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 Easy access to distributed generation (DG) technology is promoting the 

utilization of single-phase DGs for residential purposes. Surplus energy 

generated by household DGs can be shared or sold to other communities 

through existing networks. However, the interconnection of single-phase 

DGs from residential generators to the distribution network requires careful 

handling to secure the reliability and quality of the electric power system. 

This paper focuses on the optimal placement of single-phase multi-type DGs 

on unbalanced distribution systems that are connected to nonlinear loads. 

The objective of this study is to minimize the power losses and voltage 

unbalances in the distribution networks. To verify the efficacy of this 

method in reducing voltage unbalances and harmonics, an optimization 

approach is also presented using three-phase DG. Optimal placement of DG 

is performed on a modified Kaliasin distribution system using an adaptive 

real coded genetic algorithm (ARC-GA). Simulation results demonstrate that 

the installation of single-phase DGs is highly effective in reducing power 

losses and voltage unbalances in the distribution networks. 
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1. INTRODUCTION 

The need for inexpensive and reliable electricity has led to the widespread use of energy-based 

distributed generation (DG) systems. In 2016, the global installation of DG systems saw a significant growth 

of 183% [1], with these systems contributing 20 to 30% of the total electricity production [2]. The recent 

changes in power system management regulations have shifted the control of power plants away from the 

government, allowing communities to have their own generators and even sell surplus energy to local areas 

using established networks. This development is anticipated to become a prevailing trend in the future. 

DG in a distribution system can be used to minimize active power loss [3], reduce voltage  

deviation [4], and minimize costs [2], [5]. The integration of DG into a distribution system is commonly 

performed using a balanced system approach, where harmonics and load imbalances are often disregarded. 

Electrical power system in general is an unbalanced system [6]. Modifying an unbalanced system to a 

balanced system does not represent a real system. A significant voltage unbalance in the distribution system 

causes various issues, such as overheating, harmonics and interference on the three-phase equipment [7]. The 

problem of load imbalance has been discussed by several researchers with different approaches, positive 

voltage ratio [8], reinforce learning [9], Cuckoo search [10], improved particle swarm optimization [11], 
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crisscross optimization algorithm [12], optimal power flow [13], open distribution system simulator [14], and 

symbiotic organisms search (SOS) [15]. These studies do not discuss nonlinear loads. However, the number 

of nonlinear loads in a power system can reach 40-41% of the load [16]. Harmonics in the distribution system 

can increase power loss [17], decrease insulation life, increase temperature, and reduce power factor [18]. 

The interconnection of DG into the distribution system considering harmonics and imbalances has 

been performed by several researchers with different methods: genetic algorithm [19], real-coded genetic 

algorithm (RC-GA) [20], harmony search [21], biogeography-based optimization [22], and modified group 

experience of teaching learning-based optimization [23]. All these studies use three-phase DG so that the 

injection of three-phase power into an unbalanced distribution system has a less significant effect on voltage 

unbalance, even in some cases, it can increase voltage unbalance and harmonic.  

The effect of single-phase DG in an unbalanced distribution system has been studied by  

Amirullah et al. [24], Pinthurat and Hredzak [25], and Jiao et al. [26], but DG type and harmonics are not 

considered. This paper explores the most advantageous positioning of various types of single-phase DG units 

in unbalanced distribution systems. The objective of this study is to minimize power losses, reduce the 

voltage unbalanced, and maintain the voltage and harmonics at an acceptable limit. The contributions of this 

research are: i) optimal placement of DG in addition to considering the imbalance also considers the 

harmonics, ii) using single-phase DG and it compares with three-phase DG for harmonic and unbalanced 

mitigation, and iii) the optimization method uses the ARC-GA method which has better performance than the 

standard GA. The remaining sections of this paper are organized as follows: in the second section, the ARC-

GA, objectives, DG modeling and optimization algorithms are discussed thoroughly. The third section 

discusses the optimization results and the performance of the methods. The conclusions are discussed in the 

last section. 

 

 

2. METHOD  

2.1.  Adaptive real coded genetic algorithm 

Studies indicate that the genetic algorithm does not always ensure convergence to the global 

optimum. To address this issue, the ARC-GA method is proposed, which adjusts the probabilities of 

crossover (𝑝𝑐) and mutation (𝑝𝑚) based on changes in individual fitness values [2]. When individual 

variability is low, pc and pm are increased. This increase in pc and pm results in the generation of more new 

individuals, thereby enhancing individual variability. Conversely, if individual variability is high, 𝑝𝑐 and 𝑝𝑚 

are reduced. This decrease in 𝑝𝑐 and 𝑝𝑚 reduces the rate at which new individuals are created through 

crossover and mutations. The probability formulas for crossover and mutation are as (1) and (2) [2]. 

