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1. INTRODUCTION

Rebuilding of electrical networks was reportedly necessary due to decreasing perishable resource
stocks. Renewable energy sources are now integrated into the system as a result of this rebuilding. Over the
years, D-STATCOMSs have become one of the leaders in the society's current power constraint. The benefits
of integrating D-STATCOM s into conventional grids are the most crucial area of study for D-STATCOM
location. It enables operators to save back on capital expenditures for managing and improving power systems.
It contributes to lowering expenditures for extra control equipment, bolstering transmission and distribution
networks, and boosting reliability [1], [2]. Additionally, it helps operators increase efficiency and reduce power
transmission loss. The major concerns for a distribution network are it suffers from various issues such as
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power losses, poor voltage levels, and limited voltage stability. These problems occur because the system lacks
support for reactive power when there is an increase in demand. To overcome these challenges, engineers and
researchers have proposed different strategies [3], [4]. Different approaches aim at improving electricity
distribution system performance. These techniques consist of establishing voltage regulation mechanisms,
incorporating compensating equipment such as shunt capacitors or distributed generators into the network, and
adjusting its configuration where necessary [5], [6]. The latest advancements suggest utilizing flexible AC
transmission system (FACTS) devices like dynamic voltage regulators (DVRs), D-STATCOMS, and unified
power quality conditioners (UPQCs). Among these devices, D-STATCOM is a strong contender due to its ease
of connection and local control feature [7]. By connecting D-STATCOM in parallel to the system, it can
enhance the profiling of voltage, reduce losses, mitigate issues caused by voltage sags, nonlinear loads, and
voltage fluctuations, and increase voltage security margins. In recent years, there has been significant
advancement in establishing appropriate strategies for allocating D-STATCOMSs more effectively. Sensitivity-
based approaches relying on different indicators such as voltage stability index and other related variables are
commonly applied today [8], [9]. However, reliance on such methods often poses issues with regard to their
reliability. To mitigate this challenge, many researchers have begun exploring alternative methodologies based
on metahuristic framework for attaining the optimal allocation of D-STATCOMs. This paper introduces a
novel optimization technique (CMAESAO) as a means to determine the allocation D-STATCOMs. A more
recent meta-heuristic algorithm, called CMAESAO, is used to optimize allocations of DSTATCOMSs [10]. The
proposed hybrid CMAESAO technique demonstrates faster convergence, a well-balanced exploration
exploitation process, and improved global search ability [11]. Its effectiveness has been validated using 23
benchmark functions, covering various types such as continuous, discontinuous, linear, nonlinear, separable,
non-separable, unimodal, and multimodal. The results demonstrated the algorithm's efficiency and reliability
in solving optimization problems [12].

2. MODELLING OF ELECTRICAL DISTRIBUTION SYSTEM

Utilizing multiple components such as a voltage source converter, DC capacitor bus, coupling
transformer and tuned filter, the D-STATCOM showcases itself as a shunt device worth taking note of while
energy storage devices are optional in this device, it’s crucial to highlight that deploying voltage source
converters enables its ability to function as a generalized impedance converter which permits importing or
exporting reactive power at point of common coupling (PCC) [13]. It’s noteworthy that when equipped with
an energy storage device too, active power injection is within reach. However, the present research only focuses
on reactive power regulation for purposes of this study. Figure 1(a) illustrates a two-bus equivalent of the
distribution network for [14].

Vis140p41 = VelO — (R + jX1n) L0 (D

The compensated network, along with the DSTATCOM configuration and the phasor representation of the
compensation network as described in (1) and (2), is illustrated in Figure 1(b).

Vis140p41 = V20 — (R + jXin) U DS + Ipstatcom + P) (@)

Since the D-STATCOM functions as a reactive power source, its current is phase-shifted by 90 degrees with
respect to the voltage at the compensated node. Consequently, it injects or absorbs reactive power without
affecting the active power flow, thereby improving voltage stability and power quality at the point of
connection.

Y=7+00 3)

The power injected by the D-STATCOM can be expressed as (4).

. ! ! " T !
=) QDstatcom = Vt+149t+1 + IDstatcomL (E + 9t+1> (4)

This research employs the covariance matrix adaptation evolution strategy of aquila optimization to determine
the optimal locations and capacities of multiple D-STATCOMSs, aiming to minimize active (real) power loss
in the electrical distribution system. The optimization process adheres to operational constraints outlined in (3)
and (4). Since distribution utilities prioritize reducing real power loss due to its direct economic impact more
so than voltage regulation or system stability [15]. The primary objective of this research is the optimal
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allocation of D-STATCOMSs to achieve minimal real power loss. Mathematically, the real power loss is
expressed in (5).

Ploss = Zm:lllmlz X Rm (5)

The primary objective is to minimize real power loss in the distribution system, which is formulated as the
objective function presented in (6).

OF = min(Ploss) = min(Zmzlllmlz X Rm) (6)

The network's bus voltage is permitted to vary within a range of £5% of the nominal voltage. The current flow
within the distribution network is certainly to be affected by the presence of DSTATCOM. Therefore, a
constraint is established to restrict the branch flow within the prescribed limits when D-STATCOMs are
introduced. The nodes used for insertion of DSTATCOMs are not prone to repetition. The size of allocated
DSTATCOMs must be bound by (7).

Y.i=1 QDstatcom,i = Y,;—, Qload, t @)

The allocation of DSTATCOMs is optimized through the use of CMAESAO. It is a combination of the benefits
of two optimization techniques are CMAES and AO [16].

