions are fixed on gasifier tempretare of 900 ˚C 

and 1 ton from each feedstock. The optimum AFR for W&WB gasification is between 1,8-2. At low AFR, 

biomass reactions will approach to the pyrolysis, charcoal remains with corresponding energy losses. 

However, at much amount of AFR the additional oxygen is reacted that caused the reduce in syngas 

production. So, it is critical to find the proper range of AFR for W&WB gasification. 

 

 

 
 

Figure 5. Effect of AFR on output power for 28 W&WBs 
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4. CONCLUSION 

An integrated gasification simulation model is developed containing a series of modules that models 

processes individually through the gasification of biomass. These processes are drying, pyrolysis, combustion 

and gasification linked with power generation plant (combustion chamber plus gas turbine). The established 

model is relied on thermodynamic equilibrium approaches and it is employed for 28 wood and woody 

biomasses. The studied model is practical for prediction of some outputs such as net power in a variety 

operating conditions like air flow rate and temperature and for different kinds of biomass materials with a 

specified ultimate and proximate analysis. The extablished simulation model can be a helpful tool for 

principally evaluation, assessment, and operation of down draft biomass gasifiers. Furthermore, the model 

can be employed as an assessment of various alternatives at an early stage to allow the decision-makers to 

carry out efficient oriented decisions.  

The simulation model results for the 28 W&WB alternatives show that the net power produced from 

1-ton feedstock entering to the gasification system is between the interval [0-400 kW/ton] and among them, 

gasification system derived from Tamarack bark biomass significantly outranks all other systems by 

producing 363 kW/ton, owing to the favorable results obtained in the performance analysis. At the end, a 

sensitivity analysis was directed to evaluate the influence of temperature of gasifier, and AFR on output 

power production from each system. Extention of temperature modifies the gasifier performance, it grows the 

production of both CO and H2 that causes to higher power on output. While, growing AFR reduces CO and 

H2 production which makes in degrading of system performance. 

 

 

ACKNOWLEDGEMENTS 

This paper was a part of the project funded by Icelandic Research Fund (IRF), (in Icelandic: 

Rannsoknasjodur) and the grant number is 196458-051. 

 

 

REFERENCES  
[1] S. Safarian, P. Khodaparast, and M. Kateb, "Modeling and technical-economic optimization of electricity supply 

network by three photovoltaic systems," Journal of Solar Energy Engineering, vol. 136, no. 2, p. 024501, 2014. 

[2] S. Safarian, R. Unnthorsson, and C. Richter, "Techno-economic analysis of power production by using waste 

biomass gasification," Journal of Power and Energy Engineering, vol. 8, no. 06, pp. 1-8, 2020.\ 

[3] S. Begum, M. Rasul, and D. Akbar, "A numerical investigation of municipal solid waste gasification using aspen 

plus," Procedia engineering, vol. 90, pp. 710-717, 2014. 

[4] S. Safarian, S. Sattari, and Z. Hamidzadeh, "Sustainability assessment of biodiesel supply chain from various 

biomasses and conversion technologies," BioPhysical Economics and Resource Quality, vol. 3, no. 6, 2018. 

[5] S. Safarian, S. Sattari, R. Unnthorsson, and Z. Hamidzadeh, "Prioritization of Bioethanol Production Systems from 

Agricultural and Waste Agricultural Biomass Using Multi-criteria Decision Making," Biophysical Economics and 

Resource Quality, vol. 4, no. 4, 2019. 

[6] J. Speirs, C. McGlade, and R. Slade, "Uncertainty in the availability of natural resources: Fossil fuels, critical 

metals and biomass," Energy Policy, vol. 87, pp. 654-664, 2015. 

[7] S. Safarian and R. Unnthorsson, "An assessment of the sustainability of lignocellulosic bioethanol production from 

wastes in Iceland," Energies, vol. 11, no. 6, pp. 1-16, 2018. 

[8] P. Lauri, P. Havlík, G. Kindermann, N. Forsell, H. Böttcher, and M. Obersteiner, "Woody biomass energy potential 

in 2050," Energy Policy, vol. 66, pp. 19-31, 2014. 

[9] IEA. "International Energy Association (IEA) database." http://www.iea.org/  

[10] S. H. Samadi, B. Ghobadian, and M. Nosrati, "Prediction and estimation of biomass energy from agricultural 

residues using air gasification technology in Iran," Renewable Energy, vol. 149, pp. 1077-1091, 2020. 

[11] N. Kobayashi et al., "High temperature air-blown woody biomass gasification model for the estimation of an 

entrained down-flow gasifier," Waste Management, vol. 29, no. 1, pp. 245-251, 2009. 

