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 This paper proposes a new and simple method to incorporate three-phase 

power transformer model into distribution system load flow (DSLF) analysis. 

The objective of the present work is to find a robust and efficient technique 

for modeling and integrating power transformer in the DSLF analysis. The 

proposed transformer model is derived based on nodal admittance matrix and 

formulated by using the symmetrical component theory. Load flow 

formulation in terms of branch currents and nodal voltages is also proposed 

in this paper to enable integrating the model into the DSLF analysis. 

Singularity that makes the calculations in forward/backward sweep (FBS) 

algorithm is difficult to be carried out. It can be avoided in the method. The 

proposed model is verified by using the standard IEEE test system. 
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1. INTRODUCTION 

Three-phase power transformer is one of the most important components in modern electric power 

system. The important of this device could probably be ranked with the synchronous machine and the 

transmission line. Generator transformer, one of the essential types of power transformer, has the function of 

transforming system voltage from generation level to transmission or sub-transmission level. Another 

important type of power transformer is distribution substation transformer. This device is usually located at 

load center and employed to transform the system voltage from transmission level to distribution feeder level. 

Distribution transformer is then used to provide the final voltage transformation to the customer’s load. 

Distribution system load flow (DSLF) analysis is carried out to investigate the steady state 

performances of the distribution system. Electrical quantities such as nodal voltages, substation powers, 

distribution power flows and losses can be obtained based on the analysis. DSLF techniques can be classified 

into two broad categories, namely node-based techniques (i.e. Newton-Raphson-based methods) and branch-

based techniques (i.e. backward/forward sweeping (FBS)-based methods). In Newton-Raphson-based 

algorithms [1]-[8], iterative techniques are normally used to obtain the solution. The algorithm will usually 

start with the initial estimation for the solution. This initial estimation is then updated until the solution with 

desired accuracy is obtained. Backward/forward sweeping-based methods are spesifically designed to find 

the solution of DSLF problems [9]-[13]. In searching for the solution, these methods exploit the radial 

structure of the distribution system. However, forward/backward sweeping method requires special 

techniques for branch numbering and bus ordering of the distribution system. 

https://creativecommons.org/licenses/by-sa/4.0/
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To properly conduct the load flow analysis, steady state modeling of the distribution system 

components (including the power transformer) is necessary. Several methods have been proposed to model 

and incorporate three-phase power transformer into load flow analysis [14]-[29]. In [14]-[24], transformer 

model based on nodal admittance matrices has been implemented to load flow solution methods. However, 

for some transformer connection types, solution to the load flow problem has been found to be difficult to 

obtain. This difficulty is mainly caused by the matrix singularity which appears on some transformer 

connection types.  

In [25]-[28], a three-phase power transformer model suitable for load flow analysis is presented. The 

model has been derived based on sequence components. However, it has been widely acknowledged that 

classical sequence components representation lacks the efficiency to model the transformer properly since 

different algorithms have to be used for different transformer connections. Morever, in the model proposed in 

[25]-[28], some complicated treatments are needed to overcome the singularity problem that appears on some 

transformer connection types. In [29], Kirchhoff’s voltage and current laws are used for each transformer 

connection for radial distribution system radial load flow analysis. This technique requires a set of separate 

equations for each transformer connection to be implemented inside the load flow solution process. 

Therefore, against the above background, the objective of the paper is to find a robust and efficient technique 

for including three-phase transformer model in DSLF analysis. 

In the present work, three-phase power transformer model based on nodal admittance matrix for 

various transformer connection types are presented. First, transformer model based on nodal admittance 

matrix in terms of sequence components is developed. Using the symmetrical component theory, the 

sequence components model is then converted into its equivalent phase components model. To enable 

incorporating the model into DSLF analysis, the load flow formulation in terms of branch currents and nodal 

voltages is also proposed in the present paper. In the formulation, sets of nonlinear equations are derived by 

examining the conditions (i.e. electrical quantities relationships) at every node and branch in the distribution 

system. The complete set of nonlinear equations is then solved to obtain the solution to the load flow 

problem. 