1
D-STATCOM _XI,

(@) (b)

Figure 1. DSTATCOM compensation in a distribution network: (a) two-bus equivalent of the distribution
network and (b) phasor diagram of DSTATCOM

3. COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY

Covariance matrix adaptation evolution strategy (CMA-ES) is a powerful evolutionary algorithm
designed for continuous domain optimization problems. It is particularly effective for non-linear, non-convex,
and ill-conditioned optimization tasks where gradient-based methods may struggle or fail. The core idea of
CMA-ES is to evolve a population of candidate solutions by sampling from a multivariate normal distribution,
that mean and covariance matrix are updated iteratively to reflect the topology of the objective function.
At each generation, new candidate solutions (offspring) are sampled from a Gaussian distribution centered
around the current mean. The covariance matrix plays a critical role in shaping this distribution, allowing the
algorithm to capture dependencies between variables and adapt the search direction. The best-performing
individuals, based on the fitness function, are selected, and the distribution parameters (mean, step size, and
covariance matrix) are updated accordingly. The most distinguishing feature of CMA-ES is the covariance
matrix adaptation. This mechanism enables the algorithm to learn the shape of the objective function landscape
dynamically. Over time, the covariance matrix reflects the correlation structure between variables, guiding the
sampling process toward promising regions in the search space. The algorithm also includes mechanisms such
as step-size control and evolution paths to improve convergence and exploration-exploitation balance.
CMA-ES does not require gradient information, making it well-suited for black-box optimization problems.
It has been successfully applied in various domains, including machine learning model tuning, control systems,
robotics, and engineering design. Despite its computational cost due to covariance matrix updates, its
robustness and self-adaptation capabilities make it one of the most reliable evolutionary strategies for
challenging optimization problems. The (8) represents the updated evolution.

Mpew = Moig X Pstep (8)
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Where, Mypey, Moig, and psrep denotes new mean, old mean, and the evolution path, respectively. The
adaptation for o is expressed by (9).

(< PS e
Onew = Oold X exp (‘CI_U (E|I|NE0T;|)||| - 1)) (9)

Where, 06> Oo1as Cq» dgs E, and N(0, ) represents the new step-size, old step size, normalization constant,
damping parameter, expected value, and expected length to update the conjugate evolution path, respectively.
The adaptation for Cis expressed by (10).

Cnew = (1 —C — C/,L) X Cold + ¢ X (Pstep X Ps@ep) + Cu X Z?:l w; X (yi X sz) (10)

Where, Cpew, €15 Cus Colas PSTtep, w;, y;, and y! represents the new covariance matrix, update parameter-1,
update parameter-2, old covariance matrix, conjugate of the evolution path, weight assigned to each solution
candidate, weighted difference vector of solution, and its conjugate, respectively [17].

Figure 2 presents the flowchart for the covariance matrix adaptation evolution strategy (CMAES)
technique, illustrating its iterative optimization process. The algorithm begins with the initialization of key
parameters such as population size, mean vector, and covariance matrix. It then enters a loop where a new
population of candidate solutions is sampled from a multivariate normal distribution [18]. These solutions are
evaluated using a fitness function, and the best-performing individuals are selected to update the mean and
covariance matrix, effectively guiding the search towards promising regions in the solution space. The process
continues iteratively, adapting step sizes and covariance to improve convergence until a stopping criterion,
such as a maximum number of generations or convergence threshold, is met [19].
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Figure 2. Flowchart for CMAES technique

4. AQUILA OPTIMIZATION (AO)

Aquila optimization (AO) is a recent nature-inspired metaheuristic algorithm that mimics the
intelligent hunting strategies of the aquila (eagle). This bird of prey uses four distinct methods—high soar with
vertical stoop, contour flight with glide attack, low flight with slow descent, and walk-and-grab—to adaptively
catch its prey, depending on the target's location and movement. Similarly, AO models the exploration and
exploitation phases of optimization based on these hunting strategies, enabling it to switch dynamically
between global and local searches during the problem-solving process. In the AO algorithm, the optimization
begins by initializing a population of candidate solutions. The total number of candidates is denoted by N, and
each candidate operates within a solution space defined by the dimension D. These candidates form a two-
dimensional array X of size NxD times NxD, where each row represents a potential solution. The initial
positions are randomly generated within the defined boundaries of the problem. AO then applies one of the
four modeled hunting behaviors based on a probabilistic selection mechanism, which is mathematically
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governed by (13), allowing the algorithm to balance exploration and exploitation effectively. As the iterations
progress, each candidate's position is updated according to the strategy selected in that iteration. The
performance or fitness of each candidate is evaluated using a problem-specific fitness function. The best
candidate is preserved across generations, and the population adapts accordingly. AO's adaptability and
strategic update mechanism enable it to converge quickly to the global optimum while avoiding local minima,
making it suitable for solving complex optimization problems in various engineering and computational
domains [20].

