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1. INTRODUCTION

As the necessity for renewable energy sources and utilizing the enormous power of the sun becomes
more widely understood [1], It might replace fossil fuels as our primary source of energy [2], Over the past ten
years, there has been an increase in interest in the creation of thin film solar cells [3]. Compared to other silicon
forms [2], for instance, mixed-phase or polycrystalline Si [4], the electromagnetic spectrum's visible area has
a high absorption coefficient for hydrogenated amorphous silicon (a-Si: H) [5]. As a result, it ranks as one of
the most popular and cost-effective semiconductor materials for use in thin-film solar cells [6]. Accordingly,
in thin-film Si solar cells [7], it is possible to make an a-Si absorber layer thinner than other types of Si [8].
However, the Staebler-Wronski effect [9], which is a-metastability [10], and Si prevent a-Si solar cells from
developing efficiently [11].

In comparison to crystal silicon, the charge carriers' diffusion length in a-Si: H is significantly
shorter [12]. Due to the greater defect density caused by doping, the minority carriers' diffusion length in
extrinsic a-Si: H layers is substantially shorter than it is in intrinsic a-Si: H layers [13]. Due to the incredibly
short diffusion length, the photo-generated carriers would all recombine before they reached the p-n junction's
depletion zone in the extrinsic (doped) layers [14]. Additionally, three layers are used in the design and
production of an a-Si: H solar cell p-layer for a-Si [15], an inherent i-layer [16], and an n-layer to solve the
problems with p-n configuration already described [17].
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An internal electric field is present across the i-layer when light hits the solar cell [18], which layer in
the a-Si:H solar cell is the active layer [19]. It is inserted in the layers that are doped [20]. The electron-hole
pairs generated in the intrinsic a-Si: H layer feel the internal electric field that separates electrons and holes
right away [21]. The split carriers are gathered by electrodes as they move toward the extrinsic layers while
being influenced by the electric field (holes toward the p-layer and electrons toward the n-layer) [22].
As a result, the efficiency of a-Si:H solar cells is significantly influenced by the band gap and i-layer
conductivity [23]. Using plasma-enhanced chemical vapor deposition technology, we are doing research to
produce hydrogenated amorphous silicon (a-Si:H) thin film solar cells and to gain insight into the effects of
process variables on conversion efficiency.

2. EXPERIMENTAL METHOD

Figure 1(a) shows a schematic of the layers that make up an amorphous silicon solar cell. Light can
pass through the glass and indium tin oxide (ITO) in the glass superstrate configuration [24]. ITO serves as
both the front contact and the window layer, allowing a high percentage of incident light to be transmitted.

The capacitive coupled multi-chamber plasma-enhanced chemical vapor deposition process (RF-
PECVD), developed locally and schematically represented in Figure 1(b), was used to create the a-Si: H p-i-n
solar cells. The five process chambers of the fully automated PECVD system are managed by SCADA software
in conjunction with a PLC and user interface [25], are each attached to a different central transfer chamber,
and they are each supported by a different magnetic arm for handling substrates. Each process chamber has a
substrate heater, an adjustable electrodes-gas shower facility, and a dry mechanical pump for maintaining the
required process pressure. These components are all coupled to a 300 W RF (13.56 MHz) power supply built
by SEREN. A base pressure of 5x10° torr utilizing a typical turbo-roots-rotary pumping system linked to the
central chamber has been created prior to each deposition.
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Figure 1. The RF-PECVD cluster tool system: (a) diagrams the system and (b) the structure of amorphous
silicon (a-Si: H) cell

This deposition system's biggest permissible substrate is 10 x 10 cm?, and the process temperature cap
is 300 °C. On a variety of glass substrates, including float glass, Schott glass, and ITO-coated glass, the
development and optimization of the p-, i-, and n- layers of the a-Si: H thin film solar cell have been done in
order to avoid cross-process contamination while making the device. The process variables utilized to create
and enhance the individual layers as well as the a-Si: H solar cells are shown in Table 1. AFM was utilized to
measure the deposited layers' thickness [26]. The electrical properties of the films were investigated by
measuring co-planar conductivity using aluminum electrodes with a 12 mm length and 3 mm gap that were
sputtered and evaporated. The optical spectra of the films were recorded in the 250-800 nm wavelength range
using a UV-VIS spectrophotometer [27]. Coated glass substrates a-Si: H and the 1-V measurements of the
produced cells were evaluated using a solar simulator after layer-by-layer optimization.
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Tablel. Solar cells with a-Si: H p-i-n experimental parameters

