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 This study introduces a novel hybrid optimization approach covariance matrix 

adaptation evolution strategy of aquila optimization (CMAESAO) to enhance 

power smoothing and minimize power losses in electrical distribution systems 

through the optimal allocation of D-STATCOMs. The method is tested on 

standard 33-bus and 69-bus systems. The CMAESAO algorithm efficiently 

identifies optimal locations and sizes of D-STATCOMs to achieve system 

performance improvements under constant power (CP), constant current 

(CC), and constant impedance (CI) load models. The results show that, for the 

69-bus system, installing two D-STATCOMs yields optimal performance, 

reducing real power loss from the base value to 149.6368 kW, while three  

D-STATCOMs yield a slightly better voltage profile and VSI but only 

marginal additional power loss reduction (147.8951 kW), making two units 

more cost-effective. For the 33-bus system, three D-STATCOMs provide the 

best improvement in power quality and loss minimization. Voltage and 

current profiles confirmed improvement in voltage stability and reduced 

branch currents with optimized placements. Compared to other optimization 

techniques, CMAESAO demonstrates faster convergence and superior 

accuracy in minimizing losses, establishing its effectiveness for such multi-

objective optimization problems. The study's novelty lies in integrating CMA-

ES with aquila optimization to combine strong global search with adaptive 

exploration, resulting in robust and efficient power system enhancement. The 

proposed methodology contributes to smarter, more reliable distribution 

systems, supporting grid resilience and energy efficiency. 
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1. INTRODUCTION 

Rebuilding of electrical networks was reportedly necessary due to decreasing perishable resource 

stocks. Renewable energy sources are now integrated into the system as a result of this rebuilding. Over the 

years, D-STATCOMs have become one of the leaders in the society's current power constraint. The benefits 

of integrating D-STATCOMs into conventional grids are the most crucial area of study for D-STATCOM 

location. It enables operators to save back on capital expenditures for managing and improving power systems. 

It contributes to lowering expenditures for extra control equipment, bolstering transmission and distribution 

networks, and boosting reliability [1], [2]. Additionally, it helps operators increase efficiency and reduce power 

transmission loss. The major concerns for a distribution network are it suffers from various issues such as 
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power losses, poor voltage levels, and limited voltage stability. These problems occur because the system lacks 

support for reactive power when there is an increase in demand. To overcome these challenges, engineers and 

researchers have proposed different strategies [3], [4]. Different approaches aim at improving electricity 

distribution system performance. These techniques consist of establishing voltage regulation mechanisms, 

incorporating compensating equipment such as shunt capacitors or distributed generators into the network, and 

adjusting its configuration where necessary [5], [6]. The latest advancements suggest utilizing flexible AC 

transmission system (FACTS) devices like dynamic voltage regulators (DVRs), D-STATCOMS, and unified 

power quality conditioners (UPQCs). Among these devices, D-STATCOM is a strong contender due to its ease 

of connection and local control feature [7]. By connecting D-STATCOM in parallel to the system, it can 

enhance the profiling of voltage, reduce losses, mitigate issues caused by voltage sags, nonlinear loads, and 

voltage fluctuations, and increase voltage security margins. In recent years, there has been significant 

advancement in establishing appropriate strategies for allocating D-STATCOMs more effectively. Sensitivity-

based approaches relying on different indicators such as voltage stability index and other related variables are 

commonly applied today [8], [9]. However, reliance on such methods often poses issues with regard to their 

reliability. To mitigate this challenge, many researchers have begun exploring alternative methodologies based 

on metahuristic framework for attaining the optimal allocation of D-STATCOMs. This paper introduces a 

novel optimization technique (CMAESAO) as a means to determine the allocation D-STATCOMs. A more 

recent meta-heuristic algorithm, called CMAESAO, is used to optimize allocations of DSTATCOMs [10]. The 

proposed hybrid CMAESAO technique demonstrates faster convergence, a well-balanced exploration 

exploitation process, and improved global search ability [11]. Its effectiveness has been validated using 23 

benchmark functions, covering various types such as continuous, discontinuous, linear, nonlinear, separable, 

non-separable, unimodal, and multimodal. The results demonstrated the algorithm's efficiency and reliability 

in solving optimization problems [12]. 

 

 

2. MODELLING OF ELECTRICAL DISTRIBUTION SYSTEM 

Utilizing multiple components such as a voltage source converter, DC capacitor bus, coupling 

transformer and tuned filter, the D-STATCOM showcases itself as a shunt device worth taking note of while 

energy storage devices are optional in this device, it’s crucial to highlight that deploying voltage source 

converters enables its ability to function as a generalized impedance converter which permits importing or 

exporting reactive power at point of common coupling (PCC) [13]. It’s noteworthy that when equipped with 

an energy storage device too, active power injection is within reach. However, the present research only focuses 

on reactive power regulation for purposes of this study. Figure 1(a) illustrates a two-bus equivalent of the 

distribution network for [14]. 

 

𝑉𝑡+1∠𝜃𝑡+1 = 𝑉𝑡∠𝜃𝑡 − (𝑅𝑚 + 𝑗𝑋𝑚)∠𝛿𝑚 (1) 

 

The compensated network, along with the DSTATCOM configuration and the phasor representation of the 

compensation network as described in (1) and (2), is illustrated in Figure 1(b). 

 

𝑉𝑡+1∠𝜃𝑡+1 = 𝑉𝑡∠𝜃𝑡 − (𝑅𝑚 + 𝑗𝑋𝑚)(𝐼𝑚Ð𝛿𝑚 + 𝐼𝐷𝑠𝑡𝑎𝑡𝑐𝑜𝑚 + 𝜓) (2) 

 

Since the D-STATCOM functions as a reactive power source, its current is phase-shifted by 90 degrees with 

respect to the voltage at the compensated node. Consequently, it injects or absorbs reactive power without 

affecting the active power flow, thereby improving voltage stability and power quality at the point of 

connection. 

 

𝜓 =
𝜋

2
+ 𝜃𝑡+1

′  (3) 

 

The power injected by the D-STATCOM can be expressed as (4). 