Figure 3 illustrates the flowchart for the aquila optimization (AO) algorithm, depicting its structured
approach to solving complex optimization problems. The process begins with the initialization of key
parameters, including the number of candidate solutions, dimensionality of the problem space, and boundary
constraints. An initial population of potential solutions is randomly generated and evaluated using a defined
fitness function. The best solution among them is identified and stored for reference [21]. Based on a random
probability and the current iteration, the algorithm selects one of the four aquila-inspired hunting strategies to
guide the movement of candidates ranging from global soaring and gliding to precise local attacks. In the
iterative loop, each candidate solution is updated based on the selected strategy, reflecting the dynamic nature
of aquila’s hunting behavior [22]. These strategies balance exploration (searching new areas) and exploitation
(refining known good solutions). After each update, the fitness of the new candidates is evaluated, and the best
solution is updated if a superior one is found [23]. This process repeats until a termination criterion, such as
reaching the maximum number of iterations or achieving a satisfactory fitness level, is met. The flowchart
effectively captures the adaptive and intelligent nature of AO, showcasing how it emulates aquila's flexible
hunting tactics to navigate the search space and find optimal solutions [24].

| Initialize the parameters OFAO|
!

k2
‘ Evaluate fitness function and determine best solution |

i 1
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Figure 3. Flowchart for AO

5. COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY BASED AQUILA
OPTIMIZATION

The covariance matrix adaptation evolution strategy-based aquila optimization (AOCMAES) is a
novel hybrid algorithm that combines the strengths of two powerful optimization techniques aquila
optimization (AO) and covariance matrix adaptation evolution strategy (CMAES). AO is known for its efficient
global search capabilities inspired by the hunting strategies of aquila eagles. However, despite its exploratory
strength, AO often suffers from slower convergence, longer runtimes, and a tendency to get trapped in local
optima when dealing with complex problem landscapes. To overcome these limitations, the proposed
AOCMAES integrates the local search efficiency of CMAES into the AO framework. CMAES, as a local
optimizer, adapts the covariance matrix of a multivariate normal distribution to guide the generation of new
candidate solutions [25]. It excels in fine-tuning solutions by exploiting the search space around promising
regions, leading to faster convergence and improved precision. By embedding CMAES into AQ’s iteration
cycle, the hybrid algorithm benefits from both the exploration ability of AO and the exploitation efficiency of
CMAES. This integration helps in escaping local optima and achieving global optima more consistently and
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quickly [26]. In AOCMAES, the optimization begins with AO’s global search phase, where diverse candidate
solutions explore the wider search space. When the algorithm identifies a promising region or begins to
stagnate, the CMAES module is triggered to perform an intensive local search around the best solution. This
dynamic switching ensures that the exploration is not prematurely stopped and that the algorithm can fine-tune
optimal solutions effectively. The balance between exploration and exploitation is thereby significantly
enhanced [27]. Overall, the AOCMAES hybrid algorithm delivers superior optimization performance by
combining the global reach of AO and the local precision of CMAES. The result is an improved convergence
rate, reduced computation time, and enhanced robustness in navigating complex search spaces. The
optimization parameters are adaptively tuned during the run to ensure that the algorithm approaches optimal
solutions within a shorter interval, making it suitable for real-world engineering and computational applications
requiring high efficiency and accuracy [28].

Figure 4 illustrates the numerical representation of key optimization parameters used in the
CMAESAO technique through a bar graph. The graph shows that the maximum number of iterations is set to
1000, highlighting the algorithm's capacity for extensive searching [29]. Both the alpha (o) and delta (J)
parameters, which control the exploration and exploitation balance, are set to their average values of 0.5 within
the range [0.1, 0.9]. The problem dimensionality is relatively low at 4, indicating a moderate complexity of the
search space. Lastly, the number of aquilas (candidate solutions) is 100, reflecting a robust population size to
support diverse global search capabilities. This visualization helps in understanding the scale and role of each
parameter in the optimization process [30].

CMAESAQ Technique Optimization Parameters

1000.0
1000

300

600

Value

400

2001
100.0

a5 0.5 4.0

Maximum Iteration Alpha (o) Delta {6) Dimension Number of Aquilas

Figure 4. Parameters for CMAESAO

Figure 5 presents the flowchart for the covariance matrix adaptation evolution strategy-based aquila
optimization (CMAESAO) technique, depicting the integration of AO and CMAES for enhanced optimization
performance. The process initiates with the input of algorithm-specific parameters such as population size
(number of aquilas), dimension of the problem space, alpha (a), delta (3), and the maximum number of
iterations. An initial population of candidate solutions is generated randomly within the defined bounds, and
each solution's fitness is evaluated using a predefined objective function. The best solution is identified and
stored for future reference [31]. Following initialization, the main optimization loop begins, where the aquila
optimization (AO) strategies are applied to guide global search. These strategies mimic different hunting
behaviors of Aquilas and allow candidates to explore diverse regions of the solution space. Based on a selection
mechanism influenced by a and 9§, the algorithm decides whether to perform exploration or move towards
exploitation. When stagnation or promising regions are detected, the CMAES module is triggered. CMAES
then conducts a focused local search using adaptive multivariate normal sampling, updating the mean and
covariance matrix to refine the solution around the best candidate. This hybrid process continues iteratively,
with the algorithm alternating between AO’s global search and CMAES’s local refinement based on
convergence behavior [32]. At each step, the population is updated, and the fitness of new candidates is
compared to identify improvements. The loop terminates when the maximum number of iterations is reached
or an acceptable solution is found. The flowchart in Figure 4 clearly outlines the intelligent switching and
cooperation between AO and CMAES, illustrating how their synergy results in improved convergence speed,
reduced computational effort, and more reliable global optimization outcomes [33].
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Figure 5. CMAESAO technique flowchart algorithm

