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 The photovoltaic (PV) system comprises one or more solar panels, a 

converter/inverter, controllers, and other mechanical and electrical elements 

that utilize the generated electrical energy by the PV modules. The PV 

systems are ranged from small roofs or transportable units to massive 

electric utility plants. The maximum power point tracking (MPPT) controller 

has been used in PV systems to get the maximum power available. In 

addition, the MPPT controller is much essential for PV systems to protect 

the battery devices or direct loads from the power fluctuations received from 

solar PV panels. There are several MPPT control mechanisms available right 

now. The most common and commonly applied approaches under constant 

irradiance are perturb and observe (P&O) and incremental conductance 

(INC). But such methods show variations in the maximum power point. In 

this sense, this paper analyses and utilizes two recent metaheuristic 

algorithms called artificial rabbit optimization (ARO) and the most valuable 

player (MVP) algorithm for MPPT applications. The performance 

comparisons are made with the most preferred traditional algorithms, such as 

P&O and INC. Based on the result obtained, this study recommends that 

ARO perform better in standard testing conditions than all the other 

algorithms, but in partially shaded conditions, the MVP algorithm performs 

better in terms of efficiency and tracking speed. 
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1. INTRODUCTION 

Solar power generation is rapidly expanding in many regions worldwide, owing to cost reductions, 

economic incentives, and the need to fulfil rising energy demand while reducing reliance on fossil fuels. 

However, various problems must be overcome before they can be considered significant. The power 

production of solar photovoltaic (PV) arrays, solar irradiation, and PV array efficiency can suffer 

significantly when partially shaded. Shading can be produced by various factors, including clouds, buildings, 

trees, soiling, dust, and even PV cell splitting and ageing. The extent and influence of shading vary according 

to the application and end use, for example, solar PV power plants, building-integrated photovoltaics, rural 

electrification, or electric cars. Reducing the effect of partial shadowing is a significant practical difficulty. 

https://creativecommons.org/licenses/by-sa/4.0/
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Partial shadowing reduces the power output of the PV array while also causing the power-voltage (P-V) 

curve to have several peaks. As a result, standard maximum power point tracking (MPPT) may become 

caught at the local maximum power point (LMPP), resulting in severe power losses. Various traditional 

MPPT algorithms under partial shade have been developed to solve this issue and their categorization. To 

approach the global maximum power point (GMPP), notable recent contributions include fuzzy-logic 

controllers, neural-network-based techniques, and advanced evolutionary algorithms. The complexity and 

expense of these algorithms and the requirement for integrated sensors in some circumstances remain some 

of the fundamental difficulties. The need for renewable and pollution-free energy sources leads to the 

development of transformation systems utilizing renewables, and fuel cells. Photovoltaic (PV) power 

generation is developing rapidly as the cost of PV power generation reduces greatly over a period of time [1]. 

The key point of this study is that the PV model is obtained using design data from the manufacturer's 

datasheet. As a result, the model gives more accurate results than the built-in PV array model in the 

MATLAB programme [2]. Because the I-V relation for the PV array is determined, the model with five 

parameters was built. The resulting PV model is adaptable for all PV parameters and P-V and I-V for the PV 

array. The accuracy and reliability of the PV model are validated routinely by comparing simulation results 

to data supplied by the manufacturers. The generated model requires data from the manufacturer's datasheet. 

The suggested model's qualities, such as dependability, precision, and flexibility, allow the designers to 

forecast, and it also describes the best possible algorithm suitable for partially shaded conditions [3], [4]. 

Artificial bee colony (ABC) was used to precisely measure and estimate the characteristics of solar 

cells, and it has been presented. The estimating procedure is described as an optimization concern in the 

methodology. As a primary solution, the proposed approach improves the characteristics of the solar cell. The 

objective function evaluates the match between a prospective solution and observational results. The 

algorithm's efficiency has been determined by reliability [5]. Several studies have been conducted to improve 

its effectiveness under varying weather conditions. The development of various algorithms for tracking and 

extracting the most accessible power makes utilizing energy from the sun more suitable. The impact of 

irradiance on MPPT leads to multiple power peaks as a function of the use of photodiodes that traverse to 

mitigate the consequences of different shading circumstances [6]. One of the essential challenges when 

addressing commercial uses of PV systems is estimating the efficiency of a PV system since I-V and P-V 

characteristics are very nonlinear. It should be mentioned that most manufacturers' datasheets lack 

comprehensive information on the equivalent electrical characteristics of PV systems required to model an 

effective PV module [7], [8]. Due to this, the chance to select low-power peaks as maximum power by the 

MPPT algorithm increases. Due to local peaks, perturb and observe (P&O) and hill-climbing algorithms are 

examples of traditional methodologies [9]–[11].  

Monitoring the maximum peak is wasteful because fluctuations around the maximum cause power 

outages. A modified version of the P&O methodology [7]–[9] is employed, in which the local peaks are first 

determined, and during the second loop, the global peak is determined, but it needs more time to compute the 

maximum power and hence is slower in response. MPPT algorithms that use an artificial neural network 

(ANN) and fuzzy control [10]–[13] are more convenient under light load conditions and in continuously 

monitoring peak energy, but they require more memory because vast amounts of data are required for 

training the network and are more complex. Various optimization techniques, such as flow-on effects and 

particle swarm optimization (PSO), ant colony optimization, Jaya algorithm, genetic algorithm, and so on, 

are used to track optimal power for the PV energy conversion system [14]–[16], which processes the entire 

range of voltage or duty ratio and thus determines the global peak of PV power and requires fewer data 

samples. As the metaheuristic algorithms track the global peak efficiently, the tracking speed, and 

fluctuations, are concentrated for improvement. 

The PSO, flower pollination, ant colony, and firefly-based MPPT algorithms provide better tracking 

efficiency under various partial shading conditions, but it causes continuous perturbation, resulting in an 

increased number of iterations, which leads to a longer settling time and more fluctuation, resulting in higher 

power losses. Under uniformly distributed irradiances, a photovoltaic array's PV characteristics have a sharp 

peak. When the irradiance is not uniformly distributed across the PV system, the P-V contour has many 

spikes, referred to as partial shading conditions (PSCs). Because of their robustness in monitoring the global 

peak (GP) of many application areas, clustering techniques are again used as maximum power point trackers 

for PV under PSCs [17]–[22]. Based on PSO and differential evolutionary (DE) and Jaya algorithms, the 

author suggested improved MPPT algorithms for the PV system subjected to different operating conditions 

[23], [24]. To resolve the drawbacks of DE, the main characteristics of PSO are merged with DE. The 

presented hybrid maximum power point uses a random mutation loop to avoid all municipal peaks. 