[12] S. Safarian, C. Richter, and R. Unnthorsson, "Waste Biomass Gasification Simulation Using Aspen Plus: 

Performance Evaluation of Wood Chips, Sawdust and Mixed Paper Wastes," Journal of Power and Energy 

Engineering, vol. 7, no. 6, pp. 12-30, 2019. 

[13] S. Safarian, R. Unnthorsson, and C. Richter, "Development of a new stoichiometric equilibrium-based model for 

wood chips and mixed paper wastes gasification by ASPEN Plus," in ASME International Mechanical Engineering 

Congress and Exposition, 2019, vol. 59438: American Society of Mechanical Engineers, p. V006T06A002.  

[14] S. Safarian, R. Unnthorsson, and C. Richter, "Simulation of small-scale waste biomass gasification integrated 

power production: a comparative performance analysis for timber and wood waste," International Journal of 

Applied Power Engineering, vol. 9, no. 2, pp. 147-152, 2020. 

[15] S. Safarian, R. Unnthorsson, and C. Richter, "The equivalence of stoichiometric and non-stoichiometric methods 

for modeling gasification and other reaction equilibria," Renewable and Sustainable Energy Reviews, vol. 131, p. 

109982, 2020. 

[16] P.-C. Kuo, W. Wu, and W.-H. Chen, "Gasification performances of raw and torrefied biomass in a downdraft fixed 

bed gasifier using thermodynamic analysis," Fuel, vol. 117, pp. 1231-1241, 2014. 



         ISSN: 2252-8792 

Int J Appl Power Eng, Vol. 10, No. 1, March 2021: 80 – 88 

86 

[17] P. Lestinsky and A. Palit, "Wood pyrolysis using aspen plus simulation and industrially applicable model," 

GeoScience Engineering, vol. 62, no. 1, p. 11, 2016. 

[18] S. Rupesh, C. Muraleedharan, and P. Arun, "ASPEN plus modelling of air–steam gasification of biomass with 

sorbent enabled CO2 capture  

[19] A. Gagliano, F. Nocera, M. Bruno, and G. Cardillo, "Development of an equilibrium-based model of gasification of 

biomass by Aspen Plus," Energy Procedia, vol. 111, pp. 1010-1019, 2017. 

[20] L. P. R. Pala, Q. Wang, G. Kolb, and V. Hessel, "Steam gasification of biomass with subsequent syngas adjustment 

using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, vol. 101, pp. 484-492, 2017. 

[21] W. Doherty, A. Reynolds, and D. Kennedy, "Simulation of a circulating fluidised bed biomass gasifier using 

ASPEN Plus: a performance analysis," 2008. 

[22] S. Begum, M. Rasul, and D. Akbar, "A numerical investigation of municipal solid waste gasification using aspen 

plus," Procedia engineering, vol. 90, pp. 710-717, 2014. 

[23] T. Damartzis, S. Michailos, and A. Zabaniotou, "Energetic assessment of a combined heat and power integrated 

biomass gasification–internal combustion engine system by using Aspen Plus®," Fuel processing technology, vol. 

95, pp. 37-44, 2012. 

[24] D. Roy, S. Samanta, and S. Ghosh, "Thermo-economic assessment of biomass gasification-based power generation 

system consists of solid oxide fuel cell, supercritical carbon dioxide cycle and indirectly heated air turbine," Clean 

Technologies and Environmental Policy, vol. 21, no. 4, pp. 827-845, 2019. 

[25] I.-S. Antonopoulos, et al., "Modelling of a downdraft gasifier fed by agricultural residues," Waste management, 

vol. 32, no. 4, pp. 710-718, 2012. 

[26] S. Safarian, R. Unnthorsson, and C. Richter, "Performance analysis and environmental assessment of small-scale 

waste biomass gasification integrated CHP in Iceland," Energy, pp. 117268, 2020. 

[27] S. Safarian, R. Unnthorsson, and C. Richter, "Techno-economic and environmental assessment of power supply 

chain by using waste biomass gasification in Iceland," BioPhysical Economics and Sustainability, vol. 5, pp. 7, 

2020. 

[28] S. Safarian, R. Unnthorsson, and C. Richter, "Simulation and performance analysis of integrated gasification–

syngas fermentation plant for lignocellulosic ethanol production," Fermentation, vol. 6, no. 3, pp. 68, 2020. 

[29] K. Sun, "Optimization of biomass gasification reactor using Aspen Plus," Høgskolen i Telemark, 2015.  

[30] M. B. Nikoo and N. Mahinpey, "Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS," 

Biomass and bioenergy, vol. 32, no. 12, pp. 1245-1254, 2008. 

[31] M. S. Eikeland, R. K. Thapa, and B. Halvorsen, "Aspen plus simulation of biomass gasification with known 

reaction kinetic," Conf. Proceedings of the 56th Conference on Simulation and Modelling, Oct. 2015, pp. 7-9. 

