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 This article proposes a nine-level switched capacitor inverter (NLSCI) with a 

minimum number of switches. In recent years, switching capacitor (SC) 

multilevel inverters (MLIs) have become one of the most common inverter 

topologies. These proposed nine level switched capacitor inverter (NLSCI) 

do not deserve any external control unit for capacitor control. Since, the 

charging and discharging of the capacitors are controlled by the on and off 

states of switches. Furthermore, by employing fewer switches and DC 

voltage sources, the suggested design produces a greater amount of resultant 

voltage. Additionally, pulse width modulation (PWM) is recommended as a 

method to enhance output quality and power level quality. The switched-

capacitor two-output multilevel inverter (SCMLI) structure's viability and 

effectiveness have been demonstrated using MATLAB simulation. 
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1. INTRODUCTION 

A switching capacitor (SC) circuit facilitates the generation of a DC voltage waveform having 

multiple levels, which can be employed to a drive a full-bridge inverter. The optimized inverters in [1], can 

produce an output waveform with similar total harmonic distortion (THD) as conventional multilevel 

inverters but with a lower count of circuit elements. The fundamental switching frequency multilevel 

inverters have a special feature of low switching loss because very few power device commutations take 

place during one cycle of the output voltages, whereas the staircase waveforms have an additional level to 

achieve low harmonic distortion [2]. In comparison with the conventional voltage-balancing circuit diode-

clamped five-level inverter is capable of decreasing its inductor to one tenth in volume [3]. The architecture 

of the multilevel circuit based on the switched capacitor converter and diode clamped converter can 

converted to any type of n-level converter and can proficiently use in three-phase system. The SC circuit 

supports to generate the output voltage level and balance the voltage of dc link capacitors and flying 

capacitors under any load circumstances [4]. By using switched capacitor, a charge pump is capable of 

creating voltage that is higher than the incoming voltage. The charge pump creates a combination of the input 

voltage supply and the capacitor voltages [5]. It is suggested to use an innovative switched-capacitor layout 

and H-bridge backend to build a cascaded multilevel inverter (MLI). The SC will enhance the number of 

different voltages through the conversion of series and parallel connections, and the output harmonics and 

component counter can be minimized by a rising variety of voltage levels [6].  

Electric vehicles (EVs) also have electric motor drive systems that transform electric power using 

power converters like pulse width modulation (PWM) inverters and DC/DC converters [4], [5]. Inverter 
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technology performs a major part in these networks [7]. In further to the proposed design, simple techniques 

can be used to balance the capacitor voltage. The hybrid source SC layouts can be employed in PV systems 

and electric car applications [8]. The quantity of SC cells determines how many output stages are present. 

The issue of capacitor voltage balancing is also addressed in [9], and only one DC voltage source is required. 

In [10], the proposed SCC unit is used in alternate arrangement as a stateful multi-layer inspection (SMLI) 

and then in each SMLI unit rather than using a full H-bridge cell, which helps to reduce the overall cost by 

using fewer switches. Without the help of a voltage or current sensor, a straightforward pulse width 

modulator built on logic-form equations is created to keep the FC voltage at its reference value. So, the 

layout recommended can be controlled with very little complexity [11]. This structure can be used where the 

DC input sources are un-even. As the voltage sources are not stacked in series, voltage balancing is not 

required in this configuration. For example, in case of the ac micro grids based on renewable energy sources 

and present-day electric vehicles, the harmonic content in the waveform is evaluated and found to be very 

little [12]. In order to increase system stability and standardize the control technique in [13], the topology 

consists of DC-DC and DC-AC steps with a separate controller for each stage. A single-stage switched-

capacitor module (S3CM) technology for cascaded MLI assures that the peak inverse voltage across all 

switches exists within the DC source voltage [14]. 

