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 In modern days, renewable sources increase the independence of urban 

energy infrastructures from remote sources and grids. In renewable energy 

systems (RES) systems, batteries are frequently used to close the power gap 

between the power supply and the load demand. Due to the variable 

behavior of RES and the fluctuating power requirements of the load, 

batteries frequently experience repeated deep cycles and uneven charging 

patterns. The battery's lifespan would be shortened by these actions, and 

increase the replacement cost. This research provides an effective control 

method for a solar-wind model with a battery-supercapacitor hybrid energy 

storage system in order to extend battery’s lives expectancy by lowering 

intermittent strain and high current need. Unlike traditional techniques, the 

suggested control scheme includes a low-pass filter (LPF) and a fuzzy logic 

controller (FLC). To begin, LPF reduces the fluctuating aspects of battery 

consumption. FLC lowers the battery's high current need while continuously 

monitoring the supercapacitor's level of charge. The moth flame 

optimization (MFO) optimizes the FLC's membership functions to get the 

best peak current attenuation in batteries. The proposed model is compared 

to standard control procedures namely rule based controller and filtration-

based controller. When compared to the conventional system, the suggested 

method significantly reduces peak current and high power of the battery. 

Furthermore, when compared to standard control procedures, the suggested 

solution boosts supercapacitor utilization appreciably. 
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1. INTRODUCTION 

In renewable energy systems (RES), batteries are frequently used to close the power gap between 

power supply and load demand. Because of the variable behavior of RES and the inconsistent power need of 

the load, a battery will typically experience frequent deep cycles and uneven charging patterns. These 

activities would drain the battery's lifespan and raise the replacement cost [1]–[3]. As a result, the hybrid 

energy storage is a feasible way for decreasing battery strain, battery capacity, and overall system cost [4]. 

Specific power, response time specific energy, and durability are all supplementary features of a battery and a 

supercapacitor (SC). Because it is the program that governs the power of the SC and battery, a management 

technique is required for the battery-SC model to maximize energy consumption and energy conservation. 

One of the most typical goals of hybrid energy storage system (HESS) deployment is to increase the lifespan 

of the battery by lowering peak current needs and constant stress [4], [5]. Reduced peak current in the battery 

would help lessen voltage drop and enhance battery efficiency. The over-heating and dynamic strain of the 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2252-8792 

Int J Appl Power Eng, Vol. 13, No. 1, March 2024: 165-177 

166 

battery are minimized when the stress of the battery is reduced [5], [6]. The use of a fuzzy logic controller 

(FLC) with a battery-hydrogen storage system (HSS) is popular. Yet, there hasn't been much research about 

using FLC in RES with battery-SC System. FLC is simple to comprehend and is unaffected by changes in the 

settings. Furthermore, it does not necessitate a precise system and training process model. Furthermore, when 

compared to a battery-only system, the FLC minimizes battery capacity loss by more than half [7]. The FLC's 

membership functions (MFs), on the other hand, are not optimized and do not provide efficient result. The 

membership functions of FLC are normally evaluated using a time-consuming and inefficient trial-and-error 

process [8], [9]. Various technologies, like artificial neural networks (ANN) and support vector machines, 

can be used to estimate solar irradiance and electrical load (SVM) [10]–[15]. As a result, evolutionary 

algorithms like moth flame optimization (MFO) and others are used in improving the membership functions 

of the controller in order to address various optimization issues. 

The best control model for a PV-wind power system with battery-SC is proposed in this research. 

The suggested control model's goals are to lower the battery's fluctuating active strain and high current need 

while keeping the SC's SOC level in mind at all times (SOCsc). A Sugeno-type FLC is used in the proposed 

control approach. The Sugeno-type FLC is efficient and robust and complements optimization and adaptive 

approaches well [16]. As a result, it is employed to lower the battery's high current demand by adjusting the 

the amount of power that the SC will charge/discharge depending on real-time power need and SOCsc. The 

moth flame algorithm optimization (MFO) is used to find the best FLC MFs in order to decrease high current 

of the battery. Simulink is utilized to compare the proposed system's performance against that of older 

systems using a rural household load profile. This paper shows the suggested system's Simulink models and 

describes the MFO optimization findings as well as the comparison between conventional and proposed 

systems. 