Whenever this loop is powered up, it is determined by the maximum number of iterations. The hybrid 

MPPT's performance is validated using both simulation and a hardware setup. Three different PSCs were 

used to test the proposed methodology. The suggested technique is a step forward in this field, making the 

system more robust and increasing overall computational speed. It can find the true global MPP with the 
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exception of conventional PSO techniques. This algorithm successfully handles changes that occur in 

irradiance conditions and is applicable in real-time. Other algorithms, such as adaptive radial movement 

optimization, grey wolf-assisted P&O, chaotic flower pollination, and hybrid PSO-P&O, are proposed for the 

PV systems to track the maximum power point at different operating conditions [25]–[28]. Another study 

presents a control scheme for grid-connected photovoltaic systems based on two different three-phase 

topologies of multilevel inverters. Based on the bifurcation method, the investigated topologies are divided 

into two basic groups: Topologies of DC-DC converter and cascade inverter grid-connected PV systems are 

designed to be sustainable by using particle swarm optimization, and a good solution is to use two multilevel 

converter topologies for maximizing PV generator energy yield and improving the system's ability to meet 

this same requirement for power generation delivered to the grid [29]. A comprehensive study was performed in 

this manuscript to analyze the obstacles in the 12 GMPPT methodologies for heuristic enhancement, notably 

manipulative and improvisational browsing capabilities. This paper discusses that variable vortex search (VVS)-

based GMPP tracking has more than 99% tracking accuracy in simulation and hardware tests. Furthermore, it 

diminishes computational complexity and is simple to implement. The most important existing heuristic 

optimization techniques are analyzed and discussed. The literary works processes and the new VVS-based 

GMPP strategy would then allow the researchers to pick the best strategy for their specific needs [30]–[33]. The 

researchers in the works [34], [35] allow us to understand the new algorithm used for partially shaded 

conditions based on humpback whale assisted and whale optimization for different partially shaded conditions. 

A hybrid shuffled frog leaping algorithm with PSO, hybrid dragonfly and INC algorithm, hybrid 

P&O with ABC, and hybrid Jaya algorithm are proposed and are used to cover a large range in a shorter time 

period, resulting in reduced tracking time and power losses when compared to the conventional algorithms. 

The settling time is high, so the efficiency is low [36]–[39]. Hassan et al. [40] introduce novel models for 

predicting the power output of PV systems at various scales and in desert locations, incorporating a nonlinear 

autoregressive neural network to exogenous inputs with evolutionary algorithms for gradient-free training. Five 

models have been developed for each site, beginning with a free model and ending with the most expensive model. 

Hassan et al. [41] have proposed a new regression and ensemble-learning model for forecasting the performance of 

PV energy plants operating in desert regions, taking into account the innovative tools of the photovoltaic system 

and the character traits of the procedure settings and climatic conditions. Nwokolo et al. [42] developed and 

validated 294 physical models from six different PV power technologies using machine learning, Gumbel's 

probabilistic approach and hybridization of the two to aid in the possible determination of PV electric energy 

generation in the unique geographical and climatic environment of the experiment site. 

The most valuable player (MVP) methodology [43], [44] is identified as a new algorithm and highly 

efficient in removing the drawbacks of traditional algorithms as well as other metaheuristic computational 

methods. There have been two of them working on components: the first phase is determining the best 

individual solution, and the next determines the most efficient approach among a group of the best possible 

remedies. As a result, the global peak is explored more quickly. In order to get this, a search space-limiting 

strategy is considered as a means of bringing down the interval of solutions. The MVP algorithm is also tested 

and validated using MPPT optimization problems [44]. The tracking speed, power fluctuations, and settling 

time are all minimized with this strategy. A new optimization technique known as artificial rabbit optimization 

is investigated in this work, in which the search space limitation technique from MPPT is combined with three 

strategies: detour foraging, random concealment, and resource dwindling [45]. The excursion foraging scheme 

explores all power peaks during partial shading conditions, the random hiding strategy determines the global 

peak, and the energy reduction framework improves its equilibrium among both the availability of the best 

possible duty ratio and, thus, tracking the maximum power. The following are the contributions of the paper: i) 

Development of MVP and artificial rabbit optimization (ARO) algorithms for MPPT applications; ii) Problem 

formulation to optimize the output power of the PV array; iii) Testing the algorithms using different case 

studies; and iv) Compare the performance of ARO and MVO with P&O and INC algorithms. 

The paper is organized as follows. Section 2 discusses the mathematical modelling of the PV 

cell/module. In addition, the effects of the bypass diode on the PV array during partial shading conditions are 

also discussed. Section 3 deals with the operation of the traditional boost DC-DC converter. Section 4 

discusses the formulation and mathematical modelling of MVP and ARO algorithms. Section 5 presents the 

simulation results under three different operating conditions. Section 6 concludes the paper. 

 

 

2. MODELLING OF PHOTOVOLTAIC CELL 

The equivalent 5-parameter PV cell model circuit is shown in Figure 1. It is always necessary to 

extract the parameters of the PV cell for proper modelling of the PV systems [46]. The PV model has five 

parameters: Photocurrent (Iph), diode saturation current (Io), diode ideality factor (a), series ohmic resistance 

(Rs), and shunt ohmic resistance (Rp). The output current of the PV cell is presented in (1). 
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𝐼 = 𝐼𝑝ℎ − 𝐼𝑜 (
(𝑉+𝐼∗𝑅𝑆)

𝑎𝑉𝑇
− 1) − (

𝑉+𝐼∗𝑅𝑆

𝑅𝑝
) (1) 

 

𝑉𝑇 = 𝑘 ·
𝑇𝐶

𝑞
  (2) 

 

Where, VT denotes the thermal voltage due to temperature dependency, k denotes the Boltzmann constant, q 

denotes the electron charge, Tc denotes the cell temperature, V denotes the PV cell voltage, and I denotes the 

PV cell current.  
 

 

 
 

Figure 1. Equivalent linear diode solar cell model 
 

 

2.1.  Determination of 𝐈𝐩𝐡 

In standard testing conditions, the current output is as (3).  
 

𝐼 = 𝐼𝑝ℎ,𝑟𝑒𝑓𝑓 − 𝐼𝑜,𝑟𝑒𝑓𝑓 [exp (
𝑉

𝑎𝑟𝑒𝑓𝑓
) − 1] (3) 

 

In (3) allows quantifying 𝐼𝑝ℎ,𝑟𝑒𝑓  which cannot be decided differently. The short-circuit current of the PV cell 

is calculated using (4). 
 

𝐼𝑠𝑐,𝑟𝑒𝑓𝑓 = (𝐼𝑝ℎ,𝑟𝑒𝑓𝑓 − 𝐼𝑂,𝑟𝑒𝑓𝑓 ) [𝑒𝑥𝑝 (
𝑉

𝑎𝑟𝑒𝑓𝑓
) − 1]  = 𝐼𝑝ℎ,𝑟𝑒𝑓𝑓  (4) 

 

However, this equation is only applicable in the ideal situation. As a result, equality is incorrect. Then, in (4) 

must be written as (5). 
 

𝐼𝑝ℎ,𝑟𝑒𝑓𝑓  ≈ 𝐼𝑠𝑐,𝑟𝑒𝑓𝑓   (5) 
 

The photocurrent is impacted by both irradiation and temperature, as presented in (6). 
 

𝐼𝑝ℎ = (
𝐺

𝐺𝑟𝑒𝑓𝑓
)(𝐼𝑝ℎ,𝑟𝑒𝑓𝑓 + µ𝑠𝑐  ·. ∆𝑇) (6) 

 

Where, G signifies the solar irradiation 
𝑊

𝑚2, 𝐺𝑟𝑒𝑓𝑓  denotes G at STC (1000 
𝑊

𝑚2), ∆𝑇 = 𝑇𝐶 − 𝑇𝑐,𝑟𝑒𝑓𝑓 (Kelvin), 

𝑇𝑐,𝑟𝑒𝑓𝑓 denotes the cell temperature in 𝑆𝑇𝐶 = 25 + 272 = 297 𝐾, 𝐼𝑠𝑐  denotes the short-circuit current, and 

𝐼𝑝ℎ,𝑟𝑒𝑓𝑓  denotes the photocurrent at STC. 
 