6. RESULTS AND DISCUSSION

The performance of the proposed CMAESAO technique has been rigorously evaluated using a
comprehensive set of benchmark functions. Table 1 presents the details of these benchmark functions, which
include a diverse range of mathematical test problems commonly used in optimization research. These
functions vary in complexity, modality (unimodal or multimodal), dimensionality, and landscape
characteristics, making them ideal for assessing the robustness and versatility of the optimization algorithm.
They test an optimizer’s ability to locate global optima, escape local minima, and converge efficiently across
different search landscapes. In this study, a total of 23 benchmark functions, as outlined in Table lhave been
employed to validate the effectiveness of the CMAESAO hybrid technique. These include well-known
functions such as Sphere, Rastrigin, Ackley, Griewank, and Rosenbrock, among others. By comparing the
results of CMAESAO with standard optimization algorithms, the study demonstrates its superior convergence
rate, higher solution accuracy, and stronger balance between exploration and exploitation. The wide variety of
benchmark functions ensures that the performance evaluation is comprehensive and realistic, ultimately
proving the hybrid algorithm’s capability to handle diverse and complex optimization tasks efficiently.

Table 1 outlines the comprehensive set of benchmark functions used to evaluate the performance of
the proposed CMAESAO algorithm. These functions span a wide range of optimization landscapes, including
unimodal and multimodal functions, making them suitable for assessing both exploration and exploitation
capabilities. Each function is tested in a specified dimensional space—mostly 30 dimensions, except for a few
lower-dimensional functions (e.g., 2D, 3D, 4D, and 6D) to reflect real-world problems with varying
complexity. The functions operate within defined input ranges, such as [-100,100][-100, 100][—100,100],
[-600,600][-600, 600][—600,600], or [0,1][0, 1][0,1], which influence the difficulty level of locating global
optima. These benchmark functions include widely studied mathematical formulations such as Sphere,
Rastrigin, Ackley, Rosenbrock, and Griewank functions, among others. They are known for their varied
characteristics like high non-linearity, ruggedness, deceptive local minima, and sharp valleys. By including
such a diverse set, the evaluation tests how efficiently CMAESAO navigates through different types of
objective surfaces. This range of functions ensures that the algorithm is not biased toward specific problem
types and maintains generalizability across optimization scenarios. The performance of CMAESAO has been
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further compared against a broad array of established metaheuristic algorithms including grasshopper
optimization algorithm (GOA), equilibrium optimization (EO), particle swarm optimization (PSO), dragonfly
algorithm (DA), ant lion optimization (ALO), grey wolf optimizer (GWO), marine predator algorithm (MPA),
salp swarm algorithm (SSA), sine cosine algorithm (SCA), whale optimization algorithm (WOA), and slime
mould algorithm (SMA). Each of these algorithms has proven effective in different studies, yet the hybrid
CMAESAO has demonstrated enhanced robustness and convergence consistency across all benchmark cases.

Table 2 presents the detailed performance comparison between the standalone aquila optimization
(AO) and the hybrid CMAESAOQO algorithm using various benchmark functions. For each function, metrics
such as mean, standard deviation, best, and worst values were computed across multiple runs to assess
consistency, accuracy, and robustness. The first major observation is the substantial improvement in
convergence precision achieved by CMAESAO. For example, in functions where AO already produced
extremely small mean values (in the order of 1072'%, CMAESAO pushed performance even further into the
range of 1072%, showcasing its superior ability to approach global optima with higher precision and stability.
The comparison also highlights CMAESAQ's remarkable advantage in standard deviation values, which
remain significantly lower or even zero in many cases, indicating high consistency and minimal variation in
outcomes. This is especially evident in functions involving multimodal landscapes, where AO tends to show
noticeable variance between best and worst cases. In contrast, CMAESAO maintains tight performance
bounds, proving its robustness. For example, in one of the benchmark functions, AO’s worst-case result is
several magnitudes higher than its best, while CMAESAO remains tightly clustered around optimal
performance with negligible standard deviation. The CMAESAO outperforms AO in best and worst-case
scenarios, indicating better reliability in extreme outcomes. For instance, in several benchmark cases,
CMAESAQ’s worst performance is still significantly better than AO’s best. This illustrates the hybrid model's
capability to avoid poor local optima and navigate complex search spaces more effectively. The inclusion of
CMAES enhances local exploitation, fine-tuning the solutions identified by AO’s broader global exploration
mechanisms. Overall, the results in Table 2 validate the effectiveness of the CMAESAO hybrid approach
across diverse benchmark functions. It consistently surpasses AO in all statistical metrics, including mean
accuracy, variance control, and extremum performance. The integration of CMAES ensures not only faster
convergence but also a more precise and reliable optimization process. This performance gain confirms the
hybrid algorithm’s suitability for solving high-dimensional and computationally challenging optimization
problems in real-world applications.

6.1. Performance index using statistical analysis

The statistical analysis of the performance index highlights the enhanced efficiency of the proposed
CMAESAO algorithm by directly comparing it with the original AO under identical conditions. Both
algorithms were subjected to the same fitness function f(x) and evaluated using identical optimization
parameters, ensuring a fair and consistent comparison. The analysis focused on key performance indicators
such as the integral of time-weighted absolute error (ITAE), which is widely used to assess convergence quality
and control precision. As seen in Figure 5, CMAESAO consistently outperforms AO by achieving significantly
lower ITAE values, indicating faster and more accurate convergence toward optimal solutions.

Moreover, the results reveal that CMAESAO exhibits less variation in performance across multiple
runs, reflected by its reduced standard deviation. This consistency indicates the hybrid algorithm’s robustness
and reliability in handling complex optimization landscapes. The integration of CMAES into the AO
framework improves local exploitation, enabling precise fine-tuning of solutions after initial global
exploration. As a result, CMAESAO not only reaches optimal solutions more efficiently but also does so with
greater repeatability and minimal deviation, validating its statistical superiority over standalone AO.