 

 

2. SYSTEM MODELLING AND COMPONENTS 

A solar panel, a wind turbine, and a battery (lithium ion) are all part of the proposed hybrid system, 

which also includes a SC. As indicated, all of the elements are coupled to a voltage unified DC bus. 

 

2.1.  Wind turbine modelling 

In this study, we'll use a wind turbine powered by a permanent synchronous generator (PMSG). The 

wind turbine's power and rated wind velocity are 300 W and 13 m/s, respectively. The maximum wind 

velocity is 18 m/s, with a beginning wind velocity of 3 m/s. The maximal power production is 800 W [17]. 

The output power of a wind turbine can be stated as follows using aerodynamic theory. 

 

𝑃 =  0.5𝜌𝜋𝑅2𝑉2𝐶 𝑚𝑤𝑝 (𝜆, 𝛽) (1) 

 

Where Pm is the resultant power of a wind turbine generator. The air density, wind speed and blade radium 

are represented by, R, and Vw, discretely. The power coefficient (Cp), is defined as (2) and (3). 

 

𝐶𝑝 (𝜆, 𝛽)  =  0.73 (151/ 𝜆 −  0.58𝛽 −  0.002𝛽2.14 −  13.2)𝑒−18.4/𝜆 (2) 
 

Where: 

 

𝜆 = 1/ (1/(𝜆 − 0.02𝛽) − 0.003/(𝛽3  + 1)) (3) 

 

In MATLAB, a fluctuating wind of 13 m/s is generated and shown in Figures 1 and 2(a). The wind turbine's 

output power under MPPT control is displayed [17]. 

 

2.2.  PV array modelling 

A solar array is formed by connecting numerous parallel and series solar cells. To compute the 

short-circuit current for every solar cell can use as (4) [18]. 

 

𝐼𝑆𝐶 = 𝐼𝑆𝐶0(𝐺/𝐺0)𝛼  (4) 

 

Where Isc and Isc0 are the short-circuit currents, G and G0 are standard solar radiation, respectively. The PV 

cell's open-circuit voltage as (5). 

 

𝑉𝑂𝐶  =  
𝑉𝑂𝐶0

1+  ln  (
𝐺

𝐺𝑜
)

(
𝑇0

𝑇
)

𝛼

 (5) 



Int J Appl Power Eng ISSN: 2252-8792  

 

An effective control approach of hybrid energy storage system based on mothflame … (V. Prasanna) 

167 

Where Voc and Voc0 are the open-circuit voltages under average and normal solar energy G and G0, 

respectively, and T is the PV cell temperature.  is a technology-specific coefficient for PV cells that depicts 

temperature nonlinear effects. Using cells arranged in series (Ns) and cells arranged in parallel (Np), the 

highest power from the solar array can be written as [18] as shown in Figure 2(b). 

 

𝑃𝑚𝑎𝑥  =  𝑁𝑝 ∙  𝑁𝑠

𝑉𝑜𝑐0

𝑛𝑘𝑇𝑞
−ln (

𝑉𝑜𝑐

𝑛𝑘𝑇𝑞
+0.72)

1+𝑉𝑜𝑐0/𝑛𝑘𝑇𝑞
∙ (

1−𝑅𝑠

𝑉𝑜𝑐/𝐼𝑠𝑐
) ∙ 𝑉𝑜𝑐 ∙ 𝐼𝑠𝑐 (6) 

 

Because both the wind turbine and the solar array create power, the collective power produced may 

be estimated by summing them together. Furthermore, we presume a constant load need of 1 kW. As a result, 

the power disparity between produced and needed power by load is P as shown in Figures 2(c) and 2(d). 