2.2.  Determination of I0 

The shunt resistance 𝑅𝑃 is generally regarded as large, so the last term of the relationship should be 

ignored for the following approximation, By utilizing the three most notable points under typical test 

conditions: the open circuit voltage (I=0, 𝑉 = 𝑉𝑜𝑐,𝑟𝑒𝑓𝑓), the current during a short-circuit (V=0, 𝐼 =  𝐼𝑠𝑐,𝑟𝑒𝑓𝑓), 

as well as the voltage (𝑉𝑚𝑝,𝑟𝑒𝑓𝑓) and current (𝐼𝑚𝑝,𝑟𝑒𝑓) at MPP, the following relations are written [46]. 
 

𝐼𝑠𝑐,𝑟𝑒𝑓𝑓 = (𝐼𝑝ℎ,𝑟𝑒𝑓𝑓 − 𝐼𝑂,𝑟𝑒𝑓𝑓 ) [𝑒𝑥𝑝 (
𝐼𝑠𝑐,𝑟𝑒𝑓𝑓 ·𝑅𝑠

𝑎𝑟𝑒𝑓𝑓
) − 1] (7) 

 

0 = 𝐼𝑝ℎ,𝑟𝑒𝑓𝑓 − 𝐼𝑜,𝑟𝑒𝑓𝑓 [exp (
𝑉𝑜𝑐

𝑎𝑟𝑒𝑓𝑓
) − 1] (8) 

 

𝐼𝑝𝑚,𝑟𝑒𝑓𝑓 = 𝐼𝑝ℎ,𝑟𝑒𝑓𝑓 − 𝐼𝑂,𝑟𝑒𝑓𝑓 [𝑒𝑥𝑝 (
𝑉𝑝𝑚,𝑟𝑒𝑓𝑓 +𝐼𝑠𝑐,𝑟𝑒𝑓𝑓 𝑅𝑠

𝑎𝑟𝑒𝑓𝑓
) − 1] (9) 
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After simplifications and assumptions, the following relations are obtained. 
 

0 ≈ 𝐼𝑠𝑐,𝑟𝑒𝑓𝑓 − 𝐼𝑂,𝑟𝑒𝑓𝑓 𝑒𝑥𝑝 (
𝑉𝑜𝑐,𝑟𝑒𝑓𝑓

𝑎𝑟𝑒𝑓𝑓
) (10) 

 

𝐼𝑜,𝑟𝑒𝑓𝑓 = 𝐼𝑠𝑐,𝑟𝑒𝑓𝑓 𝑒𝑥𝑝 (
−𝑉𝑜𝑐,𝑟𝑒𝑓𝑓

𝑎𝑟𝑒𝑓𝑓
) (11) 

 

The reverse saturation current is stated as (12). 

 

𝐼0 = 𝐷𝑇3exp (
−𝑞𝜀𝐺

𝐴·𝐾
) (12) 

 

Where, ɛG denotes material band-gap energy in eV, and D signifies the diode distribution coefficient. 

 

2.3.  Determination of 𝑹𝒑 𝒂𝒏𝒅 𝑹𝒔 

To make the suggested model more reasonable, 𝑅𝑝 𝑎𝑛𝑑 𝑅𝑠 are selected in such a way that the 

quantified maximum power 𝑃𝑚𝑝 is comparable to the experiment one  𝑃𝑚𝑝,𝑒𝑥  at STC. As a result, the 

following equation can be written [46]. 

 

𝑅𝑝 =
𝑉𝑚𝑝,𝑟𝑒𝑓𝑓+𝐼𝑚𝑝,𝑟𝑒𝑓𝑓𝑅𝑆

𝐼𝑠𝑐,𝑟𝑒𝑓𝑓−𝐼𝑠𝑐,𝑟𝑒𝑓𝑓{exp
𝑉𝑚𝑝,𝑟𝑒𝑓𝑓+𝑅𝑆𝐼𝑚𝑝,𝑟𝑒𝑓𝑓−𝑉𝑜𝑐,𝑟𝑒𝑓

𝑎
}+𝐼𝑠𝑐,𝑟𝑒𝑓𝑓{𝑒𝑥𝑝[

−𝑉𝑜𝑐,𝑟𝑒𝑓𝑓

𝑎
]}−(

𝑃𝑚𝑎𝑥,𝑒𝑥
𝑉𝑚𝑝,𝑟𝑒𝑓𝑓

)

 (13) 

 

The repetition process begins at 𝑅𝑠= 0, which must rise to progress the MPP is getting closer to the 

experimental MPP. The corresponding 𝑅𝑝 is then measured. There is just a single pairing available (𝑅𝑝 𝑅𝑠). 

To show that the proposed paradigm is more reasonable, 𝑅𝑝 𝑎𝑛𝑑 𝑅𝑠 are chosen in such a way that the 

computed maximal power 𝑃𝑚𝑝 is equivalent. 

 

2.4.  Short circuit current (𝐈𝐬𝐜) and open circuit voltage (𝐕𝐨𝐜) 

At normal sun irradiation levels, the short-circuit current is similar to the photocurrent 𝐼𝑝ℎ, which is 

proportionate to the amount of solar energy G in 
𝑊

𝑚2. The short-circuit current (𝐼𝑠𝑐) of the PV modules really 

aren't temperate-sensitive. It has the propensity to rise slightly when the module's temperature rises. This 

variance can be regarded as minor for modelling PV module performance. The short-circuit current 𝐼𝑠𝑐  can 

therefore be easily computed by employing the actual irritation condition. 

 

𝐼𝑠𝑐 = 𝐼𝑠𝑐 (
𝐺

𝐺0
)
𝑎

 (14) 

 

Where, 𝐼𝑠𝑐  signifies PV module short-circuit current under the normal solar intensity. The open-circuit 

voltage 𝑉𝑜𝑐  at any particular time and place can be represented as (15). 

 

𝑉𝑜𝑐 =
𝑉𝑜𝑐0

1+𝑏·(
𝐺0
𝐺

)
(
𝑇0

𝑇
)
𝛾

 (15) 

 

Where, 𝑉𝑜𝑐  and 𝑉𝑜𝑐0  are the PV open-circuit voltages, 𝐺 denotes average sun illumination, 𝐺0 denotes the 

normal solar radiation, b denotes the PV module coefficient with no dimensions, c denotes the exponent 

considering all nonlinear effects of temperature, 𝑇 denotes the PV module temperature considering normal 

sun illumination, and 𝑇0 denotes actual temperature. 