 

−𝑗𝑄𝐷𝑠𝑡𝑎𝑡𝑐𝑜𝑚 = 𝑉𝑡+1
′ ∠𝜃𝑡+1

′ + 𝐼𝐷𝑠𝑡𝑎𝑡𝑐𝑜𝑚
″ ∠ (

𝜋

2
+ 𝜃𝑡+1

′ ) (4) 

 

This research employs the covariance matrix adaptation evolution strategy of aquila optimization to determine 

the optimal locations and capacities of multiple D-STATCOMs, aiming to minimize active (real) power loss 

in the electrical distribution system. The optimization process adheres to operational constraints outlined in (3) 

and (4). Since distribution utilities prioritize reducing real power loss due to its direct economic impact more 

so than voltage regulation or system stability [15]. The primary objective of this research is the optimal 
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allocation of D-STATCOMs to achieve minimal real power loss. Mathematically, the real power loss is 

expressed in (5). 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ |𝐼𝑚|𝑚=1
2

× 𝑅𝑚 (5) 

 

The primary objective is to minimize real power loss in the distribution system, which is formulated as the 

objective function presented in (6). 

 

𝑂𝐹 = 𝑚𝑖𝑛(𝑃𝑙𝑜𝑠𝑠) = 𝑚𝑖𝑛(∑ |𝐼𝑚|𝑚=1
2

× 𝑅𝑚) (6) 

 

The network's bus voltage is permitted to vary within a range of ±5% of the nominal voltage. The current flow 

within the distribution network is certainly to be affected by the presence of DSTATCOM. Therefore, a 

constraint is established to restrict the branch flow within the prescribed limits when D-STATCOMs are 

introduced. The nodes used for insertion of DSTATCOMs are not prone to repetition. The size of allocated 

DSTATCOMs must be bound by (7). 

 
∑ 𝑄𝐷𝑠𝑡𝑎𝑡𝑐𝑜𝑚, 𝑖𝑖=1 = ∑ 𝑄𝑙𝑜𝑎𝑑, 𝑡𝑡=1  (7) 

 

The allocation of DSTATCOMs is optimized through the use of CMAESAO. It is a combination of the benefits 

of two optimization techniques are CMAES and AO [16]. 

 

 

 

 
(a) (b) 

 

Figure 1. DSTATCOM compensation in a distribution network: (a) two-bus equivalent of the distribution 

network and (b) phasor diagram of DSTATCOM 

 

 

3. COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY 

Covariance matrix adaptation evolution strategy (CMA-ES) is a powerful evolutionary algorithm 

designed for continuous domain optimization problems. It is particularly effective for non-linear, non-convex, 

and ill-conditioned optimization tasks where gradient-based methods may struggle or fail. The core idea of 

CMA-ES is to evolve a population of candidate solutions by sampling from a multivariate normal distribution, 

that mean and covariance matrix are updated iteratively to reflect the topology of the objective function.  

At each generation, new candidate solutions (offspring) are sampled from a Gaussian distribution centered 

around the current mean. The covariance matrix plays a critical role in shaping this distribution, allowing the 

algorithm to capture dependencies between variables and adapt the search direction. The best-performing 

individuals, based on the fitness function, are selected, and the distribution parameters (mean, step size, and 

covariance matrix) are updated accordingly. The most distinguishing feature of CMA-ES is the covariance 

matrix adaptation. This mechanism enables the algorithm to learn the shape of the objective function landscape 

dynamically. Over time, the covariance matrix reflects the correlation structure between variables, guiding the 

sampling process toward promising regions in the search space. The algorithm also includes mechanisms such 

as step-size control and evolution paths to improve convergence and exploration-exploitation balance.  

CMA-ES does not require gradient information, making it well-suited for black-box optimization problems.  

It has been successfully applied in various domains, including machine learning model tuning, control systems, 

robotics, and engineering design. Despite its computational cost due to covariance matrix updates, its 

robustness and self-adaptation capabilities make it one of the most reliable evolutionary strategies for 

challenging optimization problems. The (8) represents the updated evolution. 

 

𝑚𝑛𝑒𝑤 = 𝑚𝑜𝑙𝑑 × 𝑝𝑠𝑡𝑒𝑝 (8) 
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Where, 𝑚𝑛𝑒𝑤,  𝑚𝑜𝑙𝑑, and 𝑝𝑠𝑡𝑒𝑝 denotes new mean, old mean, and the evolution path, respectively. The 

adaptation for σ is expressed by (9). 

 

𝜎𝑛𝑒𝑤 = 𝜎𝑜𝑙𝑑 × 𝑒𝑥𝑝 (
𝑐𝜎

𝑑𝜎
(

‖𝑃𝑠𝑡𝑒𝑝‖

𝐸‖𝑁(0,𝐼)‖
− 1)) (9) 

 

Where, 𝜎𝑛𝑒𝑤, 𝜎𝑜𝑙𝑑 , 𝑐𝜎 , 𝑑𝜎 , 𝐸, and 𝑁(0, 𝐼) represents the new step-size, old step size, normalization constant, 

damping parameter, expected value, and expected length to update the conjugate evolution path, respectively. 

The adaptation for C is expressed by (10). 

 

𝐶𝑛𝑒𝑤 = (1 − 𝑐1 − 𝑐𝜇) × 𝐶𝑜𝑙𝑑 + 𝑐1 × (𝑃𝑠𝑡𝑒𝑝 × 𝑃𝑠𝑡𝑒𝑝
𝑇 ) + 𝑐𝜇 × ∑ 𝜔𝑖 × (𝑦𝑖 × 𝑦𝑖

𝑇)𝜇
𝑖=1  (10) 

 

Where, 𝐶𝑛𝑒𝑤, 𝑐1, 𝑐𝜇, 𝐶𝑜𝑙𝑑, 𝑃𝑠𝑡𝑒𝑝
𝑇 , 𝜔𝑖, 𝑦𝑖 , and 𝑦𝑖

𝑇  represents the new covariance matrix, update parameter-1, 

update parameter-2, old covariance matrix, conjugate of the evolution path, weight assigned to each solution 

candidate, weighted difference vector of solution, and its conjugate, respectively [17]. 

Figure 2 presents the flowchart for the covariance matrix adaptation evolution strategy (CMAES) 

technique, illustrating its iterative optimization process. The algorithm begins with the initialization of key 

parameters such as population size, mean vector, and covariance matrix. It then enters a loop where a new 

population of candidate solutions is sampled from a multivariate normal distribution [18]. These solutions are 

evaluated using a fitness function, and the best-performing individuals are selected to update the mean and 

covariance matrix, effectively guiding the search towards promising regions in the solution space. The process 

continues iteratively, adapting step sizes and covariance to improve convergence until a stopping criterion, 

such as a maximum number of generations or convergence threshold, is met [19]. 

