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 The work carried out in this article essentially relates to the application of a 

synergetic control to the piezoelectric positioning mechanism or 

piezoelectric actuator (PEA). A LuGre model has been followed, capturing 

the most physical phenomena, in order to be able to follow the most realistic 

and representative model possible. From this model, which is then identified 

by particle swarm optimization (PSO), we apply the synergetic control 

technique, which is a very efficient control method that allows 

demonstrating the good functioning of the stability of nonlinear system in 

closed loop. The simulation results have been compared to those obtained 

when using sliding mode to confer the best performance in terms of tracking 

error and minimization of oscillations. 
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1. INTRODUCTION 

Piezoelectric actuators for positioning of the stacks type are increasingly present in a very large 

number of industrial processes affecting manufacturing, microscopic [1]–[4], medicine [5], [6], robotics [7], [8], 

and defence [9]. In reality, these systems this characterize by their reduced size, and low energy cost, and the 

good dynamic performance of the actuators are appreciated [10]–[14] The brake on their use and their 

development is the fact that the nonlinear phenomena (hysteresis, creep, vibration, and thermal drift) [15]. 

Which characterize their functioning and the specific requirements of their control circuits make the control 

of these systems difficult [16]. Indeed, modelling and control are essential to achieve the objectives of high 

precision movement [17].  

It is often very difficult to faithfully represent a mechanism and to know all the variables  

involved [18]. Consequently, the law of control, which will be associated with it, must be robust in order to 

overcome some nonlinearity or identification errors [19]. Control by sliding mode makes it possible to 

respond to this problem, this robustness will be determined at the performance level [20]. The Sliding mode 

control is a special case of variable structure control, very known for its insensitivity to variations in internal 

and external parameters, its stability, its simplicity and these very low response times [21]. The sliding mode 

has become interesting and attractive [22]. It is considered as the simplest approaches for the control of 

nonlinear systems having an imprecise model [23]. Indeed, the discontinuity of the input induces vibrations 

of high-frequencies undesirable in practice [24]. In addition, the sliding surface defined in the formalism 

reduces the order of the closed-loop system, which does not in some cases make it possible to impose a 

stabilization mode on the system [25]. In order to remedy these drawbacks, a new control algorithm is 
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proposed, called synergetic control, which has been recently studied to further improve control performance. 

In recent years, considerable efforts have been made to improve the dynamic stability of positioning systems, 

which are very complex, non-linear [26]. Two control approaches are used to stabilize a PEA system, such as 

variable structure control (CSV) and synergetic control. 
 

 

2. METHOD 

2.1.  Modeling and identification of LuGre parameters 

The experimental configuration used for the identification of the LuGre model on the piezo actuator 

positioning mechanism is validated in [27].  
 

2.2.  Nonlinear systems control 

Consider the nonlinear systems described by (1): 
 

𝑥
⋅

= 𝐴. 𝑥 + 𝐵. 𝑢  
𝑦 = 𝐶. 𝑥 (1) 
 

𝑥 ∈ 𝑅𝑛 , 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is the state vector of dimension n 𝐴 ∈ 𝑅𝑛 and 𝐵 ∈ 𝑅𝑚.𝑛, 𝑢 ∈ 𝑅𝑚, 𝑢 =
(𝑢1, 𝑢2, . . . , 𝑢𝑚), is the state vector control of dimension m. The procedure for conception the system control 

(1) is carried out in two stages. 
 

2.3.  Designation of a manifold according to the desired performance 

Synthesize a surface S (x, t) such that all the trajectories of the system obey a behavior desire for 

pursuit, regulation and stability; the switching surface associated with the control system with variable 

structure, is called hyperplane of the surface function. 

 

𝑀 = {𝑥: 𝜎 = 𝑆(𝑥) = 0, 𝑆(𝑥) ∈ 𝑅𝑚} [28] (2) 

 

Where 𝑆(𝑥) hyperplane of the surface function. 
 

2.4.  Designation of the controller using the relation 𝑆(𝑥). 𝑆(𝑥) ≤ 0
⋅

, which directs the trajectories of the 

system towards the manifold 

The variable structure control (CSV) is by nature a non-linear control. The main characteristic of 

systems with variable structure consists of a control law based on the switching of functions of state 

variables, used to create a variety or hyper sliding surface. The purpose of this control is to force the 

dynamics of the system to match that defined by the hyper surface equation. When the state is maintained on 

this hyper surface, the system is in a sliding regime. An equivalent control vector 𝑢𝑒𝑞  is defined as being the 

ideal sliding regime equations. We are interested in the computation of the equivalent control and 

subsequently in the computation of the attractive control of the system defined in (3). 
 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑛 (3) 
 

Where 𝑢𝑛 is the switching control, 𝑢𝑒𝑞  is the equivalent control yielded from �̇� = 0. 𝑢𝑒𝑞 is defined by (4) 

and (5) [29]. 
 