 

2.5.  Impacts of bypass diodes in photovoltaic arrays 

By forming a current channel around the defective cell, bypass diodes used in conjunction with 

either a single or a group of photovoltaic cells prevent current from passing from excellent, well-exposed to 

light, overheated PV cells and flaming out weak or partially shaded PV cells. Blocking diodes is not the same 

as power dissipation. Bypass diodes are often linked parallel to a PV cell or panels to shunt current around 

them while blocking diodes are typically connected series to the PV panels to keep current that passes from 

returning into existence. Blocking diodes differ from bypass diodes because, while the diode is physically the 

same in most circumstances, it is fitted separately and has a distinct purpose. Figure 2 shows the impact of 

the bypass diode on the I-V PV characteristics of two PV modules connected in series. 
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Figure 2. Impact of bypass diode on the PV characteristic of two PV modules connected in series 
 

 

3. DC-DC POWER CONVERTER 

The boost converter is employed in order to enhance the direct current voltage in compliance with 

the duty ratio derived based on the output voltage circumstance. The structure of the boost converter includes 

an inductor, switch, diode and capacitor. The outcome enhanced voltage surpasses the source voltage. The 

boost converter circuit is provided in Figure 3. The operational modes of the boost converter are as follows: 
 
 

 
 

Figure 3. Circuit of boost converter 
 

 

3.1.  Mode 1 (MOSFET ON) 

The equivalent functional circuit for mode 1 is provided in Figure 4. In this mode, the switching 

pulse is provided as high for the switch, and the inductor starts getting charged during this period. During 

Mode 1, the capacitor keeps the output voltage at the desired level. The inductor voltage and output boosted 

voltage are given as: 
 

𝑉𝐿 = 𝑉𝑖𝑛 (16) 
 

𝑉𝐶𝑜 = 𝑉𝑜 (17) 
 
 

 
 

Figure 4. Mode 1: equivalent circuit of boost converter, 𝑉𝐿=𝑉𝑖𝑛 



                ISSN: 2252-8792 

Int J Appl Power Eng, Vol. 12, No. 2, June 2023: 196-217 

202 

3.2.  Mode 2 (MOSFET OFF) 

The identical operational circuit for Mode 2 is provided in Figure 5. In this mode, the switching 

pulse is provided as low for the switch, and the inductor starts getting discharged during this period. The 

inductor voltage and output boosted voltage are given as (18). 

 

𝑉𝑜 = 𝑉𝐿 + 𝑉𝑖𝑛 (18) 
 

 

 
 

Figure 5. Mode 2: equivalent circuit of boost converter, 𝑉𝑂 = 𝑉𝑖𝑛+ 𝑉𝐿  

 

 

The boost converter design equations are given as follows. The pulse width (D) of the boost 

converter is provided in (19). 

 

𝐷 =
𝑉𝑂

𝑉𝑂−𝑉𝑖𝑛
 (19) 

 

The inductance is designed according to in (20). 

𝐿 =
𝑉𝑖𝑛∗𝐷

𝛥𝐼𝑜∗𝐹𝑠𝑤
   (20) 

 

The ripple current allowed across the inductor is provided in (21). 

 

∆𝐼𝐿 = 0.2 ∗
𝑉𝑂

𝑉𝑖𝑛
∗ 𝐼𝑜 (21) 

 

The output side capacitance value is calculated using in (22). 
 

𝐶𝑂 =
𝐼𝑜∗𝐷

𝐹𝑠𝑤∗𝛥𝑉𝑂
 (22) 

 

The ripple voltage allowed across the output side capacitance is provided in (23). 
 

𝛥𝑉𝑂 = 2% 𝑜𝑓 𝑉𝑂 (23) 
 
 

4. MAXIMUM POWER POINT TRACKING ALGORITHMS 

In this study, 4 different algorithms are discussed, which include two classical algorithms, such as 

P&O and INC and two modern optimization algorithms, such as MVP and ARO. 

 

4.1.  Most valuable player algorithm 

MVP algorithm is a type of metaheuristic algorithm which explores and exploits the solution, 

similar to other search-based stochastic algorithms [40]. The performance of the players (solutions) depends 

on individual skills, which resemble the dimensions of the optimization problem. The competition among 

players in a single team leads to the franchise player of a team, and competition among teams leads to the 

most valuable player (optimal solution). The individual player with various skill sets is provided in (24). 
 

𝑝𝑙𝑎𝑦𝑒𝑟1 =  [𝑆𝑘𝑙𝑙1 ,  𝑆𝑘𝑙𝑙2 , 𝑆𝑘𝑙𝑙3  … 𝑆𝑘𝑙𝑙𝑧] (24) 
 

Where z is the number of the dimensions and Skll1 ,  Skll2 , Skll3  … Skll𝑧 are the skills of the 𝑙th player. The 

𝑣th team, which consists of several players, is mentioned in (25).  
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𝑇𝑒𝑎𝑚𝑣  =  [ 𝑝𝑙𝑎𝑦𝑒𝑟1, 𝑝𝑙𝑎𝑦𝑒𝑟2, 𝑝𝑙𝑎𝑦𝑒𝑟3, . . 𝑝𝑙𝑎𝑦𝑒𝑟𝑝𝑠] (25) 

 

Where, 𝑝𝑠 is the number of players for team 𝑣, and the 𝑣th team is provided in (26) by combining (24)  

and (25).  

 

𝑇𝑒𝑎𝑚𝑣  [𝑆𝑘𝑙𝑙11 , 𝑆𝑘𝑙𝑙1𝑧 . 𝑆𝑘𝑙𝑙21, 𝑆𝑘𝑙𝑙2𝑧𝑆𝑘𝑙𝑙31, 𝑆𝑘𝑙𝑙3𝑧 , 𝑆𝑘𝑙𝑙𝑝𝑠1, 𝑆𝑘𝑙𝑙𝑝𝑠𝑧] (26) 

 

The squad size is based on the number of athletes and is chosen randomly so that the team size 

might be uneven. The team is formed as provided in the following steps: the teams are classified into mT1  
and mT2  teams. The mP1 (27) players are placed in mT1 (29) and mP2 (28) players are placed in mT2 (30).  

 

𝑚𝑃1  =  𝑐𝑒𝑖𝑙 (
 𝑝𝑙𝑎𝑦𝑒𝑟 𝑆𝑖𝑧𝑒

 𝑇𝑒𝑎𝑚𝑠 𝑆𝑖𝑧𝑒
) (27) 

 

𝑚𝑃2  =  𝑚𝑃1 –  1 (28) 

 

𝑚𝑇1   =  𝑃𝑙𝑎𝑦𝑒𝑟𝑠𝑆𝑖𝑧𝑒 − 𝑚𝑃2  ×  𝑇𝑒𝑎𝑚𝑠𝑆𝑖𝑧𝑒 (29) 

 

𝑚𝑇2  =  𝑇𝑒𝑎𝑚𝑠𝑆𝑖𝑧𝑒 − 𝑚𝑇1 (30) 

 

Where, 𝑃𝑙𝑎𝑦𝑒𝑟𝑠𝑆𝑖𝑧𝑒 is the number of participants, and 𝑇𝑒𝑎𝑚𝑠𝑆𝑖𝑧𝑒 is the total number of teams within a 

given tournament. The round-off function makes it an integer to the minimum value of the following 

integers. The tournament is started after the teams are formed.  

 

4.1.1. Individual competition 

The single-team players compete among themselves to select a franchise player. The player's skill or 

duty ratio is updated in (31). 

 

𝑇𝑒𝑎𝑚𝑣 =  𝑇𝑒𝑎𝑚 𝑣 + 𝑟𝑎𝑛𝑑 × (𝐹𝑟𝑎𝑛𝑐ℎ𝑖𝑠𝑒𝑣 − 𝑇𝑒𝑎𝑚𝑣  𝑇𝑒𝑎𝑚𝑣 + 1.2 × 𝑟𝑎𝑛𝑑 × (𝑀𝑉𝑃 − 𝑇𝑒𝑎𝑚𝑣) (31) 

 

Where, 𝐹𝑟𝑎𝑛𝑐ℎ𝑖𝑠𝑒𝑣  is the most valuable player on 𝑣 th team, MVP is by far the most valuable player in the 

entire competition, 𝑇𝑒𝑎𝑚 𝑣 is the skill of a specific player among team 𝑣 participants, and rand will be 

termed as a random variable. 