 

 

 
 

Figure 2. Flowchart for CMAES technique 

 

 

4. AQUILA OPTIMIZATION (AO) 

Aquila optimization (AO) is a recent nature-inspired metaheuristic algorithm that mimics the 

intelligent hunting strategies of the aquila (eagle). This bird of prey uses four distinct methods—high soar with 

vertical stoop, contour flight with glide attack, low flight with slow descent, and walk-and-grab—to adaptively 

catch its prey, depending on the target's location and movement. Similarly, AO models the exploration and 

exploitation phases of optimization based on these hunting strategies, enabling it to switch dynamically 

between global and local searches during the problem-solving process. In the AO algorithm, the optimization 

begins by initializing a population of candidate solutions. The total number of candidates is denoted by N, and 

each candidate operates within a solution space defined by the dimension D. These candidates form a two-

dimensional array X of size N×D times N×D, where each row represents a potential solution. The initial 

positions are randomly generated within the defined boundaries of the problem. AO then applies one of the 

four modeled hunting behaviors based on a probabilistic selection mechanism, which is mathematically 
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governed by (13), allowing the algorithm to balance exploration and exploitation effectively. As the iterations 

progress, each candidate's position is updated according to the strategy selected in that iteration. The 

performance or fitness of each candidate is evaluated using a problem-specific fitness function. The best 

candidate is preserved across generations, and the population adapts accordingly. AO's adaptability and 

strategic update mechanism enable it to converge quickly to the global optimum while avoiding local minima, 

making it suitable for solving complex optimization problems in various engineering and computational 

domains [20]. 

Figure 3 illustrates the flowchart for the aquila optimization (AO) algorithm, depicting its structured 

approach to solving complex optimization problems. The process begins with the initialization of key 

parameters, including the number of candidate solutions, dimensionality of the problem space, and boundary 

constraints. An initial population of potential solutions is randomly generated and evaluated using a defined 

fitness function. The best solution among them is identified and stored for reference [21]. Based on a random 

probability and the current iteration, the algorithm selects one of the four aquila-inspired hunting strategies to 

guide the movement of candidates ranging from global soaring and gliding to precise local attacks. In the 

iterative loop, each candidate solution is updated based on the selected strategy, reflecting the dynamic nature 

of aquila’s hunting behavior [22]. These strategies balance exploration (searching new areas) and exploitation 

(refining known good solutions). After each update, the fitness of the new candidates is evaluated, and the best 

solution is updated if a superior one is found [23]. This process repeats until a termination criterion, such as 

reaching the maximum number of iterations or achieving a satisfactory fitness level, is met. The flowchart 

effectively captures the adaptive and intelligent nature of AO, showcasing how it emulates aquila's flexible 

hunting tactics to navigate the search space and find optimal solutions [24]. 
 

 

 
 

Figure 3. Flowchart for AO 
 

 

5. COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY BASED AQUILA 

OPTIMIZATION 

The covariance matrix adaptation evolution strategy-based aquila optimization (AOCMAES) is a 

novel hybrid algorithm that combines the strengths of two powerful optimization techniques aquila 

optimization (AO) and covariance matrix adaptation evolution strategy (CMAES). AO is known for its efficient 

global search capabilities inspired by the hunting strategies of aquila eagles. However, despite its exploratory 

strength, AO often suffers from slower convergence, longer runtimes, and a tendency to get trapped in local 

optima when dealing with complex problem landscapes. To overcome these limitations, the proposed 

AOCMAES integrates the local search efficiency of CMAES into the AO framework. CMAES, as a local 

optimizer, adapts the covariance matrix of a multivariate normal distribution to guide the generation of new 

candidate solutions [25]. It excels in fine-tuning solutions by exploiting the search space around promising 

regions, leading to faster convergence and improved precision. By embedding CMAES into AO’s iteration 

cycle, the hybrid algorithm benefits from both the exploration ability of AO and the exploitation efficiency of 

CMAES. This integration helps in escaping local optima and achieving global optima more consistently and 
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quickly [26]. In AOCMAES, the optimization begins with AO’s global search phase, where diverse candidate 

solutions explore the wider search space. When the algorithm identifies a promising region or begins to 

stagnate, the CMAES module is triggered to perform an intensive local search around the best solution. This 

dynamic switching ensures that the exploration is not prematurely stopped and that the algorithm can fine-tune 

optimal solutions effectively. The balance between exploration and exploitation is thereby significantly 

enhanced [27]. Overall, the AOCMAES hybrid algorithm delivers superior optimization performance by 

combining the global reach of AO and the local precision of CMAES. The result is an improved convergence 

rate, reduced computation time, and enhanced robustness in navigating complex search spaces. The 

optimization parameters are adaptively tuned during the run to ensure that the algorithm approaches optimal 

solutions within a shorter interval, making it suitable for real-world engineering and computational applications 

requiring high efficiency and accuracy [28]. 

Figure 4 illustrates the numerical representation of key optimization parameters used in the 

CMAESAO technique through a bar graph. The graph shows that the maximum number of iterations is set to 

1000, highlighting the algorithm's capacity for extensive searching [29]. Both the alpha (α) and delta (δ) 

parameters, which control the exploration and exploitation balance, are set to their average values of 0.5 within 

the range [0.1, 0.9]. The problem dimensionality is relatively low at 4, indicating a moderate complexity of the 

search space. Lastly, the number of aquilas (candidate solutions) is 100, reflecting a robust population size to 

support diverse global search capabilities. This visualization helps in understanding the scale and role of each 

parameter in the optimization process [30]. 
 

 

 
 

Figure 4. Parameters for CMAESAO 
 
 

Figure 5 presents the flowchart for the covariance matrix adaptation evolution strategy-based aquila 

optimization (CMAESAO) technique, depicting the integration of AO and CMAES for enhanced optimization 

performance. The process initiates with the input of algorithm-specific parameters such as population size 