Figure 6 presents a plot of the integral of time-weighted absolute error (ITAE) values versus the
number of runs for both the AO and CMAESAOQ algorithms, clearly demonstrating the superior performance
of CMAESAQO. The blue line representing AO shows higher ITAE values with significant fluctuations across
the 30 runs, indicating inconsistent performance and higher error. In contrast, the red line representing
CMAESAO remains consistently lower and more stable, with ITAE values clustered around 0.48—0.50. This
highlights CMAESAOQO's robustness, reduced deviation, and improved control performance, confirming its
reliability and efficiency in producing optimal solutions with minimal error across multiple iterations.

The graphical analysis in Figure 7 illustrates the statistical comparison of AO and CMAESAO clearly
highlights the superior performance of the CMAESAO algorithm across all four statistical metrics. The blue
bars representing the AO algorithm show significantly higher values in terms of maximum, minimum, and
mean ITAE, along with a much larger standard deviation. In contrast, the red bars representing CMAESAO
are consistently lower across all categories. Notably, CMAESAQ's maximum ITAE (0.5021) is even lower
than AO’s minimum (0.6007), indicating a drastic reduction in error and variability. This visual evidence
strongly supports the claim that CMAESAO provides a more stable, reliable, and accurate optimization
solution. The standard deviation for CMAESAOQO is extremely low (0.0079), compared to AO’s 0.0568,
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demonstrating that CMAESAO not only delivers better results on average but also ensures consistency across
multiple runs. This makes CMAESAO an ideal choice for applications requiring high precision and dependable
convergence behavior.

Table 1. Performance analysis of CMAESAQO benchmark functions

Function name Function definition Dimension (D) Range Frin
F(x) F(x) = Y2, 22 30 [-100,100] 0
Fp(x) Fy(x) = X2 olx:| + TTEq %l 30 [-10,10] 0
Fy(x) Fi(x) = Z?=1(2§=1(xj))2 30 [-100,100] 0
F,(x) F,(x) = max; max {|x;|,(1 < i < n)} 30 [-100,100] 0
Fs(x) Fs(x) = XP.1[1000x7 — x:41)% + (1 — x;)?] 30 [-30,30] 0
Fo(x) Fy(x) = 32, ([x; + 0.5]%) 30 [-100,100] 0
Fy(x) F,(x) = 32 (i X x} + random0,1)) 30 [-128,128] 0
Fg(x) Fg(x) = T2 (—x; sin({/1x:1)) 30 [-500,500] 0
Fo(x) Fo(x) = X2 (x2 — 10 cos(2mx;) + 10) 30 [-5.12,5.12] _112'9829

30 -32,32 0
Fio(x) = —20 X exp (—0.2 /% ?zlxiz> - [ ]
Fyo(x) .
exp (52f=1 cos(ani)) +20+e
1 D s b x; 30 [-600,600] 0
F1(x) Fiu(x)=1+ MZ xf — Hcos (ﬁ)
1= =
s -
Fi(x) = —{10sin(my))} 30 [-50.50] 0
D-1 D
+ Z(yi —1) |1+ 10sin?(my;41) + Z u(x;, 10,100,4)]
i=1 i=1
Fi2(x) Ko;—a)™ if x;>a
where, u(x;a,k,m) =<0 —afx; > a
K(—x; —a)™ —afx;
1+ X
yi=ld—7—;
D 30 [-50,50] 0
Fy3(x) = 0.1sin2(3ux1) + Z(xi — D1 + sin?Bux; + 1]
i=1
Fi3(x) + (xD — 1)2 + sin®(2uxD)
d
+ Z(xi, 5,100,4)
i=1
25 -1 2 [-65,65] 0
Fra(x) Fua(x) = LJ“Z;(""“")
14 14 500 }-=1j n Ziz=1 i ij
2 -
Fus) s = Y [o - 20+ b ' R
1 1500 = L % (b + byxs + x,)
=
1 -
Fi6(x) Fie(x) = 4x? — 2.1x} + §x16 +x,%, — 4x2 + 4x2 2 [-3,5] 0
5.1 5 2 1 2 [-5,5] 0
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Table 2. Performance evaluation of CMAESAOQO and AO