 

𝛥𝑃 =  𝑃𝑊𝑃  +  𝑃𝑃𝑉  –  𝑃𝐿 (7) 

 

PWP, PPV, and PL are the power output of a wind turbine, power of the solar array, and power demand of the 

load, discretely as shown in Figure 2(e). 

 

2.3.  Battery–SC storage system 

An SC, a bidirectional DC-DC converter, control circuitry, and a battery bank are all included in the 

proposed system's HESS, as shown in the simulation of the solar-wind system with battery-SC system. The 

Simulink library contains the structure and details of the battery, and supercapacitor models. The battery-SC 

system described in this work, uses the benefits of both high-power density and energy density storage to 

accomplish the necessary performance. However, combining the battery-SC as a solitary source of power 

necessitates a sophisticated conditioning circuitry. Because the SC voltage varies greatly because of its low 

energy density, the proposed model's battery-SC system is built in a partially active architecture, with a bi-

directional DC-DC converter located adjacent to the supercapacitor to isolate the supercapacitor from the rest 

of the system [19]. 

The power electronic component is made up of a DC-DC converter and control circuits [15]. This 

design provides enough flexibility to implement a variety of control techniques. Furthermore, with the 

employment of a single DC-DC converter, this design provides a favorable trade-off between functionality 

and intricacy of the circuit. It is also necessary to manage the power flow in both directions to properly link 

the batteries and SCs. 

The bidirectional half-bridge DC-DC converter can operate in both buck and boost modes. It 

comprises of two bi-positional switches constructed in a half bridge arrangement using transistors S1/S2 and 

diodes D1/D2. The converter's high and low voltage sides are interfaced to the DC bus and the 

supercapacitor, to enable for constant functioning of the SC. Power is transmitted from the high to the low 

voltage side when the converter is in buck mode (inductor current, iL > 0). Power is transmitted from the low 

to the high voltage side (iL 0) while the converter is in boost mode as shown in Figure 1. The description of 

the proposed system's dynamic power balance shown as (8), based on Figure 2. 

 

𝑃𝑃𝑉 + 𝑃𝑏𝑎𝑡𝑡 + 𝑃’𝑆𝐶 + 𝑃𝑙𝑜𝑎𝑑 = 0 (8) 

 

Where PPV is the PV's power generation, Pbatt is the battery's power, Pload is the load's power demand, and 

Psc0 is the SC power flow after the DC-DC converter's power conversion. The converter's efficiency is less 

than 100% in real-world operation. As a result, the power shift from the SC to the DC bus written as (9). 

 

𝑃’𝑆𝐶 = 
𝐷𝐶𝐷𝐶

  𝑃𝑆𝐶  (9) 

 

Where PSC denotes SC's power flow and dcdc denotes the converter's efficiency. The converter's efficiency is 

presumed to be 100% in the context of this research. As a result, the amount of power needed by the battery-

SC defines as (10), dP, which is the difference between PPV and Pload's output power. 

 

𝑑𝑃 =  𝑃𝑃𝑣  –  𝑃𝐿𝑜𝑎𝑑 = 𝑃𝑏𝑎𝑡𝑡 + 𝑃𝑠𝑐 (10) 

 

Table 1 explains the proposed system parameters. Figure 1 explains the basic structure and Figure 2 shows 

the profile of the energy management system. 
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Figure 1. Hybrid energy storage and renewable energy system 
 

 

  

(a) (b) 

  
(c) (d) 

 
(e) 
 

Figure 2. Simulation profiles: (a) solar power output, (b) wind speed, (c) output from wind turbine, (d) 

load profile, and (e) power variation between power generation and load demand 
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Table 1. Proposed system's specifications 
Component Rating Value 

PV Power 1.2kW 
Wind system Power 300 W 

Li ion battery 

 

Voltage 

Capacity 

48 V 

300 Ah 
Supercapacitor Voltage 45 V 

 Capacitance 500 F 

 

 

3. CONTROL STRATEGY 

The control strategy, which is based on current system conditions, controls the HESS power flow. In 

order to accomplish various objectives, it is frequently complicated and calls for constant operation. 