(number of aquilas), dimension of the problem space, alpha (α), delta (δ), and the maximum number of 

iterations. An initial population of candidate solutions is generated randomly within the defined bounds, and 

each solution's fitness is evaluated using a predefined objective function. The best solution is identified and 

stored for future reference [31]. Following initialization, the main optimization loop begins, where the aquila 

optimization (AO) strategies are applied to guide global search. These strategies mimic different hunting 

behaviors of Aquilas and allow candidates to explore diverse regions of the solution space. Based on a selection 

mechanism influenced by α and δ, the algorithm decides whether to perform exploration or move towards 

exploitation. When stagnation or promising regions are detected, the CMAES module is triggered. CMAES 

then conducts a focused local search using adaptive multivariate normal sampling, updating the mean and 

covariance matrix to refine the solution around the best candidate. This hybrid process continues iteratively, 

with the algorithm alternating between AO’s global search and CMAES’s local refinement based on 

convergence behavior [32]. At each step, the population is updated, and the fitness of new candidates is 

compared to identify improvements. The loop terminates when the maximum number of iterations is reached 

or an acceptable solution is found. The flowchart in Figure 4 clearly outlines the intelligent switching and 

cooperation between AO and CMAES, illustrating how their synergy results in improved convergence speed, 

reduced computational effort, and more reliable global optimization outcomes [33]. 
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Figure 5. CMAESAO technique flowchart algorithm 
 

 

6. RESULTS AND DISCUSSION 

The performance of the proposed CMAESAO technique has been rigorously evaluated using a 

comprehensive set of benchmark functions. Table 1 presents the details of these benchmark functions, which 

include a diverse range of mathematical test problems commonly used in optimization research. These 

functions vary in complexity, modality (unimodal or multimodal), dimensionality, and landscape 

characteristics, making them ideal for assessing the robustness and versatility of the optimization algorithm. 

They test an optimizer’s ability to locate global optima, escape local minima, and converge efficiently across 

different search landscapes. In this study, a total of 23 benchmark functions, as outlined in Table 1have been 

employed to validate the effectiveness of the CMAESAO hybrid technique. These include well-known 

functions such as Sphere, Rastrigin, Ackley, Griewank, and Rosenbrock, among others. By comparing the 

results of CMAESAO with standard optimization algorithms, the study demonstrates its superior convergence 

rate, higher solution accuracy, and stronger balance between exploration and exploitation. The wide variety of 

benchmark functions ensures that the performance evaluation is comprehensive and realistic, ultimately 

proving the hybrid algorithm’s capability to handle diverse and complex optimization tasks efficiently. 

Table 1 outlines the comprehensive set of benchmark functions used to evaluate the performance of 

the proposed CMAESAO algorithm. These functions span a wide range of optimization landscapes, including 

unimodal and multimodal functions, making them suitable for assessing both exploration and exploitation 

capabilities. Each function is tested in a specified dimensional space—mostly 30 dimensions, except for a few 

lower-dimensional functions (e.g., 2D, 3D, 4D, and 6D) to reflect real-world problems with varying 

complexity. The functions operate within defined input ranges, such as [−100,100][-100, 100][−100,100], 

[−600,600][-600, 600][−600,600], or [0,1][0, 1][0,1], which influence the difficulty level of locating global 

optima. These benchmark functions include widely studied mathematical formulations such as Sphere, 

Rastrigin, Ackley, Rosenbrock, and Griewank functions, among others. They are known for their varied 

characteristics like high non-linearity, ruggedness, deceptive local minima, and sharp valleys. By including 

such a diverse set, the evaluation tests how efficiently CMAESAO navigates through different types of 

objective surfaces. This range of functions ensures that the algorithm is not biased toward specific problem 

types and maintains generalizability across optimization scenarios. The performance of CMAESAO has been 
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further compared against a broad array of established metaheuristic algorithms including grasshopper 

optimization algorithm (GOA), equilibrium optimization (EO), particle swarm optimization (PSO), dragonfly 

algorithm (DA), ant lion optimization (ALO), grey wolf optimizer (GWO), marine predator algorithm (MPA), 

salp swarm algorithm (SSA), sine cosine algorithm (SCA), whale optimization algorithm (WOA), and slime 

mould algorithm (SMA). Each of these algorithms has proven effective in different studies, yet the hybrid 

CMAESAO has demonstrated enhanced robustness and convergence consistency across all benchmark cases. 

Table 2 presents the detailed performance comparison between the standalone aquila optimization 

(AO) and the hybrid CMAESAO algorithm using various benchmark functions. For each function, metrics 

such as mean, standard deviation, best, and worst values were computed across multiple runs to assess 

consistency, accuracy, and robustness. The first major observation is the substantial improvement in 

convergence precision achieved by CMAESAO. For example, in functions where AO already produced 

extremely small mean values (in the order of 10−218, CMAESAO pushed performance even further into the 

range of 10−266, showcasing its superior ability to approach global optima with higher precision and stability. 

The comparison also highlights CMAESAO's remarkable advantage in standard deviation values, which 

remain significantly lower or even zero in many cases, indicating high consistency and minimal variation in 

outcomes. This is especially evident in functions involving multimodal landscapes, where AO tends to show 

noticeable variance between best and worst cases. In contrast, CMAESAO maintains tight performance 

bounds, proving its robustness. For example, in one of the benchmark functions, AO’s worst-case result is 

several magnitudes higher than its best, while CMAESAO remains tightly clustered around optimal 

performance with negligible standard deviation. The CMAESAO outperforms AO in best and worst-case 

scenarios, indicating better reliability in extreme outcomes. For instance, in several benchmark cases, 

CMAESAO’s worst performance is still significantly better than AO’s best. This illustrates the hybrid model's 

capability to avoid poor local optima and navigate complex search spaces more effectively. The inclusion of 

CMAES enhances local exploitation, fine-tuning the solutions identified by AO’s broader global exploration 

mechanisms. Overall, the results in Table 2 validate the effectiveness of the CMAESAO hybrid approach 

across diverse benchmark functions. It consistently surpasses AO in all statistical metrics, including mean 

accuracy, variance control, and extremum performance. The integration of CMAES ensures not only faster 

convergence but also a more precise and reliable optimization process. This performance gain confirms the 

hybrid algorithm’s suitability for solving high-dimensional and computationally challenging optimization 

problems in real-world applications. 

 

6.1.  Performance index using statistical analysis 

The statistical analysis of the performance index highlights the enhanced efficiency of the proposed 

CMAESAO algorithm by directly comparing it with the original AO under identical conditions. Both 

algorithms were subjected to the same fitness function f(x) and evaluated using identical optimization 

parameters, ensuring a fair and consistent comparison. The analysis focused on key performance indicators 

such as the integral of time-weighted absolute error (ITAE), which is widely used to assess convergence quality 

and control precision. As seen in Figure 5, CMAESAO consistently outperforms AO by achieving significantly 

lower ITAE values, indicating faster and more accurate convergence toward optimal solutions. 