In the proposed method, the singularity that makes the calculations in FBS algorithm difficult to be 

carried out can be avoided. As a result, complicated voltage updating procedures as in the FBS-based 

method, are not required. Moreover, the method proposed in the present paper uses only one algorithm for 

different transformer connections (i.e. the same algorithm can be applied to all transformer connection types). 

Therefore, it is more efficient in terms of various transformer connection implementations. Verification of the 

method using standard IEEE test system is also presented in the present paper. 

 

 

2. THREE-PHASE TRANSFORMER MODELING 

2.1.  Transformer model in sequence components 

This section discusses the proposed three-phase transformer model to be integrated into distribution 

system load flow analysis. The model is first represented in terms of sequence components. Then, in Section 

2.2, it is represented in terms of phase components by using symmetrical component theory. Figure 1 shows a 

schematic diagram of a three-phase transformer. It can be shown that the mathematical model of the 

transformer in Figure 1 is given by (1). 
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where: 

012
S

012
P II  and : transformer primary and secondary sequence currents 

012
S

012
P VV  and : transformer primary and secondary sequence voltages 

012
SS

012
SP

012
PS

012
PP ,,, YYYY  and : transformer sub-matrices 

 

It is to be noted that each of transformer sub-matrices in (1) is of 3×3 dimension and its value 

depends on the type of the transformer connection. Table 1 shows the proposed sub-matrix values for 

common transformer connections. Standard 30-degree connections are assumed for Y-D and D-Y 

connections. The formulations for matrices YI, YII, YIII, and YIV in Table 1 are (2), (3), (4), and (5). 
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where yt is the transformer leakage admittance. 

 

 

 
 

Figure 1. Schematic diagram of three-phase transformer 

 

 

Table 1. Sub-matrices for common transformer connections 

Connections 
012
PPY  012

PS
Y  

012
SP

Y  
012
SS

Y  

GrY – GrY YI - YI YI - YI 
D – D YII - YII YII - YII 

Y – D YII YIII YIV - YII 

GrY – D YI YIII YIV - YII 
D – GrY YII YIII YIV - YI 

Y – Y YII - YII YII - YII 

D – Y YII YIII YIV - YII 
GrY – Y YII - YII YII - YII 

Y – GrY YII - YII YII - YII 

Note: Gr stands for grounded 

 

 

2.2.  Transformer model in phase components 

Three-phase load flow formulation proposed in the present work is in phase components. Therefore, 

the transformer model described in Section 2.1 needs to be converted into its equivalent phase components 

model. The first step in the conversion process is to rewrite (1) in the forms of two equations as (6) and (7). 
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SP
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S

VYVYI +=   (7) 

 

Then, based on symmetrical component theory, (6) and (7) can be rewritten in phase components as (8) and (9). 
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where: 
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P II  and : transformer primary and secondary phase currents 
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S
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P VV  and : transformer primary and secondary phase voltages 
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PP ,,, YYYY  and   : transformer sub-matrices in terms of phase components 

 

The transformer sub-matrices 
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SS
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PP ,,, YYYY  and    in (8) and (9) are calculated using 

(10), (11), (12), and (13). 
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It is to be noted that the sequence components transformer sub-matrices in (14) and (15) are 

calculated based on the formulas given in Table 1. Equations (8) and (9) are the proposed three-phase 

transformer mathematical model to be integrated into DSLF analysis. More detail explanation of the model 

integration will be discussed in the next section. 

 

 

3. DSLF ANALYSIS 

3.1.  DSLF formulation 

To enable incorporating three-phase transformer model described in section 2 into the DSLF 

analysis, a new formulation of DSLF problem is also proposed in the present work. The new DSLF 

formulation is expressed in terms of branch currents and nodal voltages. Figure 2 shows a section of a 

distribution network. As distribution lines do not usually have shunt admittances, it has been assumed that the 

line section has only series admittance. However, if needed, the shunt admittances can be included in the 

formulation in a straightforward manner.  
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Figure 2. Line section of distribution network 

 

 

Based on Figure 2, it can be obtained (16). 
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BY : three-phase admittance matrix 

 

It is to be noted that the three-phase admittance matrix in (16) is the admittance matrix of the line 

section in Figure 2. This admittance matrix has the form as (17). 
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where Yaa, Ybb and Ycc are self admittances of the line phases; Yab, Yac, Ybc, Yba, Yca and Ybc are mutual 

admittances between line phases. 