 

4.1.2. Team competition  

Here, various teams compete in the tournament, and at any given contest, one team competes with 

the other; at the end, any team wins, and the fitness values are updated after the match. The normalized 

fitness equation for a particular team is provided in (32). 
 

𝑓𝑖𝑡(𝑇𝑒𝑎𝑚 𝑣 ) = 𝑓𝑖𝑡(𝑇𝑒𝑎𝑚 𝑣) − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑓𝑖𝑡(𝐴𝑙𝑙𝑇𝑒𝑎𝑚𝑠)) (32) 
 

The following equation provides the possibility of an outcome for any match. 
 

Prob{Team jBeat Team k} = 1 − (fitN(Teamj)) p (fitN(Team j)) p + (fitN(Team j))p (33) 
 

If 𝑃𝑟𝑜𝑏{Team j 𝐵𝑒𝑎𝑡 Team k} is higher than that of 𝑃𝑟𝑜𝑏{Team k 𝐵𝑒𝑎𝑡𝑠 Team j} it means Team j 

wins. A reality factor is added to the equation mentioned above as, in real-time, the results vary even at the 

last moment; hence, a random variable is combined with the probability equation. If the random number is 

higher than 0.5,  𝑡𝑒𝑎𝑚𝑗  wins if not the 𝑡𝑒𝑎𝑚𝑘 wins and the players' skills in the competing teams are updated 

by (34) and (35) based on win or lose. 
 

𝑇𝑒𝑎𝑚𝑗 =  𝑇𝑒𝑎𝑚𝑗 + 𝑟𝑎𝑛𝑑 × (𝑇𝑒𝑎𝑚𝑗  −  𝐹𝑟𝑎𝑛𝑐ℎ𝑖𝑠𝑒𝑘) (34) 
 

Otherwise: 
 

𝑇𝑒𝑎𝑚𝑗  = 𝑇𝑒𝑎𝑚𝑗 +  𝑟𝑎𝑛𝑑 ×  (𝐹𝑟𝑎𝑛𝑐ℎ𝑖𝑠𝑒𝑘  − 𝑇𝑒𝑎𝑚𝑗) (35) 
 

after that, the greediness function is applied, where the fitness values of players before and after the 

tournament starts are compared, and higher values are adapted. If two players possess the same order of 

skills, then one player is replaced. The worst players are replaced with the best players' best solutions, and the 
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execution of the algorithm is terminated if the given criterion is fulfilled. The flowchart of the MVP 

algorithm is provided in Figure 6. 
 
 

 
 

Figure 6. MVP algorithm flowchart 
 

 

4.2.  Artificial rabbit optimization algorithm 

Artificial rabbit optimization (ARO) is a unique biologically-inspired method that has been developed, 

and this algorithm is designed to give a solution for single-objective global optimization problems [45].  

The artificial rabbit optimization algorithm is inspired by the rabbit's survivability tactics and is carefully 
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explored and quantitatively modelled. This algorithm is comprised of three searching modes first is detour 

foraging tactics, random hiding tactics, and energy shrink tactics come in the last. The detour foraging 

strategy gives credits to exploration; the random hiding strategy is devoted to utilization; and the power 

reduction method strengthens the balance between exploitation and exploration. ARO is used to extract 

maximum power from the photo voltaic module in typical circumstances, and various settings of 

intermittency provides the searching and hiding techniques of real rabbits and the energy shrink, which 

causes a transition between the techniques mentioned above. 

 

4.2.1. Detour foraging 

The rabbits each have their own grazing area, but it randomly consumes the grass in other areas and 

tends to perturb around the food source, which provides information about the position of other individual 

rabbits. This behavior is used in MPPT where the duty ratio denotes the rabbit, and it randomly checks for 

other duty ratios and hence updates the position of other local power peaks. As mentioned below, the 

mathematical model is proposed for the ARO algorithm's detour foraging step. 
 

vi⃗⃗⃗  (t+1)= 𝑥 𝑗 (t)+𝑅 ∗ (𝑥 𝑖 (𝑡) − 𝑥 𝑗 (t)) + 𝑟𝑜𝑢𝑛(0.5 ⋅ (0.05 + 𝑟1 )) ∗ 𝑛1  (36) 
 

𝑅 = 𝑙 ∗ 𝑐 (37) 
 

𝑙 = (𝑒 − 𝑒
(

𝑡−1

𝑇𝑚𝑎𝑥
)
2

) ⋅ 𝑠𝑖𝑛(2𝜋𝑟2) (38) 
 

𝑐 · (𝑘) = {
1
0

𝑖𝑓 𝑘===𝐺(𝑙)

𝑒𝑙𝑠𝑒
 𝑙 · 𝑘 = 1,… , 𝑑    𝑎𝑛𝑑 𝑙 = 1,… (𝑟3  · 𝑑) (39) 

 

𝑔 = 𝑟𝑎𝑛𝑑𝑝(𝑑) (40) 
 

𝑛1 ∼ (0, 1) (41) 

 

Where, 𝑣  𝑖 (𝑡+1) is the position of 𝑖th duty ratio at the time (t+1), 𝑥  𝑖 (𝑡) is the position of 𝑖th duty ratio at 

time 𝑡, 𝑛 is the number panels, d signifies the dimensions, T denotes the highest iteration, ⌈⋅⌉ denotes the 

ceiling function which provides next possible integer, round denotes nearest possible integer, randperm 

allows for the random shuffling of numerals spanning l to d, 𝑟1, 𝑟2, and 𝑟3 are the random variables with the 

range of (0,1), L is the change in duty ratio or the gap to perform random, and 𝑛1 is normalized standard 

distribution. This guarantees the capability for a global range of searches of the ARO algorithm.  

 

4.2.2.  Random hide 

The rabbit usually built various burrows for hiding purposes, and in this algorithm, for each 

iteration, a position of duty ratio is generated, and the current position is randomly chosen among the 

generated duty ratios. The 𝑗th the tunnel of 𝑖th rabbit gets delivered as: 

 

𝑏𝑖
⃗⃗⃗   , (𝑡) =  𝑥𝑖⃗⃗⃗⃗ (𝑡) + 𝐻 ∗ 𝑔 ∗ 𝑥𝑖⃗⃗⃗   (𝑡), 𝑖 =  1, … , 𝑛 𝑎𝑛𝑑 𝑗  1, … , 𝜕 𝑀 (42) 

𝐻 = (𝑇 − 𝑡 + 1 )𝑇 ∗ 𝑟4  (43) 

 

𝑛2  ∼ (0 ,1) (44) 

 

𝑔(𝑘) =  {
1
0
  𝑖𝑓 𝑘===𝑗

𝑒𝑙𝑠𝑒
 𝑙 ∗ 𝑘 = 1,… 𝑑 (45) 

 

From (42), the d number of duty ratios is generated nearby to the original position of duty ratio. H is linearly 

decreased from 1 to 𝑙/𝑇𝑚𝑎𝑥 with several perturbations randomly for the total amount of repetitions in 

complete. The range of the generated duty ratios is reduced around the global peak of power as the iterations 

proceed gradually. The mathematical equations for the above-mentioned random hiding technique are 

provided as: 