Moreover, the results reveal that CMAESAO exhibits less variation in performance across multiple 

runs, reflected by its reduced standard deviation. This consistency indicates the hybrid algorithm’s robustness 

and reliability in handling complex optimization landscapes. The integration of CMAES into the AO 

framework improves local exploitation, enabling precise fine-tuning of solutions after initial global 

exploration. As a result, CMAESAO not only reaches optimal solutions more efficiently but also does so with 

greater repeatability and minimal deviation, validating its statistical superiority over standalone AO. 

Figure 6 presents a plot of the integral of time-weighted absolute error (ITAE) values versus the 

number of runs for both the AO and CMAESAO algorithms, clearly demonstrating the superior performance 

of CMAESAO. The blue line representing AO shows higher ITAE values with significant fluctuations across 

the 30 runs, indicating inconsistent performance and higher error. In contrast, the red line representing 

CMAESAO remains consistently lower and more stable, with ITAE values clustered around 0.48–0.50. This 

highlights CMAESAO's robustness, reduced deviation, and improved control performance, confirming its 

reliability and efficiency in producing optimal solutions with minimal error across multiple iterations. 

The graphical analysis in Figure 7 illustrates the statistical comparison of AO and CMAESAO clearly 

highlights the superior performance of the CMAESAO algorithm across all four statistical metrics. The blue 

bars representing the AO algorithm show significantly higher values in terms of maximum, minimum, and 

mean ITAE, along with a much larger standard deviation. In contrast, the red bars representing CMAESAO 

are consistently lower across all categories. Notably, CMAESAO's maximum ITAE (0.5021) is even lower 

than AO’s minimum (0.6007), indicating a drastic reduction in error and variability. This visual evidence 

strongly supports the claim that CMAESAO provides a more stable, reliable, and accurate optimization 

solution. The standard deviation for CMAESAO is extremely low (0.0079), compared to AO’s 0.0568, 
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demonstrating that CMAESAO not only delivers better results on average but also ensures consistency across 

multiple runs. This makes CMAESAO an ideal choice for applications requiring high precision and dependable 

convergence behavior.  
 

 

Table 1. Performance analysis of CMAESAO benchmark functions 
Function name Function definition Dimension (𝐷) Range 𝐹𝑚𝑖𝑛 

𝐹1(𝑥) 𝐹1(𝑥) = ∑ 𝑥𝑖
2𝐷

𝑖=1   30 [-100,100] 0 

𝐹2(𝑥) 𝐹2(𝑥) = ∑ |𝑥𝑖|𝐷
𝑖=0 + ∏ |𝑥𝑖|𝐷

𝑖=0   30 [-10,10] 0 

𝐹3(𝑥) 𝐹3(𝑥) = ∑ (∑ (𝑥𝑗)𝑖
𝑗=1 )𝐷

𝑖=1

2
  30 [-100,100] 0 

𝐹4(𝑥) 𝐹4(𝑥) =  𝑚𝑎𝑥𝑖 𝑚𝑎𝑥 {|𝑥𝑖|, (1 ≤ 𝑖 ≤ 𝑛)}  30 [-100,100] 0 

𝐹5(𝑥) 𝐹5(𝑥) = ∑ [100(𝑥𝑖
2 − 𝑥𝑖+1)2 + (1 − 𝑥𝑖)2]𝐷

𝑖=1   30 [-30,30] 0 

𝐹6(𝑥) 𝐹6(𝑥) = ∑ ([𝑥𝑖 + 0.5]2)𝐷
𝑖=1   30 [-100,100] 0 

𝐹7(𝑥) 𝐹7(𝑥) = ∑ (𝑖 × 𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚0,1))𝐷

𝑖=1   30 [-128,128] 0 

𝐹8(𝑥) 𝐹8(𝑥) = ∑ (−𝑥𝑖 𝑠𝑖𝑛(√|𝑥𝑖|))𝐷
𝑖=1   30 [-500,500] 0 

𝐹9(𝑥) 𝐹9(𝑥) = ∑ (𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10)𝐷

𝑖=1   
30 [-5.12, 5.12] −418.9829 

    × 𝐷 

𝐹10(𝑥) 
𝐹10(𝑥) = −20 × 𝑒𝑥𝑝 (−0.2 √

1

𝐷
∑ 𝑥𝑖

2𝐷
𝑖=1 ) −

𝑒𝑥𝑝 (
1

𝐷
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)𝐷

𝑖=1 )  + 20 + 𝑒   

30 [-32,32] 0 

𝐹11(𝑥) 𝐹11(𝑥) = 1 +
1

4000
∑ 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
)

𝐷

𝑖=1

𝐷

𝑖=1

  
30 [-600,600] 0 

𝐹12(𝑥) 

𝐹12(𝑥) =
𝜋

𝑛
{10𝑠𝑖𝑛(𝜋𝑦𝑖)}  

+ ∑(𝑦𝑖 − 1)

𝐷−1

𝑖=1

[1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖+1) + ∑ 𝑢(𝑥𝑖 , 10,100,4)

𝐷

𝑖=1

]  

𝑤ℎ𝑒𝑟𝑒,  𝑢(𝑥𝑖 , 𝑎, 𝑘, 𝑚) = {

𝐾(𝑥𝑖 − 𝑎)𝑚 𝑖𝑓 𝑥𝑖 > 𝑎
0    −𝑎£𝑥𝑖 > 𝑎

𝐾(−𝑥𝑖 − 𝑎)𝑚 −𝑎£𝑥𝑖

  ;   

𝑦𝑖 = 1 +
1 + 𝑥𝑖

4
;  

30 [-50,50] 0 

𝐹13(𝑥) 

𝐹13(𝑥) = 0.1𝑠𝑖𝑛2(3𝜇𝑥1) + ∑(𝑥𝑖 − 1)2[1 + 𝑠𝑖𝑛2(3𝜇𝑥𝑖 + 1)]

𝐷

𝑖=1

+ (𝑥𝐷 − 1)2 + 𝑠𝑖𝑛2(2𝜇𝑥𝐷)

+ ∑(𝑥𝑖 , 5,100,4)

𝑑

𝑖=1

  

30 [-50,50] 0 

𝐹14(𝑥) 𝐹14(𝑥) = (
1

500
+ ∑

1

𝑗 + ∑2
𝑖=1

(𝑥𝑖 − 𝑎𝑖𝑗)

25

𝑗=1

)

−1

  

2 [-65,65] 0 

𝐹15(𝑥) 𝐹15(𝑥) = ∑ [𝑎𝑖 −
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

(𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4)

]

11

𝑖=1

2

  