Function name Metrics AO CMAESAO  Function name Metrics AO CMAESAO
Mean 9.4973¢2!8 6.23e26 Mean 2.3207¢° 0.0068
Standard Deviation 0.00e" 0.00e" Standard 1.0246¢° 9.3403¢™"
F,(x) Fia(x) Deviation
Best 6.5477e2% 1.2406e268 Best 9.9800e1 1.565¢%
Worst 3.214e?"7 6.2425¢26 Worst 2.9821e0 0.0274
Mean 9.9112¢2'3 8.8368¢! Mean 5.5089¢-4 1.2106e®
Standard Deviation 0.00e% 0.00e"° Standard 1.9027¢-4 3.7682¢%
F,(x) Fi5(x) Deviation
Best 2.322¢2! 3.5950e2% Best 4.0581e-4 7.6985¢
Worst 3.4546¢2"7 1.7427e% Worst 8.4575e-4 9.6548¢8
Mean 1.8851¢3 0.00e" Mean -1.0316 -3.7895¢ %
Standard Deviation 2.5151e3 0.00e% Standard 6.5206e-8 1.1659¢!®
Fs(x) Fi6(x) Deviation
Best 5.8588¢™ 0.00e"° Best -1.0316 -3.7895¢ %
Worst 2.5151e3 0.00e% Worst -1.0316 -5.6879¢!
Mean 6.3114¢> 1.2858¢™% Mean 3.9789%¢-1 0.4208¢>
Standard Deviation 2.9614¢3 1.2809¢™7 Standard 4.7081e-7 1.0600e°
Fo(x) Fy,(x) Deviation
Best 7.28¢® 1.1399¢° Best 3.9789%-1 0.4208e
Worst 1.9689¢ 2.4937¢3 Worst 3.9789¢-1 0.4208e
Mean 1.5929¢7 7.9575¢% Mean -3.8624 -0.3926
Standard Deviation 4.8479¢* 6.9694¢ Standard 8.4657e-4 9.6523¢”
F,(x) Fio(x) Deviation
Best 6.6048¢ 1.6114e* Best -3.8628 -0.3926
Worst 1.5929¢7 1.5365¢™ Worst -3.8607 -0.3926
Mean -2.2694¢° -1.8025¢° Mean -3.3014 -5.4250
Standard Deviation 4.6187¢* 8.4242 Standard 4.9969¢ 7.8695¢7
Fg(x) Fyo(x) Deviation
Best -2.6958¢° -1.80247¢° Best -3.3220 -5.7693
Worst 1.4073¢3 -1.80247¢3 Worst -3.1994 -5.7673
Mean 8.8818¢1® 9.1595¢"7 Mean -10.149 -10.1413
Standard Deviation 0.00e000 0.00e000 Standard 4.9969¢ 4.8699¢
Fio(x) Fy1(x) Deviation
Best 8.8818¢1® 1.6438¢'° Best -10.153 -10.1413
Worst 8.8818¢1® 1.6438¢°!¢ Worst -10.14 -10.1413
Mean 2.9262¢7 1.3676e" Mean -10.401 -10.3801
Standard Deviation 3.5700e 1.4126e" Standard 2.9768¢ 2.8765¢3
Fi,(x) F,,(x) Deviation
Best 1.1309¢” 5.7279¢% Best -11.040 -10.3801
Worst 1.0421e* 3.7378e7 Worst -10.395 -10.3801
Mean 9.5026€ 6.0499¢7 Mean -10.536 -10.535
Standard Deviation 1.0312¢* 3.8953¢® Standard 2.756¢-4 2.755¢e-4
Fi5(x) Fy3(x) Deviation
Best 2.7176e° 7.77564¢% Best -10.536 -10.535
Worst 2.7104e* 2.0815¢% Worst -10.535 -10.534
08 ITAE versus Number of Run Plot Statistical Comparison of AO and CMAESAOQ (ITAE Index)
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Figure 6. ITAE versus no runs plot Figure 7. Statistical comparison of AO and CMAESAO

6.2. Convergence rate analysis

Figure 8 presents the convergence plot of ITAE values over the number of iterations for both the AO
and CMAESAO algorithms, showcasing their optimization performance. The blue crosses represent AO, which
starts with higher ITAE values and gradually reduces over time but plateaus early, showing slower and less
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stable convergence. In contrast, the red diamonds representing CMAESAO display a much faster and smoother
convergence path. A focused inset between iterations 50 and 75 reveals that CMAESAO consistently
outperforms AO throughout the iterative process, with lower ITAE values at nearly every step.

It is clearly observed from Figure 8 that AO converges prematurely around an ITAE value of 0.7067,
while CMAESAOQ continues to optimize and reaches a significantly better minimum of 0.4779. Although AO
appears to converge earlier, it stabilizes at a suboptimal value. This demonstrates that while AO settles quickly,
it lacks the precision and depth to reach the global optimum effectively. CMAESAO, on the other hand,
maintains a controlled and steady optimization path, leading to superior results. This performance gain
confirms the advantage of integrating CMAES into AO, improving convergence quality and solution accuracy
significantly over the standard AO algorithm.

Convergence Plot
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ke —
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Figure 8. Convergence plot for CMAESAO and AO

6.3. Result analysis

The effectiveness of the proposed D-STATCOMs allocation technique is evaluated by conducting
tests on two commonly used distribution systems: a 33-bus system and a 69-bus system. To validate the
method's efficacy, three distinct scenarios are examined. In the first scenario, only one D-STATCOM is
installed. In the second and third scenarios, two and three D-STATCOM s are respectively considered. The best
outcome from ten separate algorithm runs is reported for each scenario. The proposed algorithm is executed
on an AMD Ryzen 9 7950X CPU operating at 5.70 GHz with 32 GB of RAM using the MATLAB environment.

6.3.1. 33 bus system

The IEEE 33 bus test system has a combined load of 3715 +j 2300 kVA. The IEEE-33 bus system is
subjected to load flow analysis with and without the presence of DSTATCOM. The base case result which is
presented in Table 3, shows the poor performance of the system in the absence of D-STATCOM, characterized
by a real power loss of 202 kW and a low voltage magnitude of 0.9038 p.u. However, with the inclusion of
D-STATCOM(s), there is a significant improvement in the real power loss and voltage profile of the system.
Table 3 provides a comparison of different methods for optimal allocation of D-STATCOMSs (allocating
D-STATCOMs), demonstrating that the proposed approach outperforms than other methods.