 

𝑝𝑐 = 𝑝𝑐
𝑜 (1 + 𝑎

𝐹𝑎𝑔𝑁

(𝐹𝑚𝑎𝑥−𝐹𝑎𝑔)𝑁+𝐹𝑎𝑔𝑁
) (1) 

 

𝑝𝑚 = 𝑝𝑚
𝑜 (1 + 𝑏

𝐹𝑎𝑔𝑁

(𝐹𝑚𝑎𝑥−𝐹𝑎𝑔)𝑁+𝐹𝑎𝑔𝑁
) (2) 

 

𝑝𝑐
𝑜 and 𝑝𝑚

𝑜  are crossover and mutation probabilities. Fmin, Fmax, and Favg are the minimum, maximum, and 

average fitness of individual respectively. N, a, and b are real numbers.  

 

2.2.    The objective 

2.2.1. Active power loss 

The power losses in the distribution networks are influenced by two main factors: the current 

flowing through the system and the impedance of the lines. The line current is influenced by the composition 

of the load, while the line impedance is determined by various factors such as the material used, the length of 

the distribution lines, and their diameter. The active power loss in an unbalanced distribution system can be 

formulated as (3). 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ (∑ ∑ 𝑉𝑖
(𝐹)

𝑉𝑗
(𝐹)

𝑌𝑖𝑗
(𝐹)

(𝐶𝑜𝑠(𝜃𝑖
(𝐹)

− 𝜃𝑗
(𝐹)

𝑖
− 𝛿𝑗

(𝐹)
)𝑛

𝑗=1
𝑛
𝑖=1 )𝐹=𝐴,𝐵,𝐶  (3) 

 

P, V, and Y are power, voltage, and admittance respectively. While n, θ, and δ are the number of buses, phase 

voltage angle, and phase admittance angle. DG placement is intended to reduce power loss on the distribution 

system. The objective function associated with power loss can be defined in (4). 

 

𝐹1 = 𝑚𝑖𝑛 [
𝑃𝐷𝐺

𝑃𝐵
] (4) 
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PB and PDG are power loss before and after DG installation. 

 

2.2.2. Voltage profile 

In addition to reducing power losses, DG can also improve the voltage level at each bus. The phase 

voltage on each bus is expected to be close to or equal to 1 pu. The objective function related to the voltage 

profile on each bus is formulated as (5). 

 

𝐹2 = 𝑚𝑖𝑛( |𝑉𝑟𝑒𝑓 − 𝑉𝑃_𝑖|) (5) 

 

𝑉𝑟𝑒𝑓  and 𝑉𝑃_𝑖  are voltage reference and phase voltage at bus i.  

 

2.2.3. Voltage unbalance 

The unbalanced loading in the distribution system leads to an imbalance of inter-phase voltages. The 

objective function related to the voltage unbalanced is formulated as (6). 

 

𝐹3 =
Max(|𝑉𝑖

𝑘-V𝑖
mean|)

|𝑉𝑖
mean|

×100% (6) 

 

Vi, Vi
mean, and k are voltage bus i, average voltage bus i, and phase respectively. 

 

2.2.4. Harmonic 

The presence of harmonics can negatively impact the precision of measuring instruments, 

particularly single-phase devices that rely on a disc mechanism. These instruments tend to exhibit 

approximately 2% faster movement when subjected to harmonic loads. Harmonics can also lead to alterations 

in currents, frequencies, and impedances, which may trigger the operation of protective equipment like relays 

even in the absence of actual disturbances [27]. The IEEE-519 standard sets the permissible individual 

harmonic distortion (iHD) at 3%, while the total harmonic distortion (THD) must remain below 5% [19]. The 

levels of total harmonics and individual harmonics are formulated as (7) and (8). 