4 [-5,5] 0 

𝐹16(𝑥) 𝐹16(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4  
2 [-5,5] 0 

𝐹17(𝑥) 𝐹17(𝑥) = (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) 𝑐𝑜𝑠 𝑥1 + 10  

2 [-5,5] 0 

𝐹18(𝑥) 

𝐹18(𝑥) = [1 +  (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥2 1 − 14𝑥2

+ 6𝑥1𝑥2 + 3𝑥2
2 )]

× [30 + (2𝑥1 − 3𝑥2)2 × (18 − 32𝑥𝑖

+ 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2)]  

2 [-2,2] 0 

𝐹19(𝑥) 𝐹19(𝑥) = − ∑ 𝑐𝑖𝑒𝑥𝑝 (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1

)

4

𝑖=1

  

3 [-1,2] 0 

𝐹20(𝑥) 𝐹20(𝑥) = − ∑ 𝑐𝑖𝑒𝑥𝑝 (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

6

𝑗=1

)

4

𝑖=1

  

6 [0,1] 0 

𝐹21(𝑥) 𝐹21(𝑥) = − ∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]

5

𝑖=1

−1

  

4 [0,1] 0 

𝐹22(𝑥) 𝐹22(𝑥) = − ∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]

7

𝑖=1

−1

  

4 [0,1] 0 

𝐹23(𝑥) 𝐹23(𝑥) = − ∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]

10

𝑖=1

−1

  

4 [0,1] 0 
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Table 2. Performance evaluation of CMAESAO and AO 
Function name Metrics AO CMAESAO Function name Metrics AO CMAESAO 

𝐹2(𝑥) 

Mean 9.4973e-218 6.23e-266 

𝐹14(𝑥) 

Mean 2.3207e0 0.0068 
Standard Deviation 0.00e000 0.00e000 Standard 

Deviation 

1.0246e0 9.3403e-13 

Best 6.5477e-225 1.2406e-268 Best 9.9800e1 1.565e-04 
Worst 3.214e-217 6.2425e-265 Worst 2.9821e0 0.0274 

𝐹4(𝑥) 

Mean 9.9112e-218 8.8368e-251 

𝐹15(𝑥) 

Mean 5.5089e-4 1.2106e-58 

Standard Deviation 0.00e000 0.00e000 Standard 
Deviation 

1.9027e-4 3.7682e-58 

Best 2.322e-211 3.5950e-247 Best 4.0581e-4 7.6985e-62 

Worst 3.4546e-217 1.7427e-245 Worst 8.4575e-4 9.6548e-58 

𝐹5(𝑥) 

Mean 1.8851e-3 0.00e000 

𝐹16(𝑥) 

Mean -1.0316 -3.7895e-03 

Standard Deviation 2.5151e-3 0.00e000 Standard 

Deviation 

6.5206e-8 1.1659e-18 

Best 5.8588e-5 0.00e000 Best -1.0316 -3.7895e-03 

Worst 2.5151e-3 0.00e000 Worst -1.0316 -5.6879e-01 

𝐹6(𝑥) 

Mean 6.3114e-5 1.2858e-05 

𝐹17(𝑥) 

Mean 3.9789e-1 0.4208e-3 

Standard Deviation 2.9614e-5 1.2809e-07 Standard 

Deviation 

4.7081e-7 1.0600e-15 

Best 7.28e-8 1.1399e-6 Best 3.9789e-1 0.4208e-3 
Worst 1.9689e-4 2.4937e-5 Worst 3.9789e-1 0.4208e-3 

𝐹7(𝑥) 

Mean 1.5929e-3 7.9575e-05 

𝐹19(𝑥) 

Mean -3.8624 -0.3926 
Standard Deviation 4.8479e-4 6.9694e-04 Standard 

Deviation 

8.4657e-4 9.6523e-5 

Best 6.6048e-5 1.6114e-4 Best -3.8628 -0.3926 
Worst 1.5929e-3 1.5365e-04 Worst -3.8607 -0.3926 

𝐹8(𝑥) 

Mean -2.2694e3 -1.8025e3 

𝐹20(𝑥) 

Mean -3.3014 -5.4250 

Standard Deviation 4.6187e2 8.4242 Standard 
Deviation 

4.9969e-2 7.8695e-3 

Best -2.6958e3 -1.80247e3 Best -3.3220 -5.7693 

Worst 1.4073e3 -1.80247e3 Worst -3.1994 -5.7673 

𝐹10(𝑥) 

Mean 8.8818e-16 9.1595e-17 

𝐹21(𝑥) 

Mean -10.149 -10.1413 

Standard Deviation 0.00e000 0.00e000 Standard 

Deviation 

4.9969e-2 4.8699e-2 

Best 8.8818e-16 1.6438e-16 Best -10.153 -10.1413 

Worst 8.8818e-16 1.6438e-16 Worst -10.14 -10.1413 

𝐹12(𝑥) 

Mean 2.9262e-5 1.3676e-07 

𝐹22(𝑥) 

Mean -10.401 -10.3801 
Standard Deviation 3.5700e-5 1.4126e-07 Standard 

Deviation 

2.9768e-3 2.8765e-3 

Best 1.1309e-7 5.7279e-09 Best -11.040 -10.3801 
Worst 1.0421e-4 3.7378e-07 Worst -10.395 -10.3801 

𝐹13(𝑥) 

Mean 9.5026e-5 6.0499e-07 

𝐹23(𝑥) 

Mean -10.536 -10.535 

Standard Deviation 1.0312e-4 3.8953e-08 Standard 
Deviation 

2.756e-4 2.755e-4 

Best 2.7176e-6 7.77564e-06 Best -10.536 -10.535 

Worst 2.7104e-4 2.0815e-05 Worst -10.535 -10.534 

 

 

  
 

Figure 6. ITAE versus no runs plot 
 

Figure 7. Statistical comparison of AO and CMAESAO 
 

 

6.2.  Convergence rate analysis 

Figure 8 presents the convergence plot of ITAE values over the number of iterations for both the AO 

and CMAESAO algorithms, showcasing their optimization performance. The blue crosses represent AO, which 

starts with higher ITAE values and gradually reduces over time but plateaus early, showing slower and less 
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stable convergence. In contrast, the red diamonds representing CMAESAO display a much faster and smoother 

convergence path. A focused inset between iterations 50 and 75 reveals that CMAESAO consistently 

outperforms AO throughout the iterative process, with lower ITAE values at nearly every step. 