Table 4 summarizes the allocation of DSTATCOMs on different types of loads like constant power,
constant current, and constant impedance. Here, we find that, for constant power load model, with one
D-STATCOM, the power loss is 145.8796 kW, with two D-STATCOMs it is 125.9263 kW, and with three
D-STATCOMs it is 124.0499 kW. It shows the improvement of the above system parameters by allocation of
two or three DSTATCOMs. For constant current load model, with one D-STATCOM, the power loss is
131.292 kW, with two D-STATCOMs it is 125.9263 kW, and with three D-STATCOM s it is 124.0499 kW.
Similarly, for constant impedance load model with one D-STATCOM, the power loss is 119.5428 kW, with
two D-STATCOMs it is 116.2869 kW, and with three D-STATCOMs it is 112.7221 kW. So, it can be
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concluded that, for each load model, the amount of power loss is decreasing gradually, with the increase in
number of D-STATCOMs placement.

Additionally, Figure 6 shows the convergence characteristic curve of the CMAESAOQ for distributing
D-STATCOMs in the 33-bus system. Based on the results, it can be said that using three D-STATCOM
placements results in better system performance than using one or two D-STATCOM allocations. To further
support this conclusion, Figures 9(a)-9(c) display the voltage profile, branch current profile, and power loss
profile for varying numbers of D-STATCOM allocations and constant power (CP) load types. Figures 10(a)-
10(c) display the voltage profile, branch current profile, and power loss profile for varying numbers of D-
STATCOM allocations and constant impedance (CI) load types. Figures 11(a)-11(c) display the voltage profile,
branch current profile, and power loss profile for varying numbers of D-STATCOM allocations and constant
current (CC) load types.

Table 3. Effect of D-STATCOM allocation on 33 bus system
Methods Npstatcom  LOcation  Size, MVAr  Ploss, kW Vmin (p.u.) VSI

Base Case 0 - - 202.0 0.9038 0.6951
Proposed 1 30 1.0 145.8792 0.9255 0.7266
GA 1 12 1.11142 173.9 - -
1A 1 12 0.9624 171.8 - -
DE 1 30 1.2527 143.5 0.9256 -
Proposed 2 14 0.5550 125.9263 0.9473 0.8051
30 1.0

Proposed 3 30 0.9063 124.0499 0.9495 0.8128
16 0.5356
7 0.6209

Table 4. Effect of D-STATCOM allocation on different types of load on 33 bus system
DSTATCOM  Type ofload  Location Size in MW  Ploss in kW  Qloss in kVar VSI Vmin(p.u)

1 CP 30 1.000 145.8792 97.4253 0.7266 0.9233
2 CP 14,30 0.5958 125.9263 92.5352 0.8051 0.9473
1.000
3 CP 14,6,30 0.5183 124.0499 91.4507 0.8128 0.9495
0.6210
0.8098
1 CcC 30 1.000 131.292 87.5134 0.7412 0.9279
2 CcC 14,30 0.5554 125.9263 84.1698 0.8051 0.9473
1.000
3 cC 30,16,7 0.9063 124.0499 83.5563 0.8128 0.9495
0.3568
0.6209
1 CI 30 1.000 119.5428 79.548 0.7536 0.9318
2 CI 30,14 0.9969 116.2869 77.6337 0.8123 0.9494
0.5538
3 CI 24.30,14 0.4421 112.7221 75.1925 0.8066 0.9478
0.8978
0.5009
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Figure 9. For an IEEE-33 bus system for CP load type: (a) voltage profile, (b) branch current profile, and
(c) MoF plot
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Figure 10. For an IEEE-33 bus system for CI load type: (a) voltage profile, (b) branch current profile, and
(c) MoF
5 1 5 0.04 2
s NN s ——NDStat1-CC
£ c ——NDStat2-CC 1.95 NDSttice
0.98 NDStat3-CC = 0.03 —_— tat-
3 2 NDStat3-CC . ——NDStat2-CC
2 I L NDStat3-CC
5)0.96 5 0.02 ™ 's 1.85
i 3 \ =
\
&,0.94 ':2 0.01 \K 1.8 L
8 s ™ 175
o o N
>0.92 1.7 ‘ ‘ .
0 10 20 30 40 0 10 20 30 0 20 40 60 80 100
No. of Bus Branch No. No. of iteration
(a) (b) ()

Figure 11. For an IEEE-33 bus system for CC load type: (a) voltage profile, (b) branch current profile, and
(c) MoF plot

6.3.2. 69 bus system

The IEEE 33 bus test system has a combined load of 3791.9 + j 2694 kVA. The IEEE-33 bus system
is subjected to load flow analysis with and without the presence of DSTATCOM. The results of which are
presented in Table 5. The outcomes in Table 5 evidently specify that the system exhibits inadequate
performance in the absence of D-STATCOM, resulting in a real power loss of 224.9 kW, and a low magnitude
of voltage is 0.9092 p.u.

Table 6 summarizes the allocation on different types of loads like constant power, constant current,
and constant impedance. Here, we find that, for constant power load model, with one D-STATCOM, the power
loss is 156.7697 kW, with two D-STATCOMs it is 149.6368 kW, and with three D-STATCOMs, it is
147.8951 kW. It shows the improvement of the above system parameters by allocation of two or three
DSTATCOMs. For constant current load model, with one D-STATCOM, the power loss is 138.0725 kW, with
two D-STATCOMs it is 132.3844 kW, and with three D-STATCOMs it is 130.8476 kW. Similarly, for
constant impedance load model with one D-STATCOM, the power loss is 123.242 kW, with two
D-STATCOMs, it is 118.3333 kW, and with three D-STATCOMs, it is 118.2958 kW. So, it can be concluded
that, for each load model, the amount of power loss is decreasing gradually, with the increase in number of
D-STATCOMs placement.