 

𝑣𝑖⃗⃗⃗  (𝑡 + 1) =   𝑥𝑖⃗⃗⃗  (𝑡) + 𝑅 ∗ (𝑟4 ∗ 𝑏𝑖
⃗⃗⃗  , (𝑡)  −  𝑥𝑖⃗⃗⃗   (𝑡)), (46) 

 

𝑔𝑟(𝑘) = {
1
0
   𝑖𝑓 𝑘===[𝑟5 ·𝑑]

𝑒𝑙𝑠𝑒
 𝑙 ∗  𝑘 = 1,… , 𝑑 (47) 

 

𝑏𝑖
⃗⃗⃗  , (𝑡) = 𝑥𝑖⃗⃗⃗   (𝑡) + 𝐻 ⋅ 𝑔𝑟 ⋅ 𝑥𝑖⃗⃗⃗  (𝑡) (48) 
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Where, 𝑏𝑖
⃗⃗⃗   and 𝛾 provides the random locations of duty ratios and, 𝑟4 and 𝑟5 are two randomized factors with 

readings inside a certain limit of (0,1). As per in (46), the 𝑖th search duty ratio updates its positioning about 

the randomly chosen place out of its d original position. The rabbit or duty ratio position is updated once 

detour hunting and haphazard concealing process are attained. 

 

𝑥𝑖⃗⃗⃗   (𝑡 + 1) = {
𝑥𝑖⃗⃗⃗    (𝑡)𝑖𝑓  𝑓(𝑥𝑖⃗⃗⃗    (𝑡)) ≤ 𝑓(𝑣𝑖⃗⃗⃗   (𝑡 + 1))

𝑣𝑖⃗⃗⃗   (𝑡 + 1)𝑒𝑙𝑠𝑒 𝑓(𝑥𝑖⃗⃗⃗    (𝑡)) > 𝑓(𝑣𝑖⃗⃗⃗  (𝑡 + 1)) 
 (49) 

 

4.2.3. Energy shrink  

In initial iterations, the ARO undergoes the detour foraging phase and searches for the local peaks, 

and in final iterations, random hiding is performed in which the current duty ratios shift around the global 

peak and update the positions. The transfer of phases is termed as energy shrinks as a source of energy to 

simulate the ARO switching process from the preliminary investigation to the defined stage. The power 

element is provided in (50). 

 

A(𝑡) = 4 ∗ (1 −
𝑡

𝑇𝑚𝑎𝑥
 ) ∗ 𝑙𝑛 ∗

 1 

𝑟
 (50) 

 

Where, r is indeed the random variable whose range is within (0,1). All the update processes and 

computations are done until the end condition is satisfied and the best possible solution is retrieved. The 

pseudocode of ARO is presented in algorithm. The flowchart of ARO is shown in Figure 7. 

 

4.3.  Incremental conductance (INC) method 

The INC algorithm detects the slope of the P-V curve, and the MPP is tracked by searching the peak 

of the P-V curve. This algorithm uses the instantaneous conductance 
𝐼 

𝑉 
 and the incremental conductance 

∆𝑰

∆𝑽
 

for MPPT. Depending on the relationship between the two values, as expressed in (55)-(57), the location of 

the PV module's operating point in the P-V curve can be determined, i.e., in (55) indicates that the PV 

module operates at the MPP, whereas (56)-(57) indicate that the PV module operates on the left and right 

sides of the MPP, respectively, in the P-V curve. 
 

𝑑𝑃

𝑑𝑉
= 0                      at MPP (51) 

 
𝑑𝑃

𝑑𝑉
> 0                   left of MPP (52) 

 
𝑑𝑃

𝑑𝑉
< 0                   right of MPP (53) 

 
𝑑𝑃

𝑑𝑉
=

𝑑(𝑉𝐼)

𝑑(𝑉)
= 𝐼 + 𝑉 ∗

𝑑𝐼

𝑑𝑉
  (54) 

 

The maximum power point identifier factor is defined as 
𝑑𝑃

𝑑𝑉
. The INC approach has proposed 

accurately monitoring a PV array's MPP by leveraging this component. To track the MPP, the following 

definitions are used. 
 

∆𝐼

∆𝑉
=

−𝐼 

𝑉 
 (55) 

 
∆𝐼

∆𝑉
 >

−𝐼 

𝑉 
                 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑀𝑃𝑃, ∆𝑉𝑛 = + 𝛿 (56) 

 
∆𝐼

∆𝑉
 <

−𝐼 

𝑉 
                 𝑟𝑖𝑔ℎ𝑡 𝑜𝑓 𝑀𝑃𝑃, ∆𝑉𝑛 = −𝛿 (57) 

 

The MPPT controls until the DC/DC converter energy converter's pulse width modulation (PWM) 

signal following condition is met: (
𝑑𝑃

𝑑𝑉
)+(

−𝐼

𝑉
)= 0 is delivered. Take the nth repetition of the method as a starting 

point, and then use the equations above to calculate the n+1 iteration process. The output signal of the INC 

method is used to change the voltage reference of the PV array with only an increased or decreased constant 

value (V) in relation to the second common voltage. Regardless of the distance between the set's PV and 

MPP intersection region, this methodology tracks MPP with a fixed step size. Figure 8 depicts the flowchart 

of incremental conductance-based MPPT. 
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Algorithm: Pseudocode of ARO algorithm 

- Step 1: The dimensions of artificial rabbits optimization, including the size of artificial rabbits N, 

and 𝑇𝑚𝑎𝑥.  

- Step 2: Instantiating a rabbit collection at random 𝑧𝑖  and compute 𝑓𝑖 
- Step 3: Find the finest rabbit.  

- Step 4: While 𝑡 ≤ 𝑇𝑚𝑎𝑥 . do  

For i = 1 to N, do 

Compute the energy element 

If A > 1 then 

Randomly choose rabbits from all individuals. 

Compute R 

Use the detour hunting approach. 

Determine the rabbit's position's optimal solution. 

The positioning of a rabbit has been revised. 

Else 

Generate d burrows and select one randomly 

Use a randomized concealment approach. 

Determine the rabbit's position's optimal solution 𝑓𝑖 
The positioning of a rabbit has been revised. 

End if 

End for 

Check for the finest artificial rabbit. 

𝑡 =  𝑡 +  1. 

End while 

- Step 5: Determine the best artificial rabbit. 
 
 

 
 

Figure 7. ARO algorithm flowchart 
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Figure 8. Flowchart of the INC algorithm 

 
 

4.4.  Perturb and observe algorithm (P&O) 

The P&O algorithm detects and extracts the most power from the PV system. In this case, the 

photovoltaic voltage is only slightly perturbed, and the power P is evaluated. If P is positive, the PV voltage 

perturbation approaches towards the maximum power point. The outcome is that the perturbation is 

continued until P reaches the +ve zone. If P is negative, the PV voltage perturbation is pushed closer to MPP, 

and the Instability's orientation is inverted for MPP to be impacted by power. 
 