Optimizing HESS control is essential for maximizing sustainability and energy efficiency [20]–[28]. There 

are two different categories of control strategies: traditional control techniques and modern control  

techniques [29]. Rule-based controllers (RBC) and filtering-based controllers (FBC) are examples of 

traditional control systems that are simple and easy to implement since they don't need intensive processing. 

But they tend to be rigid and sensitive to parameter changes [30]. Because they develop the dynamic 

behavior without needing an accurate description of the system, modern control techniques like the FLC are 

more dependable and effective than traditional control strategies [31]. The MFs of FLC, on the other hand, 

are normally calculated through trial-and-error, which is ineffective and a lengthy process. 

To summarize, renewable energy and energy efficiency portfolio standard (REPS) with battery-

supercapacitor HESS frequently use traditional control mechanisms like as RBC and FBC. In this study, the 

proposed control approach is compared to two common traditional control systems (RBC and FBC).  

All models with SC have a SOCsc operating range of 50% - 100% to enable for the use of 75% of the total 

SC energy [32]. 

 

3.1.  Rule based controller 

Based on a set of guidelines, the RBC determines how much power is distributed between the SC 

and battery. It is easy to implement because it does not necessitate complex processing. RBC, on the other 

hand, is extremely sensitive to parameter variations due to its pre-defined rules and procedures. An RBC is 

created and depicted as dead-zone function [33]. Whenever the current of the battery is between the ib1 and 

ib2 thresholds, the battery is the sole way to supply the load requirement. when the ib1 or ib2 threshold is 

reached for battery current demand, the extra current demand is divided between the SC and the battery 

according to the K1 or K2 ratio [33]. 

 

3.2.  Filtration based controller 

The FBC splits the active elements of the power demand into low-frequency and high-frequency 

parts using a filter. This method is easy and requires little computing power. A high pass filter (HPF)-based 

FBC's structure [34]. The HPF divides the power requirement into high-frequency (PHF) and low-frequency 

(PLF) components, with the PHF and PLF fetched by the battery and SC, discretely. 

 

3.3.  Proposed control strategy 

Figure 3 depicts the framework of the suggested control method, which attempts to reduce the 

battery's active tension and high current demand. The energy management device in the control strategy is a 

fuzzy logic controller (FLC). The moth flame optimization (MFO) technique is used to optimize the FLC's 

membership functions (MFs) in order to obtain optimal performance. The next sections discuss the structure 

of the suggested control strategy. 

 

3.3.1. DC bus configuration and optimization 

The voltage on the DC bus is managed using the principle expressed in Figure 3. The PI device 

decides the reference current of the DC bus Idcref to regulate the bus voltage at Vref = 400 V. The energy 

management system (EMS) generates the reference currents for batteries and SCs (Ibatref and Iscref, 

correspondingly). These reference currents make the DC bus voltage to remain static irrespective of load 

conduct or fluctuations in power output. When a fault develops on an element such as SoC, power 

interruption, or solar irradiation variation, the batteries and/or SCs make sure that the DC bus voltage is 

regulated. The collective reference currents, Iscref and Ibatref, should be same as Idcref at all times. 

 

𝐼𝑑𝑐𝑟𝑒𝑓  =  𝐼𝑠𝑐𝑟𝑒𝑓  +  𝐼𝑏𝑎𝑡𝑟𝑒𝑓  (11) 

 

To simulate the function of a DC bus can be used as (12). 
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𝐶𝑑𝑐𝑑𝑣𝑑𝑐

𝑑𝑡
=  𝑖𝑠𝑐𝑑𝑐 + 𝑖𝑏𝑎𝑡𝑑𝑐 − 𝑖𝑙𝑜𝑎𝑑 (12) 

 

The DC currents of SCs, batteries are represented by ISCdc, Ibatdc, respectively. The load current is 

represented by ILoad. Cdc is the capacity of the central bus that allows a similar DC bus voltage to be imposed 

on the load and all other inputs. The power oscillations from the chosen stationary converters are filtered by 

these capacitors. 
 