 

𝑁iHD𝑗
= { 

𝑒𝑥𝑝(𝛼|3−iHD𝑗|)if iHD𝑗>3

1, if iHD𝑗≤3
 (7) 

 

𝑁THD𝑖
= { 𝑒𝑥𝑝(𝛼|5-THD𝑖|) if THD >5

1, if THD𝑖≤5
 (8) 

 

NTHD and NiHD are total harmonics and individual harmonics level. i, j, and α are individual, order harmonics, 

bus number and constanta respectively. The individual and total harmonics limit violations can be formulated 

as (9) and (10). 

 

𝑁𝑖 = ∏ 𝑁iHD
𝑘
𝑗=1  (9) 

 

𝑁𝑇 = ∏ 𝑁THD
𝑛
𝑖=1  (10) 

 

The objective function pertaining to harmonics can be computed utilizing as (11). 

 

𝐹4 = ∏ 𝑁iHD
𝑘
𝑗=1 × ∏ 𝑁THD

𝑘
𝑖=1  (11) 

 

If both THD and iHD meet the specified standards, then F4 is assigned a value of 1. However, if either THD 

or iHD fails to meet the standards, F4 will yield a significantly large number. The objective function in this 

study is a composite of active power loss, voltage profile, voltage unbalance, and harmonics, formulated as (12). 

 

𝐹 = 𝑤1𝐹1+w2𝐹2+w3𝐹3+w4𝐹4 (12) 

 

𝐹 is the objective function while 𝑤1, w2, w3, and w4 are weights. 

 

2.3.  DG modelling 

DG performance in the power system is highly determined by location, type, and rating of DG. In 

this paper, single-phase DG is modeled into four types [3]: type I DG: supplying active power only; type II 

DG: supplying reactive power only; type III DG: supplying active and reactive power; and type IV DG: 
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supplying active power but absorbing reactive power. The maximum size of DG type I and type II are  

100 kVar and 100 kW respectively. The maximum size of DG type III is 100 kVA with power factor 0.95 

leading, while maximum size of DG type IV is 100 kVA with power factor 0.95 lagging. The maximum 

penetration of DG into the power system is 30% and the maximum number of DG is 6. 

 

2.4.  Optimization algorithm 

The optimization of the location and size of single-phase DG is performed simultaneously. 

Individual is modeled into four strings, namely location, phase, type, and size. The location string represents 

the bus number where the DG will be located. This string contains integers representing the number of buses 

in the distribution system. The second string is a phase string representing the phase in which DG will be 

placed. This string contains integers 1, 2, and 3 representing phase a, b, and phase c respectively. The third 

string is the DG type string. This string contains integers between 1 and 4 according to the number of DG 

types. The fourth string is DG size string. This string contains a real number between 0 and 1. 0 and 1 

indicate the minimum and maximum size of DG. The DG size is obtained through the decoding process using (13). 

 

𝑅𝐷𝐺 = 𝑟𝑓 𝑥 𝑅𝑚𝑎𝑥  (13) 

 

𝑅𝐷𝐺, 𝑟𝑓, and 𝑅𝑚𝑎𝑥 are actual size, string size, and maximum DG size. 

ARC-GA is employed to enhance the performance of the genetic algorithm (GA). Adaptations in the 

crossover and mutation operators are introduced to be responsive to variations in individual fitness. When 

individual variability is high, the likelihood of crossover and mutation is reduced, and vice versa. The 

optimization approach for determining the optimal placement, phase, size, and type of DG is outlined as 

follows: 

− Step 1: Read parameters of GA, DG types, DG number (nDG), bus data and load data 

− Step 2: Run fundamental and harmonic load flow to find the initial condition of the system, including bus 

voltages, network losses, IHD, THD and voltage unbalanced 

− Step 3: Initialize population with size (nDG, nPopulation). Individual is represented by four number 

strings: DG location, phase, type, and size 

− Step 4: Determine DG size through decoding process using (13) 

− Step 5: Read system data and injection of harmonic currents 

− Step 6: Update system data by size, location, phases, and DG type of individual chromosome 

− Step 7: Run harmonic load flow to determine voltages, network losses, harmonics and voltage unbalanced 

− Step 8: Determine the fitness of all individuals using (12) 

− Step 9: Verify if the termination condition is met. If it is met, go to step 14. Otherwise, go to step 10 

− Step 10: Update the worst individual using the fittest individual from the population 

− Step 11: Individual selection using roulette whee method 

− Step 12: Exchange of parental chromosomes using adaptive crossover 

− Step 13: Change a few genes in a chromosome using adaptive mutations 

− Step 14: Determine the optimal location, phase, size, and type of DGs 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Data test system 

The modified Kaliasin radial distribution system comprises 10 buses and 9 lines. The medium 

voltage network is linked to five load buses via 20/0.380 kV transformers. The overall load connected to the 

system amounts to 2.2068 MW and 1.468 MVAR. All loads on the distribution system are supplied through 

bus 1. The information regarding bus data, line data, transformer data, and harmonic current injection of the 

nonlinear load is taken from [20]. 