In addition to (16), two other sets of equations are needed to complete the proposed DSLF 

formulation. These two sets of equations can be derived by examining the condition of nodes of the 

distribution network as depicted in Figure 3.  

 

 

  
(a) (b) 

 

Figure 3. Conditions at: (a) Substation node, (b) Load node 

 

 

Based on Figure 3, the two sets of (18) and (19) are obtained. 
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where: 
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3.2.  Summary of equations and quantities 

This section summarizes all of the sets of nonlinear equations required to solve load flow problem of 

distribution system installed with three-phase power transformers see in Table 2. All of the electrical 

quantities (known and unknown) are also summarized in this section see in Table 3. 
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Table 3. Summary of quantities 
Set Set of known quantities (system data or specified) Set of unknown quantities (to be calculated) 
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4. VERIFICATION OF THE PROPOSED METHOD 

4.1.  Test system and software conditions 

This section discusses verification and validation of the method proposed in Section 3. IEEE 4-node 

test system [30] is used in the verification process. It is also to be noted that MATLAB software has been 

employed to implement the proposed method algorithm. Specifically, MATLAB built-in function fsolve has 

been used to solve the sets of nonlinear equations in Table 2 for the unknown variables described in Table 3. 
 

4.2.  Results and discussion 

Results of the load flow analysis in terms of system voltage profiles are given in Tables 4-12. For 

the purpose of comparison, results of DSLF analysis from ref. [30] are also presented in the tables. For Y 

connections, Vx, Vy and Vz are used to indicate Va, Vb and Vc, respectively. On the other hand, for D 

connections, Vx, Vy and Vz are used to indicate Vab, Vbc and Vca, respectively. 
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Table 4. Voltage profile for GrY – GrY connection 

Node 
Proposed method Ref. [30] 

Vx Vy Vz Vx Vy Vz 

1 7199.6/0 7199.6/-120 7199.6/120 7199.6/0 7199.6/-120 7199.6/120 
2 7106.5/-0.3 7139.7/-120.3 7120.8/119.6 7107/-0.3 7140/-120.3 7121/119.6 

3 2247.4/-3.7 2268.5/-123.5 2255.8/116.4 2247.6/-3.7 2269/-123.5 2256/116.4 

4 1917.7/-9.1 2061.3/-128.3 1980.7/110.9 1918/-9.1 2061/-128.3 1981/110.9 

 

 

Table 5. Voltage profile for D – D connection 

Node 
Proposed method Ref. [30] 

Vx Vy Vz Vx Vy Vz 

1 12470/30 12470/-90 12470/150 12470/30 12470/-90 12470/150 

2 12338.7/29.7 12348.6/-90.4 12321.2/149.6 12339/29.7 12349/-90.4 12321/149.6 

3 3910.6/26.5 3914.3/-93.6 3905/146.4 3911/26.5 3914/-93.6 3905/146.4 
4 3442/22.3 3496.9/-99.4 3383.8/140.6 3442/22.3 3497/-99.4 3384/140.7 

 

 

Table 6. Voltage profile for Y – D connection 

Node 
Proposed method Ref. [30] 

Vx Vy Vz Vx Vy Vz 

1 7199.6/0 7199.6/-120 7199.6/120 7199.6/0 7199.6/-120 7199.6/120 

2 7111.2/-0.3 7130.9/-120.4 7124.8/119.6 7112/-0.3 7133/-120.4 7124/119.6 
3 3905.7/-3.5 3914.8/-123.6 3909.3/116.3 3906/-3.4 3915/-123.6 3909/116.3 

4 3437.3/-7.7 3496.8/-129.3 3388.4/110.6 3437/-7.8 3497/-129.3 3388/110.6 

 

 

Table 7. Voltage profile for GrY – D connection 

Node 
Proposed method Ref. [30] 