 

 
 

Figure 3. Proposed control strategy 
 

 

3.3.2. Low pass filter (LPF) 

PV power production and load need are very variable in actual operation. To meet the demands of 

the traditional system's highly fluctuating dP, the battery is put under stress. The extremely variable battery 

current results in high internal heat of the battery, which would decrease efficiency and increase internal 

resistance [4]–[6]. LPF is therefore used to break down the dP into PHF and PLF in order to lessen the active 

load on the battery. The PHF is the mismatch between dP and PLF, while the PLF is the resultant of LPF. 
 

𝑃𝐿𝐹  =  𝑙𝑜𝑤𝑝𝑎𝑠𝑠𝑓𝑖𝑙𝑡𝑒𝑟(𝑑𝑃) (13) 
 

𝑃𝐻𝐿 =  𝑑𝑃 – 𝑃𝐿𝐹 (14) 
 

While the SC should ideally handle the PHF, a highly variable power demand, the battery should 

ideally handle the PLF. This procedure lessens the dynamic stress on the battery by preventing it from 

delivering the high frequency components. The PLF is sent to the FLC to achieve battery high current 

attenuation after the LPF filtration. 
 

3.3.3. Fuzzy logic supervisor (FLS) 

FLC's goal is to lower battery high current while continuously taking the SOCsc into account. The 

Sugeno type fuzzy system, which is utilized in this study, is an effective system for computing that functions 

best with optimization and adaption [16]. The PLF and the SOCsc are the FLC's two inputs, as depicted in 

Figure 3. The power sharing ratio, which is calculated using the real-time data, is the FLC's output. The 

inputs' MFs have trapezoidal forms. In Figure 4, the MFs of the FLC are presented. 

The five MFs present in the input variable PLF are positive high ("PH"), positive medium ("PM"), 

low ("L"), negative low ("NL"), and negative high ("NH") as shown in Figure 4(a). The HESS must meet the 

positive PLF, which is the power demand, and the negative PLF, which is the excess power that must be taken 

in by the battery-SC system. Contrarily, the input variable SOCsc only has three MFs, denoted by the letters 

high (H), medium (M), and low (L) as shown in Figure 4(b). The output variable , meanwhile, has five 
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MFs: PH, PL, zero ("Z"), NL, and NH as shown in Figure 4(c). The power ratio that will be delivered to and 

taken-in by the SC is indicated by the positive and negative membership functions, respectively. 

Table 2 includes a list of FLC regulations which is represented in Figure 4. Regardless of the SOCsc 

situation, when the PLF's power demand is "L," the power sharing ratio () be "Z," as the feable power 

demand places low strain on the battery. To lower the battery's peak current demand whenever the PLF is 

positive,  is fixed according to power demand intensity and SOCsc. To restore the SC's charge when the PLF 

is negative,  is determined with extra power and SOCsc level. To calculate how much electricity the SC and 

PH will share can be used (15). 
 

𝑃𝐻  =   𝑃𝐿𝐹  (15) 
 

PHF and PH are added to determine the overall power that the SC will supply, or Psc*. 
 

𝑃 ∗ 𝑆𝐶 =  𝑃𝐻𝐿 +  𝑃𝐻  (16) 
 

The bidirectional DC-DC converter in the proposed system would control SC power flow in 

accordance with Psc*. Therefore, it is anticipated that the battery will deliver the power discrepancy between 

Psc* and dP as specified in (17). 
 

