
International Journal of Applied Power Engineering (IJAPE) 

Vol. 13, No. 3, September 2024, pp. 645~652 

ISSN: 2252-8792, DOI: 10.11591/ijape.v13.i3.pp645-652      645  

 

Journal homepage: http://ijape.iaescore.com 

Enhancing solar power generation through AC power 

prediction optimization in solar plants 
 

 

G. Hari Krishnan1, B. V. Sai Thrinath1, M. Ramprasad Reddy2, Thukkaram Sudhakar3 
1Department of Electrical and Electronics Engineering, School of Engineering, Mohan Babu University, Tirupati, India 

2Department of Electrical and Electronics Engineering, Aditya College of Engineering, Madanapalle, India 
3Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Sep 13, 2023 

Revised Feb 28, 2024 

Accepted Mar 20, 2024 

 

 As the world embraces sustainable energy solutions, the accurate prediction 

of AC power generation in solar power plants becomes imperative for 

efficient energy management. This research endeavors to address this critical 

need through a meticulous exploration of five distinctive predictive 

algorithms: linear regression, gradient boosting, neural networks, support 

vector regression (SVR), and ensemble techniques. Leveraging a merged 

dataset comprising environmental parameters like ambient and module 

temperatures, irradiation, and historical yield, our study embarks on a 

comprehensive evaluation journey. The essence of this endeavor lies in the 

recognition that renewable energy sources, particularly solar power, are 

instrumental in mitigating environmental concerns associated with 

traditional energy generation. To unleash the full potential of solar power, a 

nuanced understanding of predictive methodologies is indispensable. Linear 

regression serves as a cornerstone, validating its foundational role. However, 

the crux of innovation lies in the advanced algorithms – gradient boosting, 

neural networks, SVR, and ensemble methods – each striving to optimize 

prediction accuracy. A novelty of this research stems from its holistic 

approach to predictive modelling. By meticulously comparing the 

performance of multiple algorithms, we uncover insights that transcend mere 

theoretical applications. Our findings assume significance in the context of 

renewable energy's societal impact. 
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1. INTRODUCTION 

Solar power plants frequently confront the challenge of unpredictable energy outputs, primarily due 

to fluctuating environmental conditions such as irradiation, temperature, and weather patterns. These 

inconsistencies in power generation predictions pose a significant hurdle in ensuring stable and reliable 

energy supply. Furthermore, solar power plants operate under a myriad of environmental and operational 

conditions, each presenting unique challenges in accurately forecasting power output [1]. This diversity 

necessitates a method that is adaptable and robust enough to handle various real-world scenarios [2]. 

Additionally, the efficient solar power combination into the power grid, a critical aspect of modern energy 

management, depends heavily on the precision of power predictions [3]. This precision is vital for effective 

load balancing, energy storage, and implementing demand-response strategies [4]. Finally, the decision-

https://creativecommons.org/licenses/by-sa/4.0/
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making process regarding the selection of predictive technology for AC power generation in solar plants is 

crucial, as it directly impacts efficiency and cost-effectiveness [5]. 

Fatemi et al. [6] delved into the parametric methods, a crucial aspect of predicting solar power 

generation. However, their focus on solar irradiance forecasting did not extend to a comprehensive approach 

for AC power prediction in solar power plants. Meanwhile, Ahmad et al. [7] conducted research on 

comparing various algorithms such as support vector regression and random forests. According to  

Krishnan et al. [8] though insightful, was limited to solar thermal systems and did not encompass the broader 

scope of solar photovoltaic power plants. 

Krechowicz et al. [9] explored machine learning (ML) based predict electricity from renewable 

energy sources, highlighting the effectiveness of these models in renewable energy. Yet, their study did not 

specifically focus on AC power prediction in solar plants, a gap that your research addresses. Similarly, 

Rafati et al. [10] concentrated on forecasting using data-driven methods. Although valuable, their study was 

more narrowly focused on short-term forecasting and did not cover a comprehensive set of environmental 

and operational parameters. 

In another significant contribution, Alaraj et al. [11] investigated energy production forecasting 

from solar photovoltaic plants based on meteorological parameters for the Qassim region in Saudi Arabia. 

Their research, while important, predominantly centered on meteorological parameters and did not integrate a 

broader range of data for AC power prediction. Lastly, Huang et al. [12] developed a point prediction method 

with multi-region photovoltaic plants. While this was a step forward in day-ahead forecasting, it potentially 

lacked in addressing the need for long-term predictive consistency, an aspect that your research seeks to  

enhance [13], [14]. Each of these studies has contributed to the field of solar power prediction, yet there 

remain gaps related to comprehensive data integration, long-term predictability, and adaptability across 

various operational scenarios [15], [16]. 