 

3.2.  Before placement of DG 

Load flow analysis reveals that all system bus voltages meet the standard 1±0.05 pu. The highest 

voltage on bus 1 which is 20 kV (1 pu) and the lowest is on bus 10 phase a (10a) which is 19.907 kV. Active 

and passive power losses are 5.352 kW and 2.556 kVar respectively. THD on all buses and phases are less 

than 5% so they meet the IEEE standards. The highest THD is 4.2398% on bus 7(b). The lowest THD is 

3.237% on bus 1(a). Individual harmonics of the order 7, 11, and 13 are all below 3%. Individual harmonic 

order 5 in phase b of all buses exceeds 3% so it does not meet IEEE standards. 
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3.3.  Single-type DG placement 

Figure 1 illustrates the optimization outcomes for the arrangement of six single-phase DG units. It is 

evident from Figure 1 that each DG type exhibits a distinct best fitness value. Specifically, DG types I, II, III, 

and IV possess the best fitness values of 9.4803, 8.5002, 8.2450, and 8.9737, respectively. The optimization 

results highlight that DG type III demonstrates superior performance compared to the other four DG types in 

terms of reducing power losses, voltage unbalance, and harmonics. 
 
 

 
 

Figure 1. Single and multi-type DG convergence characteristic 
 

 

Table 1 presents the optimal size and location of four types of DG at penetration rates of 13.6% and 

27.27%. At 13.6% penetration rate, placement of three DG type III on bus 10(a), 10(b), 10(b) able to reduce 

active and passive power loss of 22.08% and 21.93% respectively. The same outcomes are observed at a 

penetration rate of 27.27%. DG type III provides the best performance in reducing power losses. DG type III 

can reduce active and passive power loss by 40.30% and 40.17% respectively. 
 
 

Table 1. Single-phase DG optimization result 
DG 

penetration 
Scheme Location Size Ploss 

(kW) 
Qloss 
(kVar) 

Ub 
(%) 

iHD 
Violation 

Base case - - - 5.352 2.556 0.35400 169.76 

 Type I 8b, 10b, 10b 3×100 kVar 4.7471 2.2693 0.33475 2.031 

 Type II 10a, 10b, 10b 3×100 kW 4.3595 2.0837 0.31607 1.000 

13.60% Type III 10a, 10b, 10b 3× (95 kW+31.23 kVar) 4.1704 1.9954 0.31195 1.000 

 Type IV 8b, 10b, 10b 3× (95 kW-31.23 kVar) 4.6891 2.2365 0.32404 1.005 

 Multi-type 10a, 10b, 10b 3× (95 kW+31.23 kVar) 4.1704 1.9954 0.31195 1.000 

 Type I 8b, 8b, 10a, 10b, 10b, 10c 6×100 kVar 4.2762 2.0461 0.31545 1.000 

 Type II 8b, 10a, 10b, 10c, 10a, 10b 6×3100 kVar 3.5596 1.7012 0.27826 1.000 

27.27% Type III 8b, 10a, 10b, 10c, 10b, 10b 6× (95 kW+31.23 kVar) 3.1952 1.5293 0.27004 1.000 

 Type IV 8b, 8b, 10a, 10b, 10b, 10c 6× (95 kW-31.23 kVar) 4.1642 1.9829 0.29410 1.000 

 Multi-type 8b, 10a, 10b, 10c, 10b, 10b 6× (95 kW+31.23 kVar) 3.1952 1.5293 0.27004 1.000 

 
 

In addition to reducing power losses, single-phase DG placement in the distribution system is also 

expected to reduce the voltage unbalance significantly. The optimization results show that DG type III gives 

the best performance in reducing voltage unbalance and the worst is DG type I. DG type III and type I can 

reduce the voltage unbalance of 5.44% and 11.88% respectively at 13.60% penetration level. For penetration 

rate of 27.27% DG type III and type I reduce voltage unbalance by 10.89% and 23.72% respectively.  