Parameters Value
Substrate and size 2.5 cm? of Float and ITO-coated glasses
Baseline pressure 5x10° torr
Operating temperature 250°C

Process gases for a-Si: H layers  p-layer: H,, SiH, and B,Hg
i-layer: H, and SiH,4
n-layer: H,, SiH, and PH3

Operating pressure 0.5-1.0torr
Power supply RF of 13.56 MHz at 300 W with matching network
Layer thickness p-layer: 25 nm; i-layer: 300 nm and n-layer: 25 nm.

3. RESULTS AND DISCUSSION

The independent p-type, intrinsic, and n-type layers of the a-Si: H material were made and altered
after several coating experiments to obtain the required characteristics as shown in Table 2. Utilizing foreign
glass substrates with 1TO coating and the best possible properties, such as an optical transmittance of 85% and
a sheet resistance of 5Q /square, and a thickness of 0.7 y, thin film a-Si: H p-i-n solar cells have been created.
Many solar cells have been created with ITO and aluminum layers as the front and back electrodes,
respectively, utilizing the above-optimized individual layer deposition settings and properties as a reference in
order to increase conversion efficiency with repeatability [28].

Figure 2 show I-V characteristics show that the manufactured a-Si: H thin film solar cells had a
maximum cell efficiency of 6.52%, with an open circuit voltage of 880 mV, a short circuit current of 11.33
mA/cm?, and a fill factor of 65%. To test the stability of the machine and the process, solar cells were produced
continuously over the course of a single period using the best-optimized process parameters indicated in
Table 2. The results are shown in Figure 2. Efficiency in this investigation varied between 6.11 and 6.52%,
Voc was between 810 and 880 mV, and Jsc was between 10.89 and 11.33 mA/cm?, and FF was between 65
and 69%, yielding an average conversion efficiency of 6.31%.

Table 2. Improved qualities of each layer of the solar cell
Layer Band gap (V) Thickness Conductivity

p 20eV 25nm 3.65x10°Scm?
i 1.6eV 300nm  5.63x10°Scm?
n 2.0eV 25nm 2.1x10%Scm?
14 14
12 ] 124
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Figure 2. The optimized a-Si: H solar cells' curves

Figure 3 shows the change in transmittance for thin a-Si films: H deposited with several types of
coatings, including p-type, i-type, and n-type UV-VIS measurements. The film will transmit more visible light
if the coating is more dilute. This indicates that as the band gap widens, the transparency of the layer will also
widen [29]. Greater transparency may be caused by faults in the energy bandgap or local state decrease. There
is great demand for solar cell materials with exceptional transparency, particularly intrinsic a-Si: H thin films.
The optical performance of thin films may be assessed using information on visual transmission [30]. Figure 1
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further demonstrates that the deposition of thinner films will result from greater variations between each layer.
Fringe interference, which develops because of variations in film thickness, serves as a clue [31]. Indicating a
thicker film is more interference fringes at the same wavelength interval. The interference fringe pattern
observed at virtually the same layer thickness proves that the change in transmittance is not caused by the
thickness of the layers [32]. Transmittance changes can be attributed to variations in crystallinity, energy gaps,
Urbach energies, and particle sizes [33].
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Figure 3. The transmittance of each layer is obtained

Atomic forces between the tip and the substrate will be used in AFM measurements of the sample’s
thickness and shape to describe the material [34]. AFMs are made up of a variety of parts, including the tip,
cantilever, piezoelectric sensor, and photodetector. The tips move across the test material's surface during the
material characterization procedure, changing the slope of the cantilever. The photodetector finds the slope of
the cantilever. The laser beam directed to the cantilever is received by the detector, and the cantilever slope is
then identified [26]. Measurements or scans are carried out at the layer and substrate boundary region (no
layer). Information regarding the height difference or depth difference in this border region scan, which reveals
how thick the thin layer created.

