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 The finite element technique is used widely for researchers and 

manufacturers to design and simulate electrical systems in general and 

electrical machines such as shunt reactors (SRs) and transformers in 

particular. Many papers have recently applied several methods to analyze 

magnetic fields, copper losses and joule power losses in the shunt reactors 

(SRs). In this research, the finite element technique with coupling to global 

quantities is proposed to investigate the voltage and current distributions in 

the windings, and compute the distribution of magnetic field in the air gap 

and along the air core of the SR, as well as copper and core losses. The 

developed method is directly applied to the practical SR of 91 MVAr and a 

rated voltage of 500 kV. The finite element method (FEM)-simulated results 

are validated with experimental results to ensure accuracy and reliability. 

This facilitate designing the reactor. 

Keywords: 

Air core reactor 

Copper loss 

Finite element method 

Iron loss 

Shunt reactor 
This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Hung Bui Duc 

Department of Electrical, Hanoi University of Science and Technology 

No. 1 Dai Co Viet Street, Hai Ba Trung District, Hanoi, Viet Nam 

Email: hung.buiduc@hust.edu.vn 

 

 

1. INTRODUCTION  

Nowadays, the shunt reactor (SR) is widely applied to stabilize the electrical systems due to 

parasitic capacitance appearing in the transmission line. It is also applied to bound the short-circuit current 

and overvoltage in the electrical system. In addition, it can be also used to imbibe not only the reactive power 

created by a conductive capacitance in power transmission lines, but also adjust the reactive power in the 

electrical system. Recently, several studies have presented the many different method to investigate and 

analyse electromagnetic parameters of the SR [1]-[10]. In reference [1], the finite element method (FEM) 

was presented to investigate the flux fringing distribution around the air gap of the magnetic circuit of the 

SR. In reference [2], the theory of Maxwell stress tensor was proposed to evaluate the electromagnetic force 

on the core blocks causing the vibration and noise during the working of SRs. In reference [3], the paper 

investigated the influence of distance air-gaps on the iron-core of SRs by using the analytical method. In this 

work, the winding inductance was also computed to define the relationship of the distance between the air 

gaps. In references [4], [5], a mathematical model was studied to consider the nonlinear dynamic case. In 

references [6], [7], the relation between the SR and power system in various transient situations was 

investigated. In reference [8], the effects of core block numbers on the inductance was studied via the 

analytical technique. In reference [9], a FEM was presented to compute the magnetic flux density distribution 

and losses in the magnetic circuit of the SR. In reference [10], [11], the papers provided a useful tool for the 

https://creativecommons.org/licenses/by-sa/4.0/
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design and optimization of ferromagnetic-core inductors, which are commonly used in a variety of electronic 

devices. The analytical model presented can help engineers to reduce the time and cost involved in designing 

these devices while ensuring that the design meets the required specifications. In reference [12], this paper 

provides valuable insights into the use of air gaps in power inductor design. By understanding the influence 

of air-gap arrangements on inductor performance, designers can create more efficient and reliable inductors 

for a variety of applications. 

It can be seen that the above studies have not investigated the voltage and current distributions on 

the windings, magnetic flux density on core blocks and in air gap between core blocks. In addition, the 

inductances of each winding phase has been not also considered in the previous studies. In this research, a 

FEM is developed to compute and design an oil-immersed SR of 91 MVAr, 50 Hz, 500 kV. The scenario of 

this paper is divided into two senarios. In the first approach, an analytic model is developed to define the 

desired output parameters of the proposed SR. In the second approach, a FEM is developed with the obtained 

parameters in the first step to compute and analyse the voltage and current distribution, magnetic flux density 

distribution, Joule power loss density and winding inductances. The simulated results of the FEM are verified 

with the experimental results to validate on the proposed method.  
 

 

2. ANALYTICAL APPROACH OF THE SR 

One of the most important things in designing the SR is the factor of the air gap volume. This factor 

depends on parameters of the SR, i.e. reactive power, magnetic flux distribution in the magnetic circuit, 

winding inductances, power frequency, and energy stored in the air gaps and the windings. For the SR, the 

reactive power (𝑄) is determined as (1) [1], [10], [13]. 
 

𝑄 = 𝑈𝑒𝑓𝐼𝑒𝑓 (1) 
 

Where 𝑈𝑒𝑓 and 𝐼𝑒𝑓  are respectively the effecitive voltage and current. It should be noted that the resistance of 

windings is small in comparison with inductances, therefore this value can be ignored. For that, the 

electromagnetic force (EMF) and effective current are determined as (2) and (3) [13]. 
 