Switched-capacitor single-source CMI (SCSS-CMI) is the title provided to the suggested layout, 

which substitutes some capacitors for the DC sources. Typically, a SC cell's capacitor charging method is 

followed by some current surges that seriously damage both the capacitor and the charging switch and also it 

offers the zero-current switching condition for the charging switch [15]. This modulation method generates 

high rms voltage and the minimum THD. This kind of configurations are generated in the nine-level 

CSCMLI with single DC source and two capacitors [16]. A collection of multiport switched-capacitor two-

output multilevel inverter (SCMLI) uses asymmetric dc voltage sources with a common ground, making it 

perfect for use in solar energy farms and contemporary electric cars [17]. There are two improved switched-

capacitor integrated MLI designs, they resolve the high voltage pressure issue that their counterparts. 

Additionally, it has plenty of benefits, such as a decrease in the amount of DC sources and an increase in the 

voltage boosting gain [18]. The major benefits of this structure are a smaller number of switches and 

capacitors with the capable of boosting. To determine whether the converter can be used for high-power 

applications, an efficiency factor for capacitor usage is specified. Without using an output filter, the converter 

has a high efficiency (>90%) and a low THD (3.7%). Due to these characteristics, both standalone and grid-

connected PV systems can use the suggested converter [19]. A brand-new SC-based MLI structure is 

suggested, along with related mixed PWM modulation methods. Two half-bridge modular SC circuits are 

organized on the left and the right corners of the dc input source which have a high rate of efficiency with a 

maximum value over 97% [20]. In [21], discusses a family of novel enhanced-boost quasi-Z-source inverters. 

In [22], a configuration using series-connected switched DC sources along with an optimized H-bridge 

circuit is presented, providing a comprehensive analysis of the operating modes and modelling process of the 

proposed converter. An interesting aspect of this design is that it eliminates the need for DC-link capacitors. 

In [23], a new inverter topology is proposed, specifically tailored for renewable energy and fuel cell 

applications that require high magnitude output AC voltage. The use of switched capacitors in [24] enables 

efficient voltage boosting without the necessity for additional boost DC-DC converters. The topology 

presented in [25] demonstrates the ability to produce thirteen voltage levels using a single DC source, 

highlighting its voltage boosting and self-balancing features, making it a promising solution for high 

magnitude output AC voltage needs.  

The objective of this paper is to present an innovative inverter configuration employing the 

switched-capacitor technique. The primary focus lies in leveraging a single DC voltage source, thus 

eliminating the necessity for extra diodes and floating capacitors. By employing just 11 switches and two 

capacitors, this configuration can produce up to nine distinct voltage states. Additionally, it ensures a voltage 

gain twice that of the input voltage, while also guaranteeing self-balancing of the switched capacitor voltage. 

Furthermore, it effectively reduces the voltage rating of the switching elements. This paper proposed and 

describes a nine level switched capacitor inverter (NLSCI) with eleven switch, two capacitors and a DC 

source. The simulations were performed using MATLAB/Simulink. 
 

 

2. NLSCI CIRCUIT TOPOLOGY 

The suggested nine level switched capacitor inverter (NLSCI) is shown in Figure 1. This topology 

minimizes the total number of sources in the circuit by managing the capacitor charging and discharging. The 

capacitors can self-balance by controlling with the parallel and series mode. By employing this characteristic 

of the SC structure, we can able to avoid the supply of extra power. This topology uses switched capacitors 

and PWM to generate a multi-level output voltage. It consists of DC voltage sources, capacitors, electrical 

switches, control circuits, and auxiliary bidirectional switches. Different voltage levels are produced by 
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switching the capacitors, and the power switches are modulated by level shifted - sinusoidal PWM (LSPWM) 

signals. This topology provides high-quality output voltage with low harmonic distortion, making it suitable 

for various applications. It can output nine levels of voltage (± 2 Vdc, ±1.5 Vdc, ±0.5 Vdc, ±Vdc, and 0 Vdc) 

determined by the polarity conversion circuit's switching components. 