Using an AFM, each layer of p-type, i-type, and n-type semiconductors was measured, and the results
are shown in Figure 4. The surface morphology of the p-type, i-type, and n-type layers are revealed in the
measurement findings by the coating's surface roughness in a layer area of 2x2 um2. We find that the p-type,
i-type, and n-type strata are very uniform throughout the layers. All layers clearly showed the tiny grain size.
It results from modifications in the nucleation and development of layers utilizing RF-PECVD. Value of
thickness roughness of the p-type, i-type, and n-type root-mean-square (RMS) values obtained from AFM
measurements were 25 nm, 300 nm, and 25 nm, respectively. Due to this incredibly high roughness value, it is
feasible to increase the possibility of electron transit in each layer of the solar cell's a-Si: H [34].

Dark conductivity (cdark) and photo (ophoto) films, storage on the ITO substrate were assessed
utilizing coplanar geometry and a 100 W halogen light with a power density of 100 mW/cm2. These films'
photoconductivity and darkness at 300 K. Every film displays significant conductivity variations when lit [35].
For these films, the conductivity is temperature dependent. Although all films' dark and photoconductivity values
were found to be almost identical at ambient temperature, i-type films had greater dark and photoconductivity
values at 475 K. values for conductivity at 300 K and 475 K. In addition, the films exhibit good photosensitivity
at 475 K, with the highest value for the p-type due to the enhanced structural order of these films following a
single hydrogen plasma treatment step, even if the films are still amorphous in nature [36].

The intensity of the electric field produced between the p-layer and n-layer, as well as the utilization of
photon energy to excite a charge carrier from the valence band to the conduction band, depend critically on the
pin sample and sample p-i-n solar cell device layers, as was previously stated. More photons will be absorbed if
the active layer is thicker and the rate of charge carrier generation increases [37]. But the thicker i-layer also
adds to this growth due to the localized circumstances that will also increase series resistance (Rs). However, if
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the i-layer is too thin, the electric field that is formed between the p-layer and the n-layer would weaken [38].
Along with series resistance, another factor that influences the characteristics of the solar cell samples is the
shear resistance value (Rsh). This resistance is related to the process of charge carrier recombination from the
conduction band to the valence band [39]. In the p-i-n sample solar cell, recombination between the bands is not
predicted since it would decrease the electron flow (current flow) from the n-layer to the p-layer [40]. However,
this issue cannot be resolved in the pin sample solar cells or the p-i-n sample due to the localized states of the a-
Si: H material in the energy bandgap region, which increases the likelihood of recombination between the
ribbons. Therefore, the ideal solar cell has a very high Rsh value and a very low Rs value.
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Figure 4. Morphology of the surface layer of a-Si: H using AFM: (a) p-type, (b) i-type,
and (c) n-type between the ribbons

4. CONCLUSION

In conclusion, the a-Si: H p-i-n solar cells were produced on ITO-coated glass using the multi-chamber
RF-PECVD technique at a process temperature of 250 °C. The intrinsic as well as doped layers of the a-Si: H
material's properties, such as electrical conductivity, optical band gap, and layer thickness, have been improved
via meticulously assessing the respective doping efficiency, RF power, and deposition rate. The structure and
surface appearance of the different cell layers have been examined during AFM research. The 2.5 X 2.5 cm?
a-Si: H thin film solar cells were produced, and their 1-V characteristics led to the maximum cell conversion
efficiency of 6.52%, Voc of 880 mV, Jsc of 11.33 mA/cm?, and FF of 65%. Studies on the manufacture of
solar cells that focused on repeatability have shown how crucial machine design and process management are
for obtaining consistent outcomes. In this instance, this was due to the multi-chamber facility, which allowed
us to employ specialized chambers to optimize each of the device's distinct layers.
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