𝐸𝑒𝑓 ≈ 𝑈𝑒𝑓 = (
2𝜋

√2
) . 𝑓. 𝑁. 𝐵𝑚. 𝐴𝑔𝑎𝑝 (2) 

 

𝐼 =
𝑅𝑔𝑎𝑝

𝑁
= (

1

√2
) .

𝐵𝑚.𝑙𝑔𝑎𝑝

𝜇0.𝑁
 (3) 

 

Where 𝑓 is the frequency, 𝑁 is the turn number, 𝐵𝑚 is the maximum flux density, 𝐴𝑔𝑎𝑝 is the area of the air 

gap, 𝑙𝑔𝑎𝑝 is the length of the air gap, 𝜇0 is the air permeability and 𝑅𝑔𝑎𝑝 is the air gap reluctance. Based on 

(2) and (3), the air gap volume 𝑉𝑔𝑎𝑝 can be presented via the air gap length 𝑙𝑔𝑎𝑝: 
 

𝑉𝑔𝑎𝑝 = 𝐴𝑔𝑎𝑝. 𝑙𝑔𝑎𝑝 =
𝑄

𝜋

𝜇0
.𝑓.𝐵𝑚

2  (4) 

 

the air gap volume is considered as a constant if the quantity 𝑄, magnetic flux and frequence are the constant. 

Therefore, the dimension of core (𝐷𝑐) is determined as (5) [14], [15]. 
 

𝐷𝑐 = √
4.𝐴𝑔

𝜋
 (5) 

 

The inductance of winding is calculated via the reactive power and voltage as (6). 
 

𝐿 =
𝑈𝑒𝑓

2

𝜔𝑄
 (6) 

 

The size of the SR is influenced by the air gap length and area. Thus, the iron losses, copper losses 

and other factors depend on the different ratio value of the area and air gap length. Because this factor will 

decide to the cost and losses of the SR. The air gap permeance can be defined as (7) [16]. 
 

𝑃𝑔𝑎𝑝 = (
𝐴𝑔𝑎𝑝

𝑙𝑔𝑎𝑝
) 𝜇0 = 𝑃𝑔 (7) 

 

The relation between the winding inductance and air gap permeance is: 
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𝐿 = 𝑁2. 𝑃𝑔 (8) 

 

the winding inductance can also be computed via the expression as (9) [10], [13]. 

 

𝐿 = (
𝐸𝑒𝑓𝑓

2

w.f
) (9) 

 

From (8) and (9), one gets (10). 

 

𝑁 = √
𝐿

𝜇0.(
𝐴𝑔𝑎𝑝

𝑙𝑔𝑎𝑝
)
 =

𝐸𝑒𝑓𝑓

√𝑤.𝑓.𝜇0.(
𝐴𝑔𝑎𝑝

𝑙𝑔𝑎𝑝
)

 (10) 

 

 

3. FINITE ELEMENT APPROACH  

3.1.  Canonical magnetodynamic model 

A model of a studied problem with a studied domain Ω = Ω𝑐 ∪ Ω𝐶
𝑐  (where domain Ωc is the 

conducting region and and Ω𝐶
𝑐  is the non-conducting region) is presented in Figure 1. The boundary of Ω 

denotes 𝜕𝛺 = 𝛤 = 𝛤ℎ ∪ 𝛤𝑒). The set of Maxwell’s equations and behavior laws are written in the frequency 

domain as [10]: 
 

𝑟𝑜𝑡 𝐻 = 𝐽𝑠 (11) 
 

𝑟𝑜𝑡 𝐸 = −𝑗𝜔 𝐵 (12) 
 

𝑑𝑖𝑣 𝐵 = 0 (13) 
 

𝐵 = 𝜇𝐻 (14) 
 

𝐽 = 𝜎𝐸 (15) 
 

where 𝐻: the magnetic field (A/m), 𝐵: magnetic flux density, 𝐸: electric field (V/m), 𝐽𝑠: electric current 

density (A/m2), 𝐽: eddy current density (A/m2), µ: relative permeability, and σ: electric conductivity (S/m).  
 