The operational states of various devices are mentioned in Table 1, including the on and off phases 

of power switches and the charging and discharging states of capacitors. The functioning modes of switches 

are indicated by 1/0, and the charging, discharging, and idle states of capacitors are denoted by "C", "D," and 

"-," respectively. Figures 2(a)-2(i) shows the nine-level inverter's current paths, with the forward current path 

represented by the Plum solid line and the backward current path represented by the green line. This analysis 

assumes that the power switches' on-state resistance and voltage drop are both zero, the capacitor is 

sufficiently large, the voltage ripple is minimal, and the inverter has reached steady state. The reverse current 

paths are indicated with green dotted lines when the load is inductive. The forward current path corresponds 

to a particular path in each of the inverter's operational states, so inductive loads can be integrated into the 

suggested architecture without the need for additional voltage regulation. 
 
 

 
 

Figure 1. Proposed NLSCI circuit topology 
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Figure 2. Current path for proposed inverter: (a) 2 Vdc level, (b) 1.5 Vdc level, (c) Vdc level, (d) 0.5 Vdc 

level, (e) 0 Vdc level, (f) -0.5 Vdc level, (g) -Vdc level, (h) -1.5 Vdc level, and (i) -2 Vdc level 

  
(a)

  

(b)

  

(c)

  

  (d)

  

(e)

  

(f)

  

(g) (h) (i) 



Int J Appl Power Eng ISSN: 2252-8792  

 

Nine level switched capacitor inverter with level shifted pulse width … (Vijayakumar Arun) 

133 

It has a total of nine switches in the arrangement, but only 4 of them must remain active in order to 

produce the desired result. Losses will be minimized, and the switching process will be very simple. Two DC 

sources (100 V and 300 V) are often used to supply the essential dc voltage to the circuit. Important to this 

design is its ability to produce a wide range of voltages for both directions without turning to an H-bridge 

circuit. To prevent sources from being accidentally shorted out, the switches are designed so that the anti-

parallel diodes within them are not forward biased. The proposed topology avoids source short-circuiting by 

selecting a switching state that accounts for all possible scenarios as possible. The suggested MLI's different 

operation modes are displayed in Table 1. The states of operation of 2 Vdc, 1.5 Vdc, Vdc, 0.5 Vdc, and  

0 Vdc similarly for negative voltages are being depicted in Figures 2(a)-2(i). 

 

 

Table 1. NLSCI switching sates NLSCI 
Switches C O/P 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 C1 C2  
1 0 0 1 0 1 1 0 0 0 0 D D 2 Vdc 

1 0 0 1 0 1 0 1 0 0 0 D - 1.5 Vdc 

1 0 0 1 0 0 0 0 1 0 0 C C Vdc 
0 0 0 1 0 0 0 0 1 1 1 C D 0.5 Vdc 

0 1 0 1 0 0 0 0 1 0 0 C C 0 

0 0 1 0 0 0 0 0 1 1 1 D C -0.5 Vdc 
0 1 1 0 0 0 0 0 1 0 0 C C -Vdc 

0 1 1 0 1 0 1 0 0 0 0 - D -1.5 Vdc 

0 1 1 0 0 1 1 0 0 0 0 D D -2 Vdc 

 

 

3. CONTROL STRATEGY 

In the level shifted-sinusoidal PWM technique (LSPWMT), an N-level inverter was built using 

(N-1) carriers that had the identical frequency and maximal amplitude. The below zero axis carriers have in 

phase with each other and similarly the above zero axis carriers also arranged in phase with each other, as 

demonstrated by the carrier signal in Figure 3(a) (see Appendix). The technique used to arrange these carriers 

in consecutive phases is known as phase disposition (PD). Consequently, by matching a sinusoidal 

modulating wave to a triangle-shaped carrier wave utilizing comparator, the preliminary activating pulse is 

created instantaneously if the pulse is larger than the carrier signal. Following that, the required logical 

circuits are used to make relevant switching signals. There are 9 switches engaged in the NLSCI, and their 

respective gate pulses are being depicted in Figure 3(b) (see Appendix). 