𝑢𝑒𝑞 = −(𝑆(𝑥). 𝐵(𝑥))−1𝑆(𝑥). 𝐴(𝑥) (4) 
 

𝑢𝑛 = −𝜂. (𝑆(𝑥). 𝐵(𝑥))−1 𝑆(𝑥)

|𝑆(𝑥)|
 (5) 

 

The following variable structure sliding mode controller in (6). 
 

𝑢 = −(𝑆(𝑥). 𝐵(𝑥))−1𝑆(𝑥). 𝐴(𝑥) − 𝜂. (𝑆(𝑥). 𝐵(𝑥))−1 𝑆(𝑥)

|𝑆(𝑥)|
 (6) 

 

2.5.  Synergetic control 

Synergetic control is fairly close to control by sliding mode in the direction where the system is 

forced to evolve according to a dynamic chosen by the designer. It differs from it in the fact that the 

synergetic control is always continuous and uses a macro-variable, which can be a function of two or more 

variables of state of the system [30]. 

 

𝜓𝑠 = 𝜓𝑠(𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑠 = 1,2, . . . 𝑚 (7) 
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𝜓𝑠:  represents the invariant manifolds 

m:  the number of invariant manifolds 

Each manifold presents a new constraint on the system in its state space by reducing its order by 

one, and forcing it to converge to the desired state. Consequently, the command will force the system to 

operate on the intersection of the manifolds (𝜓𝑠 =0) [31]. The fixation of the dynamic evolution of macro-

variables (7) towards manifolds (𝜓𝑠 =0) is given by the following functional in (8). 
 

𝑇. 𝜓
 

+ 𝜓 + 0𝑇 ≥ 0 (8) 
 

T : is a conception parameter defining the convergence speed toward the manifold 

The expression of the manifold derivative is given by (9). 
 

𝑆
⋅

=
𝑑  𝑆(𝑥)

𝑑  𝑥
. 𝑥

⋅
  

=
𝑑  𝑆(𝑥)

𝑑  𝑥
(𝐴. 𝑥 + 𝐵. ) (9) 

 

We replace (9) in (8) we obtain (10). 
 

𝑇. 𝑆(𝐴. 𝑥 + 𝐵 𝑢) + 𝑆 = 0 (10) 
 

From (10), we deduce the control law (11). 
 

𝑢𝑛 = −(𝑇. 𝑆𝐵)−1(𝑇 𝑆𝐴. +𝑆) (11) 
 

From (11), we can see that the control depends 0not only on the state variables of the system, but also on the 

macro-variable and on the control parameter T . In other words, the designer can choose the characteristics of 

the controller by choosing an appropriate macro-variable and a specific control parameter. 
 

2.6.  Application of the synergetic control to the PEA 

The dynamic of the movement of PEA is [32]. 
 

{
𝑥
⋅

1 = 𝑥2

𝑥
⋅

2 =
𝑘𝑒𝑢

𝑀
−

1

𝑀
[𝜎0𝑔(𝑥2)

𝑥2

|𝑥2|
+ (𝐷 + 𝜎2)𝑥2 + 𝜎3𝑥1 + 𝐹𝑙]

 (12) 

 

{
𝑥
⋅

1 = 𝑥2

𝑥
⋅

2 = 𝑘0. 𝑢 − ℎ(𝑡) − 𝑘1. 𝑥2 − 𝑘2𝑥1 + 𝐹𝑙

 (13) 

 

With 𝑘0 =
𝑘𝑒

𝑀
,𝑘1 =

𝐷+𝜎2

𝑘𝑒
,𝑘2 =

𝜎3

𝑘𝑒
, and ℎ(𝑡) =

1

𝑘𝑒
[𝜎0. 𝑔(𝑥2)

𝑥2

|𝑥2|
+ 𝐹𝐿] 𝑘0, 𝑘1, 𝑘2, 𝑎𝑛𝑑 ℎ(𝑡) are unknown and 

bounded parameters, just asℎ(𝑡) is unknown and bounded by 𝑘3. The objective of synergetic control is to 

force the system to follow a reference signal. We want to maintain 𝜓 = 0, i.e. The system is confined to it 

and that we are tending towards the origin of the plane of phase. The macro-variable is chosen as (13). 
 