 

 
 

Figure 1. General magnetodynamic model [10] 
 
 

These fields defined in function spaces (𝐻ℎ  (𝑟𝑜𝑡; 𝛺) 𝑎𝑛𝑑 𝐻𝑒  (𝑟𝑜𝑡; 𝛺) must satisfy Tonti’s diagram 

[10]. These function spaces contain the fields defined on 𝛤ℎ and 𝛤𝑒  of the studied domain and BCs on 𝛤 as 

(16) and (17) [10], [17]–[20]. 

 

𝑛 × 𝐻|𝛤ℎ
= 0 (16) 

 

𝑛 ∙ 𝐵|𝛤𝑒
= 0 (17) 

 

Where 𝑛 is the unit normal exterior to Ω. The set of (11), (12), and (13) is solved with the BCs in (14)  

and (15). In addition, global quantities with the current (𝐼𝑖) and voltage (V𝑖) imposed the inductor are shown in 

Figure 2. The source of electromotive force (EMF) is defined through the surface 𝛤𝑔,𝑖, i.e. (18) and (19)  

[8], [21]. 
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∮ 𝐸 ∙ 𝑑𝑙 =  𝑉𝑖
Γ𝑔,𝑖

+

Γ𝑔,𝑖
−  (18) 

 

∮ 𝑛 ∙ 𝐽 𝑑𝑠 = 𝐼𝑖  
Γ𝑔,𝑖

+

Γ𝑔,𝑖
−  (19) 

 
 

 
 

Figure 2. Magnetodynamic model with global quantities (current and voltage) [10] 
 

 

3.2.  Magnetic vector potential weak formulations 

The magnetic vector potential weak formulation (A) (𝐵 = curl 𝐴 and 𝐸 = 𝜎𝜕𝑡𝐴 − 𝜎grad 𝜈) is 

defined via the Ampere’s law (10 A) in Ω [10], [22]–[24]. 
 

(
1

𝜇
curl 𝐴, curl 𝑤′)

Ω
+ (𝜎𝜕𝑡𝐴, 𝑤′)Ω𝑐

+ (𝜎grad ν, 𝑤′)Ω𝑐
+< 𝑛 × 𝐻, 𝑤′ >Γℎ−Γ𝑡

  

+ < [𝑛 × 𝐻]Γ𝑡
, 𝑤′ >Γ𝑡

= (𝐽, 𝑤′)Ω𝑠
, ∀ 𝑤′ ∈  𝐻1(Ω) (20) 

 

Notations of (. , . )Ω and <. , >Γℎ
 are the volume and surface integrals, respectively, where the volume integral 

is defined in Ω and the surface integral is defined on Γ. The function space 𝐻1(Ω) contains the test function 

𝑤′ and basis functions for 𝐴. At the discrete level, this function is determined by edge finite elements (FEs), 

which are a type of numerical discretization technique used to approximate the solution of partial differential 

equations. The boundary < 𝑛 × 𝐻, 𝑤′ >Γℎ−Γ𝑡
 in (20) represents the natural BCs of (15), typically zero. From 

(20), by taking 𝑤′ = grad 𝜈′ as a test function in the weak formulation (15), one gets (21). 
 

(𝜎𝜕𝑡𝐴, 𝑔𝑟𝑎𝑑 𝜈′)𝛺𝑐
+ (𝜎𝑔𝑟𝑎𝑑 𝜈, 𝑔𝑟𝑎𝑑 𝜈′)𝛺𝑐

+< [𝑛 × ℎ𝑖]𝛤𝑡
, 𝑤′ >𝛤𝑡

  

=< 𝑛 ∙ 𝑗, 𝜈′ >𝛤𝑔
, ∀ 𝑤′ ∈  𝐻1(𝛺) (21) 

 

Where 𝛤𝑔 is one of the surfaces 𝛤𝑔,𝑖, which is fixed by a current or voltage as shown in Figure 2. 

 

3.3.  Coupled to voltage quantity  

The voltage applied (𝑉𝑖) to the inductor can be expressed as a natural global constraint via an unit 

source electric scalar potential 𝜈𝑠,𝑖 associated with the applied voltage. The voltage applied to each massive 

inductor (Ω𝑔,𝑖) is expressed as a sum of the applied voltages between the electrodes 𝛤𝑔
+ and 𝛤𝑔

−. This results 

in an equation expressed as the circuit relation associated with the inductor Ω𝑚,𝑖 via the voltage 𝑉𝑖 [4], [25] 
 

𝜈𝑖 = ∑ 𝑉𝑖𝜈𝑠,𝑖𝑖  (22) 
 

By substituting (17) into (16), one gets (23). 
 