 

 

4. FINDINGS THROUGH SIMULATION 

In MATLAB/SIMULINK, the NLSCI arrangement is developed and simulated using the level 

shifting phase disposition pulse width modulation (LS-PDPWM) technique for performance verification. The 

resulting 9-level waveform can be represented by voltages of 0, ±100 V, ±200 V, ±300 V, and ±400 V. For 

the simulation investigation, the relevant parameters are taken into account: 100 ohm-25 mH RL load, 

capacitor (C1 and C2) of 2200 F and V=200 V. Figures 4(a) and 4(b) display the NLSCI results form and the 

associated voltage harmonic bands with a modulation index (MI) of 1. At a highest fundamental voltage of 

390 V, the voltage output waveform has a THD of 14.76%. Figures 5(a) and 5(b) depict the wave patterns of 

the voltage and current in addition to the harmonic voltages of NLSCI spectrum response for MI 0.9, 

accordingly. Peak voltage for NLSCI is 360 V, with a 16.74% THD in its voltage. The peak voltage for 

NLSCI is 319.9 V produced by NLSCI and NLSCI spectrum response of the harmonic voltage for MI of 0.8 

have been portrayed in Figures 6(a) and 6(b), correspondingly. The generated voltage waveform exhibits a 

total harmonic content of 17.15% and a highest fundamental voltage of 319.9 V. The output obtained by 

NLSCI are laid out in Figures 7(a) and 7(b) and NLSCI spectral response of the harmonic voltage for MI 0.7, 

respectively. NLSCI has a peak voltage has 280 V with a total harmonic distortion (THD) of 21.24 percent. 

As per the findings in Table 2, the suggested non-linear switched capacitor inverter (NLSCI) 

exhibits improved efficiency (98.85%) compared to other systems due to its lower power loss. The power 

loss of the NLSCI was evaluated using PLECS software, and the net losses were recorded at a power output 

of 521.9 W. Specifically, the effective switching loss of the N9LI was found to be 0.14%, while the 

conduction loss was 1.01%. Additionally, the % η (efficiency) and power loss of the N9LI were analyzed for 

various power ratings through simulation and experimental setups, and the outcomes are summarized 

in Table 2. From Table 2, it is evident that the NLSCI outperforms other systems at 521.9W, achieving an 

efficiency value of 98.85% in simulation and 98.84% in experimental testing. 
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(a) (b) 
 

Figure 4. NLSCI with LS-PDPWM (a) load voltage and current with modulation index of 1 

and (b) load voltage FFT 
 

 

 

 

(a) (b) 
  

Figure 5. NLSCI with LS-PDPWM (a) load voltage and current with modulation index of 0.9 

and (b) load voltage FFT 
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Figure 6. NLSCI with LS-PDPWM (a) load voltage and current with modulation index of 0.8 

and (b) load voltage FFT 
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Figure 7. NLSCI with LS-PDPWM (a) load voltage and current with modulation index of 0.7 

and (b) load voltage FFT 
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Table 2. Power loss comparison and efficiency of the NLSCI different output power 
Load rating Simulation Measured 

Output power %η % loss Output power %η % Loss 

150Ω 521.9 98.85 1.15 521.7 98.84 1.16 

120Ω 652.4 98.81 1.19 652.3 98.80 1.2 

100Ω 782.9 98.74 1.26 782.8 98.72 1.28 
80Ω 977.9 98.71 1.29 977.9 98.68 1.32 

60Ω 1307 98.71 1.29 1306.9 98.69 1.31 

50Ω 1568 98.69 1.31 1567.9 98.66 1.34 
40Ω 1960 98.61 1.39 1958 98.58 1.42 

 

 

5. CONCLUSION 

This study presents NLSCI with LS-PDPWM techniques. The recommended NLSCI has a plenty 

benefit over numerous different MLI topologies. In comparison to certain other MLI topologies, the NLTSI 

generated 9 levels of voltage with the fewest switching devices and input power sources. Increased output 

voltage, reduced harmonics, and an improved voltage profile are all benefits of the NLSCI that has been 

suggested. The efficiency of NLSCI is assessed with various MI. The MI one results in 14.96% THD. The 

results of the simulations show that the suggested NLSCI is effective. By expanding the basic units, a wider 

range of output values can be accommodated by adding to the NLSCI layout. 
 

 

APPENDIX 
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Figure 3. PD approach switching pattern of NLSCI: (a) carrier pattern and (b) switching pulses 
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