𝐼𝑓
 𝛥𝑃 

𝛥𝑉 
>  0, 𝛥𝐷 𝑖𝑠 + 𝑣𝑒, (58) 

 

𝐼𝑓 
𝛥𝑃

𝛥𝑉 
<  0, 𝛥𝐷 𝑖𝑠 – 𝑣𝑒. (59) 

 

Variables like dI and dV are +ve; hence, the increase in solar irradiation can also be recognized by 

an additional variable, dI. Hence, the duty ratio is modified in such a manner to minimize the operating 

voltage, in which dI and dV are +ve and avoid the control issue by modifying the switching indicated 

towards the direction of MPP. Figure 9 depicts a flowchart of the P&O algorithm-based MPPT. 
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Figure 9. Flowchart of the P&O algorithm 

 

 

5. SIMULATION RESULTS AND DISCUSSIONS 

Figure 10 shows the Simulink model of a PV system, where the extensively utilized DC-DC boost 

converter is developed and used for simulating and comparing all four algorithms for various testing conditions 

like standard testing, one-step iteration, and rapid testing. We have used PV arrays to change irradiance by shifting 

4S configuration instances. The PWM generator generates a pulse and sends it to the boost converter. The 

proposed algorithms are introduced with the boost converter, and the result of the PV model is seen in scope. 

The MVP and ARO algorithms are tested on several PV configurations by contrasting the 

simulation data achieved by the classical algorithms, such as the P&O and INC algorithms. The suggested 

technique is built and evaluated using a typical boost converter under diverse insolation and partially shaded 

circumstances. The testing scenarios are shown in Table 1. Each shade pattern lasts 2 seconds, and many 

other factors determine the computation time. The algorithm parameters for all techniques are kept constant 

to evaluate the proposed methods' effectiveness. 
 

 

Table 1. Various shading patterns on four modules 
 Irradiance (W/m2) 

Condition Instance Panel1 Panel2 Panel3 Panel4 Temperature 

Standard 1 1000 1000 1000 1000 [25,25,25,25] 
Rapid 1 1000 650 520 300 [25,25,25,25] 

2 1000 850 650 480 [25,25,25,25] 

3 1000 950 800 650 [25,25,25,25] 
4 1000 1000 640 450 [25,25,25,25] 

5 1000 1000 1000 720 [25,25,25,25] 

6 1000 1000 1000 1000 [25,25,25,25] 
One step 1 1000 850 650 480 [25,25,25,25] 

2 1000 950 800 650 [25,25,25,25] 



                ISSN: 2252-8792 

Int J Appl Power Eng, Vol. 12, No. 2, June 2023: 196-217 

210 

 
 

Figure 10. Simulink model of PV system 
 

 

MATLAB/Simulink version 2018b is used to Simulate the specified photovoltaic system on a laptop 

with an Intel Core i5 AMD Ryzen 7 5800H with NVIDIA GeForce RTX Graphics 3.20 GHz and RAM of 16 

giga bytes. In MATLAB, the solver is Dormand-Prince (ode45), and the scaling factor is configured to vary 

automatically. ARO's result is evaluated alongside other algorithms such as MVP, P&O, and INC. The 

number of repetitions and population size are critical metaheuristic algorithm constants. Therefore, these two 

variables were optimized based on the results of several trials and the information from the research. 

 

5.1.  Standard testing condition 

The initial insolation is preserved at 1000 W/m2 with a constant temperature of 25 ℃. The comparison 

is made between MVP, ARO algorithms and classical algorithms like P&O and INC for the standard testing 

condition results. The maximum power extracted by the MVP-based MPPT methodology is around 86.25 W, 

with an effectiveness of 98.74% and a tracking time of 0.48 seconds. Maximum power extracted by the ARO-

based MPPT algorithm is around 86.8 W with an efficiency of 99.37% Using a 0.03 tracking time (s). 

Maximum power extracted by the P&O-based MPPT algorithm is around 78.6 W with an efficiency of 89.98% 

with a tracking time of 0.03 seconds, and maximum power extracted by the INC-based MPPT algorithm is 

around 69.02 W with an efficiency of 79.01% with the tracking time of 0.016 seconds when every panel is 

subjected to no shading conditions. INC can track the maximum duty cycle at 0.016 seconds and settle down to 

constant voltage at 0.02 seconds, P&O can track the maximum duty cycle at 0.016 seconds and settle down to 

constant voltage at 0.02 second, MVP can track maximum duty cycle 0.8 at 0.02 seconds and settle down to 

constant duty cycle at 0.48 second, ARO algorithm can track maximum duty cycle 0.25 at 0.015 seconds and 

settle down to constant duty cycle at 0.02 seconds. Figure 11 shows that the ARO algorithm can track better 

effectiveness in standard testing conditions than other algorithms. Figure 11 gives the standard testing 

conditions results of all four algorithms. Figure 11(a) shows the PV output power, Figure 11(b) shows the PV 

output voltage, Figure 11(c) shows the PV output current, and Figure 11(d) shows the comparison of the duty 

cycle of all four algorithms. 

 

5.2.  One-step irradiance condition 

The initial solar insolation is preserved at 745 W/m2 in the first instance and then increased to 

850 W/m2 in the second instance after 2 seconds. Figure 12 shows that the MVP algorithm can find the MPP at 

60.93 W with 93.03% efficiency during the first two seconds of the first interval and at 41.78 W with 56.26% 

efficiency during the second two seconds of the second interval. The ARO algorithm can locate the MPP at 31.65 

W with 48.3% efficiency during the first 2 seconds and 32.4 W with 43.32% efficiency during the second 2 

seconds. The INC algorithm can locate the MPP at 23.71 W with 36.41% effectiveness during 0–2 seconds in the 

first interval and 32.37 W with 43.26% efficiency during 2-4 seconds in the second interval. The P&O technology 

locates the MPP at 39 W with 58.58 percent efficiency during the first 2 seconds and 50.1 W with 67.46% 

efficiency during the second 2 seconds. Figure 12 gives the one-step irradiance condition results of all four 

algorithms. Figure 12(a) shows the PV output power, Figure 12(b) shows the PV output voltage, Figure 12(c) 

shows the PV output current, and Figure 12(d) shows the comparison of the duty cycle of all four algorithms. 
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(a) (b) 

  
(c) (d) 

 

Figure 11. Simulation waveforms under standard testing conditions (a) PV power, (b) PV voltage,  

(c) PV current, and (d) duty cycle 
 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 12. Simulation waveforms under one-step change of irradiations (a) PV power, (b) PV voltage,  

(c) PV current, and (d) duty cycle 

 

 

5.3.  Rapid testing conditions 

Solar irradiance changes quite drastically during overcast periods of the season, impacting the 

effectiveness of PV systems. A study presented characterized a rapid change in solar irradiance as also being 

considered to boost the effectiveness of the offered techniques. As a result, the recommended algorithms are 

evaluated under rapid increases in radiation exposure. The simulation lasted for 12 seconds with six intervals 

of 2 seconds each, with the sun's insolation changing dramatically every 2 seconds. Figure 13 gives the rapid 

testing condition results of all four algorithms. Figure 13(a) shows the PV output power, Figure 13(b) shows 
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the PV output voltage, Figure 13(c) shows the PV output current, and Figure 13(d) shows the comparison of 

the duty cycle of all four algorithms. Figure 13 shows that the simulation began with 817 W/m2 during  

0–0.2 seconds in the first interval, then changed to 742 W/m2 during 0.2–0.4 seconds in the second interval, 

900 W/m2 during 0.4–0.6 seconds in the third interval, 520 W/m2 during 0.6–0.8 seconds for the fourth 

interval, 930 W/m2 during 0.8–1 second for the fifth interval, and 1000 W/m2 during the last instance. The 

simulation results shown in Figure 13 shows that the MVP method functions very well during an extreme 

shift in insolation. It is stated that the MVP algorithm can track the MPP at 41.8 W with 56% efficiency from  

0 to 2 seconds in the first interval, 60.9 W with 93.64% efficiency in the second interval from 2 to 4 seconds, 

and 37.6 W with 70.90% efficiency in the third interval from 4 to 6 seconds. 41.8 W with 56% efficiency 

from 6 to 8 seconds in the fourth interval; 60.9W with 93.64% efficiency in the fifth interval from 8 to 10 

seconds; and 37.6 W with 70.90% efficiency in the last interval from 10 to 12 seconds. 