(
1

𝜇
𝑐𝑢𝑟𝑙 𝐴, 𝑐𝑢𝑟𝑙 𝑤′)

𝛺
+ (𝜎𝜕𝑡𝐴, 𝑤′)𝛺𝑐

+ ∑ 𝑉𝑖𝑖  (𝜎𝑔𝑟𝑎𝑑 𝜈𝑠,𝑖 , 𝑤′)𝛺𝑐
+< 𝑛 × 𝐻, 𝑤′ >𝛤ℎ−𝛤𝑡

  

+ < [𝑛 × 𝐻]𝛤𝑡
, 𝑤′ >𝛤𝑡

= (𝐽, 𝑤′)𝛺𝑠
, ∀ 𝑤′ ∈  𝐻1(Ω) (23) 

 

3.4.  Computation of Joule power losses via a post-processing 

Joule losses are then computed with [21], [22]: 
 

𝑃𝑙𝑜𝑠𝑠 =
1

2
∫

𝐽𝐽̅

𝜎
𝑑𝛺

𝛺
 (24) 

 

where 𝑗 ̅is the conjugate of 𝐽. By using the Poynting theorem associated to the surface integration of degrees 

of freedom of 𝐴 and 𝜈 located on the border, the volume integration can be defined as (25). 



Int J Appl Power Eng ISSN: 2252-8792  

 

A 3D model of three phase shunt reactors by using a finite element technique … (Hung Bui Duc) 

325 

𝑃𝑙𝑜𝑠𝑠 =
1

2
𝑅𝑒 (∮ (𝑛 × 𝐻) ∙ 𝐸̅𝑑𝛤

𝛤
) = 𝑅𝑒 (−

𝑗𝜔

2
∮ (𝑛 × 𝐻𝑠 − 𝑛 × 𝑔𝑟𝑎𝑑 𝜈). 𝐴̅𝑑𝛤

𝛤
) (25) 

 

Where 𝐸 and 𝐴 are respectively the complex conjugates of electric field 𝐸̅ and magnetic vector 𝐴̅. 

 

 

4. APPLICATION TEST 

The test problem is herein a three phase SR as pointed out in Figure 3, where Figure 3(a) illustrates 

the representation of the air gaps between core blocks, Figure 3(b) describes the winding structure and  

Figure 3(c) depicts the structure of a three phase SR with the winding and magnetic circuit. The main 

parameters given in Table 1. The 3D model of the SR is established as in Figure 4, where a full 3D model is 

given in Figure 4(a). Due to the symmetric nature of the structure of the SR, in order to reduce computational 

time, a half cross-sectional model is considered in Figure 4(b), and imput parameters for constructing the 

model are pointed out in Figure 4(c). 
 

 

  
 

(a) (b) (c) 
 

Figure 3. Geometry of a three phase SR (a) air gaps between core blocks, (b) winding structure, and  

(c) construction of a a three phase SR 
 

 

  
(a) 

 

(b) 
 

 
(c) 

 

Figure 4. 3D-model of a three phase SR (a) 3D model of SR, (b) a half cross-sectional model, and  

(c) input parameters 

Ly

Hc
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Ww
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Wcc

Ws
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Table 1. Parameters of the SR 
Parameter Symbol Value  Parameter Symbol Value 

Reactive power Q (MVAr) 91  Deep Yoke Dy (mm) 776 
Rated current I (A) 105  Total air gap length along the core lg (mm) 400 

Rated voltage U (kV) 500  Number of turns N (vòng) 2244 

Inductance XL () 2712  Distance between the core and windings bcw (mm) 135 

Core diameter Dc (mm) 666  Yoke width Ww (mm) 236 

Core height Hc (mm) 1978  Winding height Hw (mm) 1559 

 

 

The distribution of phase voltage in the windings is shown in Figure 5. It shows that the effective 

voltage applied to windings (phase A, phase B, and phase C) is the rated phase voltage with the value of 

288,675 kV, which is close to the measured result of 288,7567 kV. This means that the significant error on 

the voltage simulation is less than 1%. 