𝑃𝑏𝑎𝑡𝑡 =  𝑑𝑃 –  𝑃 ∗ 𝑆𝐶 (17) 
 
 

Table 2. Rules of FLC 
 

 
dP     

PH PL L NL NH 

SOCSC H PH PL Z Z Z 
M PL PL Z NL NL 

L Z Z Z NL NH 

 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 4. Membership functions: (a) input 1: PLF, (b) input 2: SOCsc, and (c) output:  

 
 
3.3.4. Moth flame optimization (MFO) algorithm 

The moth-flame optimization approach is based on the transverse orientation mobility of moths in 

environment. Moth flames can travel great distances in a straight direction at night by regulating a stable 

angle with regard to the moon, but artificial light may cause the moths to travel in a dangerous spiral path. 

The moths are candidates for solutions in the MFO algorithm, with the control variable representing their 
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location in space. Therefore, during each flight, moths function as particles that change their positions and 

velocities based on their own pbest as well as the collective group's gbest experience (iteration). 

The number of variables within every problem decides the size of the particles. A fitness function 

calculated at the particle's current position determines the quality of the solution for each particle. The FLC 

may be optimized based on the projected data since the electrical load and RES can both be forecasted. In 

this investigation, the load demand and RES profile presented in Figures 2(d) and 2(e) are taken as the 

baseline model. The anticipated RES data and load demand are used to optimize the MFs of the FLC's input 

variables. Four points together form a complete trapezoidal MF. The first (left) MF and the last (right) MF of 

a variable with more than two trapezoidal MFs each have just two tuning points. As a result, equation can be 

used to determine the number of points that are optimal for a given variable n shown as (18). 
 

𝑛 =  (4  𝑚𝑓) –  4 (18) 
 

mf is the number of MF, in this case. PLF and SOCsc, two input variables, have five and three MFs, 

respectively, in the suggested control approach. Because of this, the MFO algorithm must optimize 24 points 

altogether. In light of this, A 24-dimensional particle can be used to represent an FLC or solution. The 

population size and the number of iterations is user-defined in the MFO procedure, as shown in flowchart. 
 

3.3.5. Fitness function 

The battery's high discharge current causes extreme damage since it raises the battery's temperature 

and the pace at which positive active mass sludges. The major goal is to reduce the battery high current while 

keeping the SC above 50% of SOCsc. The system's cost can be decreased while also increasing battery 

efficiency and lifespan due to the reduction in battery peak current [35]–[37]. The fitness function, f, 

evaluates the solution's fitness in MFO. In this study, the maximum battery current, denoted by f(x), is 

defined in (19). 
 

𝑓(𝑥)  =  𝑚𝑎𝑥(𝐼𝑏𝑎𝑡𝑡) (19) 
 

Where Ibatt stands for the battery current. The highest battery current of every function is noted for the MFO 

algorithm to find the best one in each iteration. 
 
 

4. RESULTS AND DISCUSSION 

4.1.  MFO algorithm 

The fitness value versus iteration count graph is shown in Figure 5. Based on the load profiles 

depicted in Figure 2, MFO optimizes the MFs of FLC. The flowchart for MFO optimization is shown in 

Figure 6, where a population size of 20 particles and a total of 80 iterations are specified. Each 24-

dimensional particle represents an FLC model. Every particle in the population is regulated using the fitness 

function, which is described in (19). After each evaluation, the particle's individual best (pbest) and overall 

best (gbest) are updated. 

Using a randomly generated solution, the first iteration's gbest is 6.0282 A. As iterations go longer, 

the fitness value gets lower. The gbest is maintained at 5.696 A through the 80th iteration after being 

decreased to that value at the 60th iteration. By the time the optimization procedure is complete, the top 

choice (the particle with gbest of 5.696 A) has been converted into an FLC model, as shown in Figure 4. 
 