[32] P. Kaushal and R. Tyagi, "Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN 

PLUS," Renewable energy, vol. 101, pp. 629-636, 2017. 

[33] N. Ramzan, A. Ashraf, S. Naveed, and A. Malik, "Simulation of hybrid biomass gasification using Aspen plus: A 

comparative performance analysis for food, municipal solid and poultry waste," Biomass and bioenergy, vol. 35, 

no. 9, pp. 3962-3969, 2011. 

[34] S. V. Vassilev, D. Baxter, L. K. Andersen, and C. G. Vassileva, "An overview of the chemical composition of 

biomass," Fuel, vol. 89, no. 5, pp. 913-933, 2010. 

[35] T. Miles, et al., "Alkali deposits found in biomass power plants: A preliminary investigation of their extent and 

nature," UNT Digital Library, 1995. 

[36] R. W. Bryers, "Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities 

in steam-raising fuels," Progress in energy and combustion science, vol. 22, no. 1, pp. 29-120, 1996. 

[37] M. Theis, B.-J. Skrifvars, M. Hupa, and H. Tran, "Fouling tendency of ash resulting from burning mixtures of 

biofuels. Part 1: Deposition rates," Fuel, vol. 85, no. 7-8, pp. 1125-1130, 2006. 

[38] M. Theis, B.-J. Skrifvars, M. Zevenhoven, M. Hupa, and H. Tran, "Fouling tendency of ash resulting from burning 

mixtures of biofuels. Part 2: Deposit chemistry," Fuel, vol. 85, no. 14-15, pp. 1992-2001, 2006. 

[39] M. Zevenhoven-Onderwater, R. Backman, B.-J. Skrifvars, and M. Hupa, "The ash chemistry in fluidised bed 

gasification of biomass fuels. Part I: predicting the chemistry of melting ashes and ash–bed material interaction," 

Fuel, vol. 80, no. 10, pp. 1489-1502, 2001. 

[40] M. Zevenhoven-Onderwater, J.-P. Blomquist, B.-J. Skrifvars, R. Backman, and M. Hupa, "The prediction of 

behaviour of ashes from five different solid fuels in fluidised bed combustion," Fuel, vol. 79, no. 11, pp. 1353-

1361, 2000. 

[41] A. Demirbas, "Combustion characteristics of different biomass fuels," Progress in energy and combustion science, 

vol. 30, no. 2, pp. 219-230, 2004. 

[42] D. Vamvuka and D. Zografos, "Predicting the behaviour of ash from agricultural wastes during combustion," Fuel, 

vol. 83, no. 14-15, pp. 2051-2057, 2004. 

[43] D. Vamvuka, D. Zografos, and G. Alevizos, "Control methods for mitigating biomass ash-related problems in 

fluidized beds," Bioresource technology, vol. 99, no. 9, pp. 3534-3544, 2008. 

[44] A. Moilanen, "Thermogravimetric characterisations of biomass and waste for gasification processes," ed: VTT, 

2006. 

[45] A. T. Masiá, B. Buhre, R. Gupta, and T. Wall, "Characterising ash of biomass and waste," Fuel Processing 

Technology, vol. 88, no. 11-12, pp. 1071-1081, 2007. 



Int J Appl Power Eng ISSN: 2252-8792  

 

Performance analysis of power generation by wood and woody biomass gasification… (Sahar Safarian) 

87 

[46] M. Lapuerta, J. J. Hernández, A. Pazo, and J. López, "Gasification and co-gasification of biomass wastes: Effect of 

the biomass origin and the gasifier operating conditions," Fuel processing technology, vol. 89, no. 9, pp. 828-837, 

2008. 

[47] D. A. Tillman, "Biomass cofiring: the technology, the experience, the combustion consequences," Biomass and 

bioenergy, vol. 19, no. 6, pp. 365-384, 2000. 

[48] A. Demirbas, "Potential applications of renewable energy sources, biomass combustion problems in boiler power 

systems and combustion related environmental issues," Progress in energy and combustion science, vol. 31, no. 2, 

pp. 171-192, 2005. 

[49] X. Wei, U. Schnell, and K. R. Hein, "Behaviour of gaseous chlorine and alkali metals during biomass thermal 

utilisation," Fuel, vol. 84, no. 7-8, pp. 841-848, 2005. 

[50] T. Damartzis, S. M. Ebrahimi Saryazdi, and A. Zabaniotou, "Energetic assessment of a combined heat and power 

integrated biomass gasification–internal combustion engine system by using Aspen Plus®," Fuel processing 

technology, vol. 95, pp. 37-44, 2012. 

[51] S. Safarian, S. M. Ebrahimi Saryazdi, R. Unnthorsson, and C. Richter, "Artificial neural network integrated with 

thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant," Energy, vol. 