In the same way, the phase current distribution in the winding is presented in Figure 6. The 

comparison of current and voltage values between the simulated and measured results is given in Table 2, 

with errors being lower than 1% for both cases. The magnetic flux density distribution in the magnetic circuit 

is presented in Figure 7. It can be shown that the value is the biggest when the current of phase B is the 

maximum. The magnetic flux density distribution along the line of C1-C2 (core block) is presented in  

Figure 8. It shows that the magnetic flux mostly focuses on the surface of the core blocks, thus the magnetic 

flux density near edges of the core blocks is bigger than the one inside core blocks. In order to increase the 

leakage flux in the vicinity of the core blocks, the reluctance of magnetic circuit and number of air gap core 

blocks need to increase also.  
 

 

 
 

Figure 5. Voltage distribution in winding 
 

 

 
 

Figure 6. Current distribution in winding 
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Table 2. Comparison of simulated and measured voltages 
Parameters Rated values Simulated results Measured results Error (%) 

Current of phase A (A) 105 105.67  106.44 0.73 
Current of phase B (A) 105 105.71  106.86 1.08 

Current of phase C (A) 105 105.65  106.34 0.65 

Voltage of phase A (V) 105 288.62  288.76 0.35 
Voltage of phase B (V) 105 288.56  288.71 0.5 

Voltage of phase C (V) 105 288.62 288.93 0.12 

 
 

 
 

Figure 7. Distribution of magnetic flux density in the magnetic circuit 
 

 

 
 

Figure 8. Distribution of magnetic flux density along the line of C1-C2 (core block) 
 

 

The magnetic flux density distribution along the air gap (G1-G2) between core blocks is indicated in 

Figure 9. The results show that the magnetic flux density along the inner winding surface is very small and 

uniform due to the large number of air gaps. Its mean value is equal to 0.1797 T. The values of self and 

mutual inductances between phases (phase A, phase B, and phase C) are given in Table 3. The comparison of 

phase reactances between the rated and simulated results is given in Table 4. It can be seen that the error is 

lower than 1% for phase B and equal to 1% for phase A and phase C. In the same way, Table 5 shows the 

comparison of simulated and measured reactances for three phases. The errors on them are smaller than 2%. 

This is a good agreement with the developed method. In particular, it is satisfied the IEC 60076-6 of the SR. 

The copper and iron losses of the SR are pointed out in Figures 10 and 11, respectively. The results of iron 

and copper losses in the SR between the simualtion and measurement are given in Table 6. The error is lower 

than 4% for the iron loss and 2% for the copper loss. These errors are completely acceptable and realiable. 
 

 

Table 3. The values of self and mutual inductances (H) 
Inductance (H) Phase A  Phase B Phase C  

Phase A 8.7257 -0.00565 -0.00129 
Phase B -0.00565 8.7199 -0.00566 

Phase C -0.00129 -0.00566 8.7268 
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Table 4. Comparison of simulated and rated reactances 
Parameters Rated value (ohm) Simulated result (ohm) Error (%) 

Reactance (phase A) 2,712  2,739.08  1.00 
Reactance (phase B) 2,712  2,735.88  0.88 

Reactance (phase C) 2,712  2,739.42  1.00 

 

 

Table 5. Comparison of simulated and measured reactances 
Parameters Simulated result (ohm) Measured result (ohm) Eror (%) 

Reactance (phase A)  2,739.08   2,698.7  1.47 

Reactance (phase B)  2,735.88   2,694.4  1.52 
Reactance (phase C)  2,739.42   2,689.3  1.83 

 

 

 
 

Figure 9. Magnetic flux density along the air gap (G1-G2) between core blocks 

 

 

 
 

Figure 10. Copper loss in the winding of the SR 

 

 
 

Figure 11. Iron loss in the magnetic circuit of the SR 
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Table 6. Comparison of simulated and measured copper and iron losses 
Parameters Simulated result (kW) Measured result (kW) Error (%) 

Iron loss 68.519 70.817 3.24 
Coppeer loss 152.377 155.321 1.90 

 

 

5. CONCLUSION  

In this research, the proposed SR was designed using an analytical approach to determine its main 

parameters. Afterward, a FEM simulation was conducted to simulate the prototype of the SR. The results of 

the SR obtained from the FEM were then compared to the that from the measured method to confirm their 

accuracy. The obtained results have also suggested that the analytical approach and FEM simulation are 

accurate methods for calculating various parameters of the SR. These parameters include voltage, current, 

inductance, reactance, copper loss, and iron loss. Additionally, these methods can also evaluate material 

costs, losses and other critical parameters. Moreover, the use of FEM simulation allows for a faster design 

and computing process and to optimize the prototypes needed to achieve the expected results. This approach 

can potentially save time and cost in the design and manufacturing of shunt reactors. 
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