 

 
 

Figure 5. MFO algorithm's convergence curve after 80 iterations of optimization 

3020100 40 50 60 70 80
5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

No. of Iteration

F
it

n
e
s
s
 V

a
lu

e
 (

A
)



Int J Appl Power Eng ISSN: 2252-8792  

 

An effective control approach of hybrid energy storage system based on mothflame … (V. Prasanna) 

173 

 
 

Figure 6. Flowchart of MFO process 
 
 

4.2.  Simulation 

Simulink is used in this study to build the three models stated in the Table 3. The solar-wind system 

with battery-SC model and RBC is referred as model I. The Solar-wind system with battery-SC model and 

HPF-based FBC is named as model II. The hybrid PV-wind system with battery-SC model and the suggested 

control approach makes up model III. Table 3 depicts the configuration of the control strategies. The power 

source and load profiles are modelled and adapted to all models, as shown in Figure 2. 

A number of battery metrics are assessed, including average battery SOC (SOCbatt average), peak 

battery current (Ibatt peak), peak battery power (Pbatt peak), and final battery SOC (SOCbatt final). Lower battery 

stress, greater battery efficiency, and a decrease in internal voltage are all effects of reducing Ibatt peak and  

Pbatt peak [4], [5]. In this study, the SOCbatt average and SOCbatt final are examined. Higher SOCbatt average and SOCbatt 

final would increase the life of battery and decrease system LPSP. 

|DP| stands for the absolute rate of change of power in a time step of dt, expressed in Watt per 

second (W/s1). To calculate |DP| can be used (20). 
 

||𝑃|  =  
𝑃(𝑡)−𝑃(𝑡−t)

t
| (20) 
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Where P(t) denotes battery power at time t, P(t-Dt) denotes battery power at time t-Dt, and Dt is the study's 1 

s time step. In other words, |DP| can be used to estimate the battery power's amount of fluctuation, with a 

greater value indicating a higher level of variation. Low levels of battery power fluctuation can boost the 

battery's efficiency and life expectancy. This study computes the battery power's maximum |DP| (|DP|max) 

and mean |DP| (|DP|mean) to assess the battery's level of dynamic stress. 
 
 

Table 3. Model configurations 
Model Energy source Energy storage system Control strategy 

I PV/Wind Battery/SC RBC 

II PV/Wind Battery/SC FBC 
III PV/Wind Battery/SC FLC/MFO (proposed control strategy) 

 

 

The simulation model of all battery profiles simulation is shown in Figures 7(a)-(c). Table 4 

compares and summarizes each model's battery performance. The Ibatt peak and Pbatt peak are decreased for Model 

II, according to Figure 7(b) and Table 4, but the battery still endures a significantly variable power demand. As 

the SC expends the majority of its energy to deliver the load, the SOCbatt average and SOCbatt final are increased by 

0.76 percent and 0.01 percent, discretely. These improvements are the largest of all the models. Table 4 and 

Figure 7(b) for model II demonstrate a notable decrease in the active strain of the battery but only a marginal 

improvement in Ibatt peak and Pbatt peak. This is due to the FBC, which was created to lessen the dynamic 

load on the battery without taking peak demand into account. However, the SOCbatt average and SOCbatt final are not 

significantly developed (0%), as the SC only absorbs the highly fluctuating low power components. 

As shown in Figure 7, the battery power profile for model III is noticeably smoother than that of 

Models I and II. SC compensates for the difference between dP and battery power. As previously stated, one 

of the suggested model's objectives is to attenuate the battery's peak demand. The maximum battery current 

in Model III in the simulation is 5.696 A, which is identical to the gbest because the MFO optimization and 

simulation use the same energy source and load profiles. 

 

 

 
(a) 

  
(b) (c) 

 

Figure 7. Battery profiles: (a) battery power – model I, (b) battery power – model II, and  

(c) battery power – model III 
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Table 4. Summary of battery performance 
Battery parameters  Model I Model II Model III 