It is clearly observed from Figure 8 that AO converges prematurely around an ITAE value of 0.7067, 

while CMAESAO continues to optimize and reaches a significantly better minimum of 0.4779. Although AO 

appears to converge earlier, it stabilizes at a suboptimal value. This demonstrates that while AO settles quickly, 

it lacks the precision and depth to reach the global optimum effectively. CMAESAO, on the other hand, 

maintains a controlled and steady optimization path, leading to superior results. This performance gain 

confirms the advantage of integrating CMAES into AO, improving convergence quality and solution accuracy 

significantly over the standard AO algorithm. 

 

 

 
 

Figure 8. Convergence plot for CMAESAO and AO 

 

 

6.3.  Result analysis 

The effectiveness of the proposed D-STATCOMs allocation technique is evaluated by conducting 

tests on two commonly used distribution systems: a 33-bus system and a 69-bus system. To validate the 

method's efficacy, three distinct scenarios are examined. In the first scenario, only one D-STATCOM is 

installed. In the second and third scenarios, two and three D-STATCOMs are respectively considered. The best 

outcome from ten separate algorithm runs is reported for each scenario. The proposed algorithm is executed 

on an AMD Ryzen 9 7950X CPU operating at 5.70 GHz with 32 GB of RAM using the MATLAB environment. 

 

6.3.1. 33 bus system 

The IEEE 33 bus test system has a combined load of 3715 + j 2300 kVA. The IEEE-33 bus system is 

subjected to load flow analysis with and without the presence of DSTATCOM. The base case result which is 

presented in Table 3, shows the poor performance of the system in the absence of D-STATCOM, characterized 

by a real power loss of 202 kW and a low voltage magnitude of 0.9038 p.u. However, with the inclusion of  

D-STATCOM(s), there is a significant improvement in the real power loss and voltage profile of the system. 

Table 3 provides a comparison of different methods for optimal allocation of D-STATCOMs (allocating  

D-STATCOMs), demonstrating that the proposed approach outperforms than other methods. 

Table 4 summarizes the allocation of DSTATCOMs on different types of loads like constant power, 

constant current, and constant impedance. Here, we find that, for constant power load model, with one  

D-STATCOM, the power loss is 145.8796 kW, with two D-STATCOMs it is 125.9263 kW, and with three  

D-STATCOMs it is 124.0499 kW. It shows the improvement of the above system parameters by allocation of 

two or three DSTATCOMs. For constant current load model, with one D-STATCOM, the power loss is 

131.292 kW, with two D-STATCOMs it is 125.9263 kW, and with three D-STATCOMs it is 124.0499 kW. 

Similarly, for constant impedance load model with one D-STATCOM, the power loss is 119.5428 kW, with 

two D-STATCOMs it is 116.2869 kW, and with three D-STATCOMs it is 112.7221 kW. So, it can be 
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concluded that, for each load model, the amount of power loss is decreasing gradually, with the increase in 

number of D-STATCOMs placement.  

Additionally, Figure 6 shows the convergence characteristic curve of the CMAESAO for distributing 

D-STATCOMs in the 33-bus system. Based on the results, it can be said that using three D-STATCOM 

placements results in better system performance than using one or two D-STATCOM allocations. To further 

support this conclusion, Figures 9(a)-9(c) display the voltage profile, branch current profile, and power loss 

profile for varying numbers of D-STATCOM allocations and constant power (CP) load types. Figures 10(a)-

10(c) display the voltage profile, branch current profile, and power loss profile for varying numbers of D-

STATCOM allocations and constant impedance (CI) load types. Figures 11(a)-11(c) display the voltage profile, 

branch current profile, and power loss profile for varying numbers of D-STATCOM allocations and constant 

current (CC) load types.  

 

 

Table 3. Effect of D-STATCOM allocation on 33 bus system 
Methods NDstatcom Location Size, MVAr Ploss, kW Vmin (p.u.) VSI 

Base Case 0 - - 202.0 0.9038 0.6951 

Proposed 1 30 1.0 145.8792 0.9255 0.7266 

GA 1 12 1.11142 173.9 - - 
IA 1 12 0.9624 171.8 - - 

DE 1 30 1.2527 143.5 0.9256 - 

Proposed 2 14 0.5550 125.9263 0.9473 0.8051 
30 1.0 

Proposed 3 30 0.9063 124.0499 0.9495 0.8128 

16 0.5356 
7 0.6209 

 

 

Table 4. Effect of D-STATCOM allocation on different types of load on 33 bus system 
DSTATCOM Type of load Location Size in MW Ploss in kW Qloss in kVar VSI Vmin(p.u) 

1 CP 30 1.000 145.8792 97.4253 0.7266 0.9233 
2 CP 14,30 0.5958 125.9263 92.5352 0.8051 0.9473 

1.000 

3 CP 14,6,30 0.5183 124.0499 91.4507 0.8128 0.9495 

0.6210 

0.8098 

1 CC 30 1.000 131.292 87.5134 0.7412 0.9279 
2 CC 14,30 0.5554 125.9263 84.1698 0.8051 0.9473 

1.000 

3 CC 30,16,7 0.9063 124.0499 83.5563 0.8128 0.9495 

0.3568 
0.6209 

1 CI 30 1.000 119.5428 79.548 0.7536 0.9318 

2 CI 30,14 0.9969 116.2869 77.6337 0.8123 0.9494 
0.5538 

3 CI 24,30,14 0.4421 112.7221 75.1925 0.8066 0.9478 

0.8978 
0.5009 

 

 

   
(a) (b) (c) 

 

Figure 9. For an IEEE-33 bus system for CP load type: (a) voltage profile, (b) branch current profile, and 

(c) MoF plot 
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(a) (b) (c) 

 

Figure 10. For an IEEE-33 bus system for CI load type: (a) voltage profile, (b) branch current profile, and  

(c) MoF 

 

 

   
(a) (b) (c) 

 

Figure 11. For an IEEE-33 bus system for CC load type: (a) voltage profile, (b) branch current profile, and 

(c) MoF plot 

 

 

6.3.2. 69 bus system 

The IEEE 33 bus test system has a combined load of 3791.9 + j 2694 kVA. The IEEE-33 bus system 

is subjected to load flow analysis with and without the presence of DSTATCOM. The results of which are 

presented in Table 5. The outcomes in Table 5 evidently specify that the system exhibits inadequate 

performance in the absence of D-STATCOM, resulting in a real power loss of 224.9 kW, and a low magnitude 

of voltage is 0.9092 p.u.  