Vx Vy Vz Vx Vy Vz 

1 7199.6/0 7199.6/-120 7199.6/120 7199.6/0 7199.6/-120 7199.6/120 

2 7111.7/-0.3 7132.1/-120.3 7123/119.6 7113/-0.3 7132/-120.3 7123/119.6 
3 3905.7/-3.5 3914.9/-123.6 3909.3/116.3 3906/-3.5 3915/-123.6 3909/116.3 

4 3437.3/-7.8 3496.8/-129.3 3388.4/110.6 3437/-7.8 3497/-129.3 3388/110.6 

 
 

Table 8. Voltage profile for D – GrY connection 

Node 
Proposed method Ref. [30] 

Vx Vy Vz Vx Vy Vz 

1 12470/30 12470/-90 12470/150 12470/30 12470/-90 12470/150 
2 12340.1/29.7 12349.1/-90.4 12318.3/149.6 12340/29.7 12349/-90.4 12318/149.6 

3 2249.4/-33.7 2262.9/-153.4 2259.2/86.4 2249/-33.7 2263/-153.4 2259/86.4 

4 1919.5/-39.1 2054.1/-158.3 1986/80.9 1920/-39.1 2054/-158.3 1986/80.9 

 
 

Table 9. Voltage profile for Y – Y connection 

Node 
Proposed method Ref. [30] 

Vx Vy Vz Vx Vy Vz 

1 7199.6/0 7199.6/-120 7199.6/120 - - - 

2 7115.2/-0.3 7125.9/-120.4 7126.4/119.6 - - - 

3 2325.2/-1.2 2136.7/-123.7 2314.8/114.2 - - - 
4 2017.4/-5.5 1881.5/-129.5 2068.1/108.7 - - - 

 

 

Table 10. Voltage profile for D – Y connection 

Node 
Proposed method Ref. [30] 

Vx Vy Vz Vx Vy Vz 

1 12470/30 12470/-90 12470/150 - - - 

2 12331.7/29.7 12350.3/-90.4 12329.4/149.6 - - - 

3 2339.7/-31.5 2136.4/-153.2 2300.9/84 - - - 
4 2033.5/-35.7 1880.8/-159 2051.9/78.5 - - - 

 

 

Table 11. Voltage profile for GrY – Y connection 

Node 
Proposed method Ref. [30] 

Vx Vy Vz Vx Vy Vz 

1 7199.6/0 7199.6/-120 7199.6/120 - - - 

2 7115.7/-0.3 7127.1/-120.4 7124.7/119.6 - - - 
3 2325.2/-1.2 2136.7/-123.7 2314.9/114.2 - - - 

4 2017.4/-5.5 1881.5/-129.5 2068.1/108.7 - - - 
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Table 12. Voltage profile for Y – GrY connection 

Node 
Proposed method Ref. [30] 

Vx Vy Vz Vx Vy Vz 

1 7199.6/0 7199.6/-120 7199.6/120 - - - 

2 7115.2/-0.3 7125.9/-120.4 7126.4/119.6 - - - 
3 2323.2/-1.1 2132.2/-123.9 2321.8/114.2 - - - 

4 2017.5/-5.5 1881.2/-129.5 2068.4/108.7 - - - 

 

 

Tables 4-12 show that the results of the proposed method are in close agreement with those given in 

[30]. However, the method used in [30] requires different set of nonlinear equations for different transformer 

connections which is not convenient for efficient implementation and incorporation of various transformer 

connection types. The method proposed in the present paper does not require any special equation to handle 

the transformer with D or ungrounded Y windings. 
 

 

5. CONCLUSION 

In this paper, a simple technique or procedure for including three-phase transformer model in 

distribution system load flow (DSLF) analysis has been proposed. First, a transformer model based on nodal 

admittance matrix was developed. Then, the model is incorporated into load flow analysis. In the paper, the 

load flow formulation in terms of branch currents and nodal voltages has also been proposed to enable 

incorporating the model into the analysis. In the formulation, sets of nonlinear equations are derived at every 

node and branch of the distribution system by examining the conditions (i.e. electrical quantities 

relationships). The proposed method can solve the singularity problem, and makes the calculations in 

forward/backward sweep (FBS) algorithm is easy to be carried out. The results indicate that the proposed 

method is valid and accurate.  
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