Ibatt_peak Current (A) 6.053 6.152 5.696 
Attenuation (%) - -1.02 5.9 

Pbatt_peak Power (W) 293.6450 296.5788 275.4768 

Attenuation (%) - -1.01 6.19 
SOCbatt_average SOC (%) 67.3008 66.7895 67.2767 

Increase (%) - 0.76 0.4 

SOCbatt_final SOC (%) 47.8976 47.7657 47.8734 
Increase (%) - 0.01 1.15 

|P|max Rate (ws-1) 24.1243 8.7685 7.4899 

Attenuation (%) - 74.17 77.01 

|P|mean Rate (ws-1) 0.346 0.017869 0.01567 

Attenuation (%) - 95.01 95.59 

 
 

Due to the FLC's inclusion in the suggested control plan, the SC delivers to satisfy the high demand 

while continuously taking its SOC level into account. As a result, when compared to model I, the Ibatt peak and 

Pbatt peak are decreased by 5.9 and 6.19 percent, discretely. Since the SC expends the majority of its energy 

achieving the control strategy's objectives, the SOCbatt average and SOCbatt final are enhanced by 0.4 and 1.15 

percent, discretely which is significantly less than model I.  

By determining the absolute value of the total ampere-hours (amount of charge) travelling to and 

from the SC, |Ah|SC, it is possible to estimate the SC utilization in the HESS. The SC current is integrated 

over time to determine the SC ampere-hours. The SOCsc and |Ah|SC of models I, II, and III are shown in 

Figure 8 during the simulation. The level of battery use decreases as SC utilization increases. As a result, by 

raising the SC utilization level, the system's internal losses can be decreased as shown in Figure 8(a). By 

boosting SC use, the system can be made smaller. This is because a significant portion of the resultant current 

passes via the SC, which has a lower internal resistance and, as a result, causes the battery to heat up less and 

last longer. 

According to Figure 8(b), Model I's final SOCsc is same as the required minimum SOCsc of 50%. 

On comparison, model I perform the poorest in terms of SC utilization and battery active strain reduction, 

meaning that it does not properly use the SC. It also consumes the majority of the SC energy. The result is 

that Model II's total |Ah|SC is 32.65 percent less than Model III but 487.86 percent more than Model I. Only 

0.56 percent net SOCsc is used during the simulation, resulting in a final SOCsc of model II of 92.69 percent. 

In other words, Model II's SC is not fully utilised. In model III, the final SOCsc is kept at a greater level than 

in model I while being kept 7.45 percent over the required minimum SOC of 50%. In compared to the other 

models, model III has the greatest total |Ah|SC, with model I and model II's respective SC utilization levels 

being 687.122 percent and 32.65 percent lower. In other words, the suggested technique can run  

the SC under the specified SOC range and effectively utilize the SC's constricted energy limit to produce 

promising performance. 

 

 

  
(a) (b) 

 
Figure 8. Supercapacitor performance during the course of a 24-hour Simulink simulation (a) accumulated 

ampere hour of supercapacitor and (b) state of charge of capacitor 
 
 

The suggested system (model III) is tested using the load profile depicted in Figure 2(b) and various 

weather conditions. As would be expected, the scenario's most important changes are the decrease in peak 

demand and strain level of the battery. Regardless of the weather and load profile, the simulation results 

demonstrate that the suggested method greatly attenuates the battery’s active strain (|DP|mean) by more than 

80% when compared to model I. In the meantime, the decrease in battery’s high need depends on the stress 
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level of dP, which is established by the power source and the load demand. With the high dP and low PV 

output or peak load demand, the battery peak demand can be significantly reduced as shown in Figure 8 [38]. 
 
 
5. CONCLUSION 

An optimal control approach and the Simulink of the proposed solar-wind system with battery-SC 

model are presented in this study. The system's goals are to decrease the strain and high-power need of the 

battery by utilizing LPF and FLC. To optimize the reduction of the battery high current, the MFO algorithm 

is used to adjust the MFs of the FLC. The proposed model is assessed and analyzed with the traditional 

system using control techniques (RBC and FBC). According to the simulated outcomes, the proposed method 

significantly reduces the strain and high current need of the battery, by increasing the overall utilization of 

Supercapacitor which would ultimately increase the battery's lifespan. 
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