213, pp. 118800, 2020. 

[52] J. Han et al., "Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with 

Aspen Plus," Energy conversion and management, vol. 153, pp. 641-648, 2017. 

[53] A. J. Keche, A. P. R. Gaddale, and R. G. Tated, "Simulation of biomass gasification in downdraft gasifier for 

different biomass fuels using ASPEN PLUS," Clean Technologies and Environmental Policy, vol. 17, no. 2, pp. 

465-473, 2015. 

[54] M. Fernandez-Lopez, et al., "Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®," 

Energy conversion and management, vol. 140, pp. 211-217, 2017. 

[55] C. Panda, "Aspen plus simulation and experimental studies on biomass gasification," Thesis, 2012.  

[56] J. F. Peters, et al., "A kinetic reaction model for biomass pyrolysis processes in Aspen Plus," Applied energy, vol. 

188, pp. 595-603, 2017. 

[57] M. S. Eikeland and R. K. Thapa, "Stepwise analysis of gasification reactions with Aspen Plus and CPFD," 

International Journal of Energy Production and Management, vol. 2, no. 1, pp. 70-80, 2017. 

[58] R. Liu, M. Graebner, R. Tsiava, T. Zhang, and S. Xu, "Simulation analysis of the system integrating oxy-fuel 

combustion and char gasification," Journal of Energy Resources Technology, pp. 1-12, 2020. 

[59] F. N. Rahma, et al., "Investigation of process parameters influence on municipal solid waste gasification with CO 2 

Capture via Process Simulation Approach," Int.Journal of Renewable Energy Development, vol. 10, no. 1. 

[60] R. E. Moshi, Y. A. C. Jande, T. T. Kivevele, and W. Kim, "Simulation and performance analysis of municipal solid 

waste gasification in a novel hybrid fixed bed gasifier using Aspen plus," Energy Sources, pp. 1-13, 2020. 

[61] D. Hantoko, M. Yan, B. Prabowo, H. Susanto, X. Li, and C. Chen, "Aspen Plus modeling approach in solid waste 

gasification," Current developments in biotechnology and bioengineering: Elsevier, pp. 259-281, 2019. 

[62] S. Safarian and M. Bararzadeh, "Exergy analysis of high-performance cycles for gas turbine with air-bottoming," 

Journal of Mechanical Engineering Research, vol. 5, no. 2, pp. 38-49, 2012. 

[63] A. Demirbas, "Combustion characteristics of different biomass fuels," Progress in energy and combustion science, 

vol. 30, no. 2, pp. 219-230, 2004. 

[64] A. Demirbas, "Potential applications of renewable energy sources, biomass combustion problems in boiler power 

systems and combustion related environmental issues," Progress in energy and combustion science, vol. 31, no. 2, 

pp. 171-192, 2005. 

[65] T. Madhiyanon, P. Sathitruangsak, and S. Soponronnarit, "Co-combustion of rice husk with coal in a cyclonic 

fluidized-bed combustor (ψ-FBC)," Fuel, vol. 88, no. 1, pp. 132-138, 2009. 

[66] A. Pettinau, F. Ferrara, and C. Amorino, "Combustion vs. gasification for a demonstration CCS (carbon capture and 

storage) project in Italy: A techno-economic analysis," Energy, vol. 50, pp. 160-169, 2013. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Sahar Safarian graduated Bachelor of Chemical Engineering and Master in Energy Systems 

Engineering. Currentlly, doing PhD on Waste Biomass Gasification for Energy Production in 

University of Iceland. Main fields are simulation, performance analysis, techno-economic and 

environmental assessment, gasification integrated power generation and waste to power. 

 

 

 

 

  



         ISSN: 2252-8792 

Int J Appl Power Eng, Vol. 10, No. 1, March 2021: 80 – 88 

88 

 

Runar Unnthorsson received the B.Sc., M.Sc., and Ph.D. Degrees in Mechanical Engineering 

from University of Iceland. Now he is Head of Engineering Faculty and Head of Biomass 

Gasification group in Department of Industrial, Mechanical and Computer Engineering at 

University of Iceland. Areas of expertise are renewable energy, gasification integrated power 

generation technology, energy efficiency, performance engineering and etc. 

 

 

 

  

 

Christiaan Richter received B.A. in Mathematics and B.Sc. (Hons) in Applied Mathematics 

and Education at University of Pretoria, South Africa. Graduated M.S. in Chemical Engineering 

and Applied Mathematics from University of Nebraska-Lincoln and PhD in Chemical 

Engineering from Northeastern University. Curentlly, he is Professor in Faculty of Industrial 

Mechanical & Computer Engineering at University of Iceland. Areas of expertise are electro-

catalysis, electrochemical synthesis, biomass gasification, simulation and etc. 
 

 