Figure 2 shows that the penetration of single-phase DG significantly increases the voltage at each 

bus. The largest increase is observed in phase A, while the other two phases show a similar increase.  

Figures 3 and 4 display the iHD and THD before and after the DG placement respectively. In the base case, 

the iHD at phase B of all buses is greater than 3%, while the other two phases are less than 3%. As for the 

THD, in the base case, all buses have a THD value smaller than 5%, which means they meet the IEEE-519 

standard. However, when single-phase DG is deployed, it results in an increased fundamental bus voltage, 

which in turn leads to lower iHD and THD levels. All single-phase DG deployment schemes meet the IEEE-
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519 standard, except when DG type I reaches a penetration level of 13.6%. At this point, there is an iHD 

violation of 2.031 indicating the presence of a bus with iHD greater than 3%. 
 
 

 
 

Figure 2. Bus voltage before and after placement of 6 single-phase DG 
 
 

  
  

Figure 3. iHD before and after DG placement Figure 4. THD before and after DG placement 
 

 

3.4.  Multi-type DG placement 

Multi type optimization results are shown in Table 1. Table 1 indicates that optimal placement of 

multi type DG and DG type III into distribution systems has the same results regarding location, size, and 

influence on the reduction power losses, voltage unbalanced and harmonics. The only difference lies in the 

speed of ARCGA in reaching the optimum point. The multi-type of DG placement scheme is slower to reach 

the optimum point than the single DG type scheme since the multi-type of optimization problem becomes 

more complex with the inclusion of DG types in the optimization scheme. 
 

3.5.  Three phase DG optimization 

Three-phase DG placement optimization is performed to compare single-phase and three-phase DG 

performance in reducing voltage unbalances, power losses and harmonics. Three-phase DG optimization is 

executed at the same penetration level as single-phase DG. The three-phase DG optimization results are 

shown in Table 2. Table 2 shows that for a penetration level of 13.60%, all DG optimization schemes do not 

meet iHD standard. The iHD violation for three-phase DG is greater than single-phase DG at the same 

penetration level. In single-phase DG scheme, only type I and type IV schemes do not meet the standard. The 

iHD violation values for type I and type IV are 2.031 and 1.005. Unbalanced voltage and power losses for the 

three-phase DG scheme are slightly lower than the single-phase DG scheme. This difference is due to the 

priority level of each objective function. In this optimization scheme, harmonics occupy the main priority, 

then unbalanced voltage, voltage profile, and power losses. For penetration levels 27.27%, single-phase DG 

provides better results in reducing harmonics, voltage unbalance and losses than three-phase DG scheme. 
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Table 2. Three phase DG optimization result 
DG 

Penetration 
Scheme Location Size 

Ploss 
(kW) 

Qloss 
(kVar) 

Ub  
(%) 

iHD 
Violation 

Base case - - - 5.3520 2.556 0.35400 169.762 

 Type I 10 300 kVar 4.7171 2.2571 0.33470 29.354 

 Type II 10 300 kW 4.3965 2.102 0.31607 10.699 
13.60% Type III 10 285 kW+93 kVar 4.2231 2.021 0.31195 6.588 

 Type IV 10 285 kW-93 kVar 4.6741 2.2323 0.32398 23.285 

 Multi-type 10 285kW+93 kVar 4.2231 2.021 0.31195 6.588 

 Type I 8, 10 2×300 kVar 4.2426 2.0322 0.31556 6.595 

 Type II 8, 10 2×300 kW 3.5879 1.715.3 0.27840 1.000 

27.27% Type III 8, 10 2×(285 kW+93.69 kVar) 3.2458 1.5556 0.27020 1.000 

 Type IV 8, 10 2×(285 kW-93.69 kVar) 4.1384 1.9735 0.29420 4.056 

 Multi-type 8, 10 2×(285 kW+93.69 kVar) 3.2458 1.5556 0.27020 1.000 

 

 

4. CONCLUSION 

ARCGA is used in this paper to determine the location, phase, size, and type of four single-phase 

DG types in the distribution system. The simulation results show that the placement of 6 single-phase DG 

type III provides the best performance in reducing voltage unbalances, power losses and harmonics compared 

to the other three DG types. The multi-type of single-phase DG optimization provides the same result as DG 

type III scheme. Single-phase DG optimization also performs better in reducing harmonics, voltage 

imbalances and power losses than the three-phase DG scheme at the same penetration level. 
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