{
𝜓 = 𝑘4. 𝑒1 + 𝑒2 𝑘4 ≥ 0

𝜓
⋅

= 𝑘4. 𝑒1

⋅
+ 𝑒2

⋅  (14) 

 

The desired dynamic evolution of the macro-variables given by (8), and the (14) we get: 
 

𝑒1 = 𝑥𝑟𝑒𝑓 − 𝑥, 𝑎𝑛𝑑   𝑒2 = 𝑒
⋅

1 = 𝑥𝑟𝑒𝑓

⋅
− 𝑥

 
    ⇔    𝑒2

 
= 𝑥𝑟𝑒𝑓

 
− 𝑥

 
 

     = 𝑥𝑟𝑒𝑓

 
− 𝑘0. 𝑢 + ℎ(𝑡) + 𝑘1. 𝑥2 + 𝑘2𝑥1 + 𝐹𝑙 (15) 

 

Finally, replaces (8) in (15), the control law can be described as (16). 
 

𝑢𝑛 = 𝑘0(𝑥𝑟𝑒𝑓

 
− 𝑘0. 𝑢 + ℎ(𝑡) + 𝑘1. 𝑥2 + 𝑘2𝑥1 + 𝐹𝑙 +

𝜓

𝑇
+ 𝑘4𝑒2) (16) 

 

The advantage of the synergetic control is that it is linear which drives the trajectory of the system 

towards the manifold 𝑆(𝑥) = 0, once on the manifold; the dynamics of the system is a reduced order. The 

values of 𝑘4, 𝑇, are adjusted to have the desired performances: the speed of the response without overshoot, 

the reduction of the amplitude of the oscillations and the reduction of the static error. 
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3. RESULTS AND DISCUSSION 

To implement the proposed control system, the P.E.A model is representing the system dynamics. 

These parameters are identified using experimental data. a sinusoidal reference signal of frequency 1 Hz is 

applied, Figures 1 and 2, show the displacement and the tracking error of the synergetic control respectively, 

or the tracking error is approximately + -0.2-micron meter. Figure 3, show the performance of the synergetic 

control method on the P.E.A with a load (disturbance) of 10 N. the tracking displacement signal follows its 

reference without overstepping. The system dynamics is stable; the phase plan portrait given in Figure 4 

shows a good improvement in the system behavior. The application of synergistic control to the PEA made it 

possible to highlight its simplicity of design and the superiority of the performances obtained, compared to 

those obtained with a sliding mode controller. The results show in Figure 5, that the design of the synergetic 

control to a fast dynamic response, good performance of displacement in pursuit and a strong capacity to 

overcome the stationary error of the system. Figure 6 represents this comparative study, and the trajectory 

tracking error tests show the validity of these methods for PEA control. At this level of error, the results of 

the synergistic command are better than those of t the control by sliding mode. 
 

 

 

 

Figure 1. Simulation results of synergetic controller system for periodic sinusoidal control with conditions at 

10 µm, 0.5 Hz: tracking response 

 

 

 
 

Figure 2. Simulation results of synergetic controller system for periodic sinusoidal control with conditions at 

10 µm, 0.5 Hz: tracking error 
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Figure 3. Simulation results of synergetic controller system for periodic sinusoidal control without external 

load of 10 N with conditions at 10µm, 0.5 Hz: tracking response 

 

 

 
 

Figure 4. Phase plan 

 

 

 
 

Figure 5. Simulation results of synergetic controller and sliding mode system for periodic sinusoidal control 

without external load of 10 N with conditions at 10 µm, 0.5 Hz: tracking response 



Int J Appl Power Eng ISSN: 2252-8792  

 

Synergetic control of micro positioning stage piezoelectric actuator (Amor Ounissi) 

269 

 
 

Figure 6. Simulation results of synergetic controller and sliding mode system for periodic sinusoidal control 

with conditions at 10 µm, 0.5 Hz: tracking error 
 

 

4. CONCLUSION 

In this article, we are interested in applying a synergetic control algorithm to the mechanism positioning 

piezoelectric P.E.A. This type of control has been sufficiently discussed compared to control by sliding mode. In 

order to develop this work, we first started by modelling the P.E.A by the LuGre model, to best meet the 

identification requirements. The model is based on the equation of movement, which takes into consideration 

(friction and stribeck effect). Then we studied the control by sliding mode and the synergetic control. 
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