Table 6 summarizes the allocation on different types of loads like constant power, constant current, 

and constant impedance. Here, we find that, for constant power load model, with one D-STATCOM, the power 

loss is 156.7697 kW, with two D-STATCOMs it is 149.6368 kW, and with three D-STATCOMs, it is  

147.8951 kW. It shows the improvement of the above system parameters by allocation of two or three 

DSTATCOMs. For constant current load model, with one D-STATCOM, the power loss is 138.0725 kW, with 

two D-STATCOMs it is 132.3844 kW, and with three D-STATCOMs it is 130.8476 kW. Similarly, for 

constant impedance load model with one D-STATCOM, the power loss is 123.242 kW, with two  

D-STATCOMs, it is 118.3333 kW, and with three D-STATCOMs, it is 118.2958 kW. So, it can be concluded 

that, for each load model, the amount of power loss is decreasing gradually, with the increase in number of  

D-STATCOMs placement. 

 

 

Table 5. Comparison of different methods without and with DSTATCOM allocation on 69 bus system 
Methods NDstatcom Location Size, MVAr Ploss, kW Vmin (p.u.) VSI 

Base Case 0 - - 224.9 0.9092 0.6833 

Proposed 1 62 1.0 156.7697 0.926 0.7354 
PSO 1 61 0.9011 167.9 - - 

GA 1 61 1.9183 165.4 0.9392 - 

IA 1 61 1.7044 157.5 - - 
DE 1 61 1.3121 152.0 0.9398  

GSA 1 61 0.966 152.0 -  

Proposed 2 61 1.0 149.6368 0.9286 0.7436 
12 0.8677 

Proposed 3 62 0.7763 147.8951 0.9338 0.7605 

18 0.4415 

61 0.6480 
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Table 6. Effect of DSTATCOM allocation on different types of load on 69 bus system 
DSTATCOM Location Size in MW Ploss in kW Qloss in kVar VSI Vmin (p.u.) 

1 62 1.000 156.7697 72.8499 0.7354 0.926 
2 61,12 1.000 149.6368 69.2637 0.7436 0.9286 

0.8676 

3 62,18,61 0.7762 147.8951 68.7109 0.7605 0.9338 
0.4414 

0.6479 

1 62 1.000 138.0725 64.7834 0.751 0.931 
2 61,12 0.9914 132.3844 61.8775 0.7579 0.9331 

0.8408 

3 15,61,64 0.5120 130.8476 61.3436 0.7707 0.937 
0.9630 

0.3266 

1 61 1.000 123.242 58.344 0.7632 0.9347 
2 61,13 1.000 118.3333 55.9826 0.7683 0.9363 

0.5806 

3 23,61,64 0.4355 118.2958 56.0025 0.7809 0.9401 

0.7458 

0.4976 

 
 

Figures 12(a)-12(c) present the performance of the IEEE-69 bus distribution system under CP load 

conditions for different numbers of D-STATCOMs. The voltage profile in Figure 12(a) shows that integrating 

one, two, and three D-STATCOMs leads to progressive improvement in maintaining voltage levels close to 

the nominal value across all buses. Specifically, the minimum voltage magnitude increases significantly, 

indicating enhanced voltage stability. The branch current profile in Figure 12(b) reveals a corresponding 

decline in line currents with additional D-STATCOMs, particularly notable in highly loaded branches. Figure 

12(c) displays minimization of multi-objective function with simultaneous integration of one, two, and three 

D-STATCOMs. 

In Figures 13(a)-13(c), the IEEE-69 bus system is analyzed under CC load conditions. The voltage 

profile in Figure 11(a) again confirms improved voltage stability with increased D-STATCOM integration, 

with notable voltage uplift at weaker buses. The branch current profile in Figure 13(b) highlights reductions in 

line loading, easing thermal stress, and enhancing operational reliability. The power loss plot in Figure 13(c) 

displays minimization of multi-objective function with simultaneous integration of one, two, and three  

D-STATCOMs. The loss values are consistently lower when two or more D-STATCOMs are present, 

confirming the efficiency of optimal placement. Although the improvements between two and three devices 

are visible, the trade-off in system cost and complexity must be considered, especially when performance gains 

are incremental. 

Figures 14(a)-14(c) illustrate the system response for 69 bus system under CI load conditions. The 

voltage profile in Figure 14(a) displays a significant uplift in voltage magnitude with the introduction of  

D-STATCOMs, particularly in the end buses, where voltage drops are usually more pronounced. The branch 

current profile in Figure 14(b) again shows a systematic decrease in current magnitude throughout the network 

as the number of D-STATCOMs increases, leading to more balanced load distribution and reduced I²R losses. 

The power loss plot in Figure 14(c) displays minimization of multi-objective function with simultaneous 

integration of one, two, and three D-STATCOMs. Collectively, these figures across all load scenarios validate 

the effectiveness of the proposed CMAESAO method in optimizing both the placement and size of  

D-STATCOMs. Importantly, they confirm that while three D-STATCOMs yield the best absolute 

performance, allocating two D-STATCOMs offers the most cost-effective and efficient solution, particularly 

for the 69-bus system, as demonstrated in Table 6 and supported by the convergence analysis results. 
 

 

   
(a) (b) (c) 

 

Figure 12. For an IEEE-69 bus system for CP load type: (a) voltage profile, (b) branch current profile, and (c) 

MoF plot 
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Figure 13. For an IEEE-69 bus system for CC load type: (a) voltage profile, (b) branch current profile, and 

(c) MoF plot 
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Figure 14. For an IEEE-69 bus system for CI load type: (a) voltage profile, (b) branch current profile, and 

(c) MoF plot 

 

 

7. CONCLUSION 

Evidently, electrical network reconstruction resulted from in order to minimize power losses in the 

electrical distribution system and guarantee operational compliance. This study uses the CMAESAO approach 

to determine the best location and size of D-STATCOM. Two common approaches, the 33-bus system and the 

69-bus system, are used to evaluate the method's efficacy. The use of a single D-STATCOM, the deployment 

of two D-STATCOMs, and the installation of three D-STATCOMs were all evaluated. The analysis's findings 

show how well the suggested approach works to solve the current issue. Three adequately sized D-STATCOMs 

were strategically placed in the 33-bus system, which significantly improved the electrical distribution system's 

performance. However, for the 69-bus system, the implementation of two D-STATCOMs proved superior in 

reducing power losses compared to the adoption of three D-STATCOMs. 
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