It has also been observed that classic P&O and INC algorithms fail to monitor the MPP effectively 

continuously, and the algorithms slip into the zone under rapid changes in irradiation. According to the 

results of numerous simulations, variable step size in conventional MPPT techniques and the ARO algorithm 

cannot increase tracking speed, accuracy, or efficiency during an extreme shift in insolation as much as the 

MVP algorithm tracks. 
 

 

  
(a) (b) 

  

(c) (d) 
 

Figure 13. Simulation waveforms under rapid change of irradiations (a) PV power, (b) PV voltage,  

(c) PV current, and (d) duty cycle 
 
 

5.4.  Performance comparison 

Table 2 gives the detailed performance of all four algorithms when algorithms are proposed under 

standard testing conditions. As tabulated, the MVP algorithm locates MPP at 86.25 W with 98.74% efficiency, 

whereas the ARO algorithm locates MPP at 86.83 W with an efficiency of 99.37% and classical algorithms 

such as P&O and INC tracks MPP at 69.02 W and 78.6 W respectively with an efficiency of 79.01% and 

89.98%, hence considering these performance results of all four algorithms, we suggest that the ARO algorithm 

performs better in standard testing conditions. Figure 14 shows a pictorial representation of the comparison.  
 
 

Table 2. Performance comparison: Case 1 
Algorithms Calculated power (W) Extracted power (W) % efficiency (%) Tracking time (s) 

MVP 87.35 86.25 98.74 0.48 

ARO 87.35 86.83 99.37 0.03 
INC 87.35 69.02 79.01 0.03 

P &O 87.35 78.6 89.98 0.016 
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Table 3 gives the detailed performance of all four algorithms when proposed under one-step 

irradiance testing conditions. As evaluated in Table 3, the MVP algorithm locates MPP at 60.93 W in the first 

instance and 41.78 W in the second interval, with 93.03% and 56.26% efficiency, respectively. At the same 

time, the ARO algorithm can find MPP at 31.65 W in the first interval and 32.4W in the second interval with 

efficiencies of 48.66% and 43.32%, respectively. Classical algorithms such as INC track MPP at 23.71 W in 

the first instance and 38.312 W in the second interval, respectively, with efficiencies of 36.41% and 43.74%. 

The P&O algorithm locates MPP at 38.312 W in the first instance and 50.1 W in the second interval, with an 

efficiency of 58.58% and 67.47%. Hence, considering the performance results of all four algorithms, we 

suggest that the MVP algorithm performs better in one-step iteration testing conditions. Figure 15 shows a 

pictorial representation of the comparison (Case 2). 
 

 

 
 

Figure 14. Pictorial representation performance metrics for Case 1 
 

 

Table 3. Performance comparison: Case 2 
Algorithms Calculated Power (W) Extracted Power (W) %Efficiency (%) Tracking time (s) 

MVP 
65.03 60.93 93.03 2.55 

74.25 41.78 56.26 0.38 

ARO 
65.03 31.65 48.66 0.03 
74.25 32.4 43.32 2.032 

INC 
65.03 23.71 36.41 2.03 

74.25 32.37 43.74 5.70 

P&O 
65.03 38.312 58.58 0.05 

74.25 50.1 67.47 2.05 

 

 

Table 4 gives the detailed performance of all four algorithms when algorithms are proposed under 

rapid iteration testing conditions. As tabulated in Table 4, the MVP algorithm locates MPP at an average of 

78.23% efficiency under rapid irradiation change. At the same time, the ARO algorithm locates MPP at an 

average of 69.55% efficiency, and classical algorithms such as P&O and INC track MPP at an average of 

43.87% and 47.69% efficiency, respectively. From Table 4, it is evident that the ARO algorithm and classical 

algorithms fail to track better efficiency, whereas the MVP algorithm is slightly better in terms of efficiency 

under severe shading conditions. Figure 16 shows a pictorial representation of the comparison (Case 3). 
 

 

Table 4. Performance comparison: Case 3 

Algorithms Parameters 
Instances 

Average Efficiency 
1 2 3 4 5 6 

MVP Calculated Power (W) 74.25 65.03 53.03 67.48 79.05 87.35 

78.23% 
Extracted Power (W) 41.81 60.9 37.6 42.02 69.2 86.3 

%Efficiency (%) 56.30 93.64 70.90 62.27 87.53 98.79 
Tracking time (s) 0.37 2.52 4.46 6.37 8.5 10.55 

ARO Calculated Power (W) 74.25 65.03 53.03 67.48 79.05 87.35 

69.55% 
Extracted Power (W) 31.65 32.4 29.5 31.64 32.8 33.04 
%Efficiency (%) 42.65 49.82 55.62 47.22 41.49 37.97 

Tracking time (s) 0.04 2.03 4.02 6.03 8.12 10.02 

INC Calculated Power (W) 74.25 65.03 53.03 67.48 79.05 87.35 

47.69% 
Extracted Power (W) 23.27 23.72 22.42 23.30 53.10 65.0 

%Efficiency (%) 31.34 36.47 42.27 34.52 67.17 74.41 

Tracking time (s) 0.04 2.03 4.02 6.03 8.12 10.03 
P&0 Calculated Power (W) 74.25 65.03 53.03 67.48 79.05 87.35 

43.87% 
Extracted Power (W) 38.0 50.01 28.7 31.65 52.4 54.6 

%Efficiency (%) 51.17 77.07 54.01 47.23 66.28 62.50 
Tracking time (s) 0.04 2.06 4.12 6.02 8.03 10.02 
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Figure 15. Pictorial representation performance metrics for Case 2 

 

 

 
 

Figure 15. Pictorial representation performance metrics for Case 3 

 

 

6. CONCLUSION 

This study uses an extensive comparative analysis by considering recently reported metaheuristic 

algorithms, such as MVP algorithm and ARO for MPPT of PV systems. PV system with boost converter was 

subjected to recently proposed algorithms like MVP algorithm, and ARO algorithm is compared with 

classical algorithms like INC and P&O based techniques under various testing circumstances, such as 

standard testing method, one-step iteration testing method and rapid testing method. The system's efficiency 

with the four algorithms is compared and analyzed along with tracking speed and efficiency under all 

irradiance circumstances. The simulated results show that the ARO algorithm, which locates MPP at 86.8 W 

with 99.86% efficiency, is better among all the other algorithms under no shading conditions. The MVP 

algorithm tracks slightly better results in slightly shaded and rapidly shaded conditions in terms of efficiency. 

So, this study suggests that the ARO algorithm for standard testing conditions and based on the results 

obtained from Case 2 and Case 3, the MVP algorithm is a better option for change in operating conditions. 

Finally, this study concludes that the MVP algorithm is better in all aspects and can be an alternative tool for 

MPPT applications.  
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