Table 5. Comparison of different methods without and with DSTATCOM allocation on 69 bus system

Methods Nbstatcom Location Size, MVAr Ploss, kW Vmin (p.u.) VSI
Base Case 0 - - 224.9 0.9092 0.6833
Proposed 1 62 1.0 156.7697 0.926 0.7354
PSO 1 61 0.9011 167.9 - -
GA 1 61 1.9183 165.4 0.9392 -
1A 1 61 1.7044 157.5 - -
DE 1 61 1.3121 152.0 0.9398
GSA 1 61 0.966 152.0 -
Proposed 2 61 1.0 149.6368 0.9286 0.7436
12 0.8677
Proposed 3 62 0.7763 147.8951 0.9338 0.7605
18 0.4415
61 0.6480

Int J Appl Power Eng, Vol. 14, No. 4, December 2025: 842-858



Int J Appl Power Eng ISSN: 2252-8792 a 855

Table 6. Effect of DSTATCOM allocation on different types of load on 69 bus system
DSTATCOM  Location  Size in MW  Ploss in kW  Qloss in kVar VSI Vmin (p.u.)

1 62 1.000 156.7697 72.8499 0.7354 0.926

2 61,12 1.000 149.6368 69.2637 0.7436 0.9286
0.8676

3 62,18,61 0.7762 147.8951 68.7109 0.7605 0.9338
0.4414
0.6479

1 62 1.000 138.0725 64.7834 0.751 0.931

2 61,12 0.9914 132.3844 61.8775 0.7579 0.9331
0.8408

3 15,61,64 0.5120 130.8476 61.3436 0.7707 0.937
0.9630
0.3266

1 61 1.000 123.242 58.344 0.7632 0.9347

2 61,13 1.000 118.3333 55.9826 0.7683 0.9363
0.5806

3 23,61,64 0.4355 118.2958 56.0025 0.7809 0.9401
0.7458
0.4976

Figures 12(a)-12(c) present the performance of the IEEE-69 bus distribution system under CP load
conditions for different numbers of D-STATCOMs. The voltage profile in Figure 12(a) shows that integrating
one, two, and three D-STATCOMs leads to progressive improvement in maintaining voltage levels close to
the nominal value across all buses. Specifically, the minimum voltage magnitude increases significantly,
indicating enhanced voltage stability. The branch current profile in Figure 12(b) reveals a corresponding
decline in line currents with additional D-STATCOMs, particularly notable in highly loaded branches. Figure
12(c) displays minimization of multi-objective function with simultaneous integration of one, two, and three
D-STATCOMs.

In Figures 13(a)-13(c), the IEEE-69 bus system is analyzed under CC load conditions. The voltage
profile in Figure 11(a) again confirms improved voltage stability with increased D-STATCOM integration,
with notable voltage uplift at weaker buses. The branch current profile in Figure 13(b) highlights reductions in
line loading, easing thermal stress, and enhancing operational reliability. The power loss plot in Figure 13(c)
displays minimization of multi-objective function with simultaneous integration of one, two, and three
D-STATCOMs. The loss values are consistently lower when two or more D-STATCOMs are present,
confirming the efficiency of optimal placement. Although the improvements between two and three devices
are visible, the trade-off in system cost and complexity must be considered, especially when performance gains
are incremental.

Figures 14(a)-14(c) illustrate the system response for 69 bus system under CI load conditions. The
voltage profile in Figure 14(a) displays a significant uplift in voltage magnitude with the introduction of
D-STATCOMs, particularly in the end buses, where voltage drops are usually more pronounced. The branch
current profile in Figure 14(b) again shows a systematic decrease in current magnitude throughout the network
as the number of D-STATCOMs increases, leading to more balanced load distribution and reduced I?R losses.
The power loss plot in Figure 14(c) displays minimization of multi-objective function with simultaneous
integration of one, two, and three D-STATCOMs. Collectively, these figures across all load scenarios validate
the effectiveness of the proposed CMAESAO method in optimizing both the placement and size of
D-STATCOMs. Importantly, they confirm that while three D-STATCOMs yield the best absolute
performance, allocating two D-STATCOM s offers the most cost-effective and efficient solution, particularly
for the 69-bus system, as demonstrated in Table 6 and supported by the convergence analysis results.
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Figure 12. For an IEEE-69 bus system for CP load type: (a) voltage profile, (b) branch current profile, and (c)

MoF plot
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Figure 13. For an IEEE-69 bus system for CC load type: (a) voltage profile, (b) branch current profile, and
(c) MoF plot
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Figure 14. For an IEEE-69 bus system for CI load type: (a) voltage profile, (b) branch current profile, and
(c) MoF plot

7. CONCLUSION

Evidently, electrical network reconstruction resulted from in order to minimize power losses in the
electrical distribution system and guarantee operational compliance. This study uses the CMAESAO approach
to determine the best location and size of D-STATCOM. Two common approaches, the 33-bus system and the
69-bus system, are used to evaluate the method's efficacy. The use of a single D-STATCOM, the deployment
of two D-STATCOMs, and the installation of three D-STATCOMs were all evaluated. The analysis's findings
show how well the suggested approach works to solve the current issue. Three adequately sized D-STATCOMs
were strategically placed in the 33-bus system, which significantly improved the electrical distribution system's
performance. However, for the 69-bus system, the implementation of two D-STATCOM s proved superior in

reducing power losses compared to the adoption of three D-STATCOM:s.
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