- Problem statement 

Proposed research addresses several key challenges in solar power generation: Firstly, it tackles the 

unpredictability of AC power output in solar plants, a crucial factor for consistent energy  

generation [17], [18]. Secondly, it confronts the issue of maintaining stable and efficient energy production 

amidst variable environmental conditions [19]. Thirdly, the research focuses on improving the integration of 

solar energy into power grids, which is often hindered by inconsistent energy outputs [20]. Finally, it 

addresses economic feasibility issues that arise due to the irregular nature of solar power generation, aiming 

to make solar energy more viable and cost-effective [21]. Existing methods in solar power prediction mostly 

focused on general aspects like solar irradiance and solar thermal systems, using models such as support 

vector regression and random forests [22]. These methods, however, did not directly address AC power 

output prediction in photovoltaic solar power plants [23]. The current research fills this gap by applying a 

range of advanced predictive algorithms - linear regression, gradient boosting, neural networks, support 

vector regression (SVR), and ensemble methods - specifically to AC power prediction in solar PV  

plants [24]. This approach represents a substantial advancement in predictive modeling for solar energy, 

enhancing the accuracy and applicability of forecasts for AC power output [25]. 

 

 

2. THE PROPOSED METHOD 

The proposed methodology in this study aims to address these challenges by employing a range of 

advanced predictive algorithms, including linear regression, gradient boosting, neural networks, SVR, and 

ensemble techniques. These algorithms are applied to a comprehensive dataset that merges environmental 

and operational data, enhancing the accuracy and adaptability of power predictions. Through this approach, 

the study endeavors to provide more consistent and reliable power generation forecasts, improve the 

adaptability of predictive models to diverse operational conditions, optimize energy management for grid 

integration, and offer valuable insights for decision-making in technology selection. 

This method is novel with respect to three aspect, first comprehensive data integration, employing a 

merged dataset that includes a wide range of environmental and operational parameters such as ambient and 

module temperatures, irradiation, and historical yield. This approach allows for more nuanced and accurate 

predictions of AC power generation, considering various factors influencing solar power output. 

Additionally, the research introduces a diverse array of predictive algorithms, including linear regression, 

gradient boosting, neural networks, SVR, and ensemble techniques, enabling robust comparative analysis 

across different predictive models, from foundational statistical methods to advanced machine learning 

techniques. The methodology's focus on specific evaluation metrics, like deviation and mean difference, for 

assessing the performance of each predictive algorithm, is a technically innovative approach, ensuring that 

the assessment is grounded in practical and relevant measures of accuracy and reliability, enhancing the 

applicability of these findings in real-world solar power plant operations [13]. The dataset used in the study is 
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an amalgamated dataset, which includes comprehensive data from a solar power plant. This dataset is 

sourced from The Kaggle Solar Power Plant dataset and merges two specific subsets of data: the generation 

data and the weather sensor data. The generation data, often referred to as "Plant_2_Generation_Data," 

provides detailed insights into the operational aspects of the solar power plant, including the historical power 

yield. The weather sensor data, known as "Plant_2_Weather_Sensor_Data," encompasses crucial 

environmental parameters such as ambient and module temperatures, along with irradiation levels. 

These values given in Table 1 reflect the operational status of the solar power plant during sunlight 

hours. The irradiation, DC power, and AC power values are greater than zero, indicating active solar power 

generation. The increase in module temperature is also consistent with exposure to sunlight. These daytime 

readings are crucial for understanding and predicting the solar power generation capacity of the plant under 

varying environmental conditions. 
 

 

Table 1. Dataset parameters description with their technical details 
Parameter Description Range /technical specification 

Date/time Timestamp of the data entry 2020-05-15 06:00 to 06:45 

Ambient temperature (°C) Temperature of the surrounding environment 24.7 °C to 25.0 °C 
Module temperature (°C) Temperature recorded by the solar modules or panels 23.8 °C to 25.7 °C 

Irradiation (kW/m²) The amount of solar irradiance received 0.0028 kW/m² to 0.1035 kW/m² 

DC power (kW) Direct current power output from solar panels 14.77 kW to 15.41 kW 
AC power (kW) Alternating current power output after conversion 14.25 kW to 14.86 kW 

Daily yield (kWh) Total energy produced in a day 0.73 kWh to 1.87 kWh 

Total yield (kWh) Cumulative energy output since installation 1.70M kWh to 2.25B kWh 

 

 

3. MATERIALS AND METHODOLOGY 

Initiating a cutting-edge approach to predict solar power output, the study implements a multifaceted 

and technically advanced methodology. The process begins with the careful loading and pre-processing of 

historical data, which includes both generation and weather sensor information, ensuring a robust foundation 

for analysis. The data is then subjected to a series of pre-processing steps, such as normalization and feature 

selection, to refine the dataset for predictive modelling. This leads into the core of the methodology - the 

application of a suite of diverse predictive algorithms. The study strategically employs linear regression as a 

baseline model, providing a foundational comparison for other techniques. This is followed by more complex 

algorithms, including gradient boosting, which is known for its effectiveness in handling non-linear 

relationships and offering high prediction accuracy. Neural networks are also utilized for their ability to 

model complex patterns through interconnected layers of nodes, making them suitable for the intricate 

dynamics of solar power generation. SVR is another key method, leveraging its capability to perform 

regression in high-dimensional spaces, ideal for the multifaceted nature of the data involved. Finally, an 

ensemble approach is adopted, synthesizing outputs from multiple models to enhance overall predictive 

performance. The flow diagram, illustrated in Figure 1, elucidates the sequential process of AC power 

prediction through diverse predictive algorithms. 

 

 

 
 

Figure 1. Linear regression (LR) prediction flow diagrams 

 

 

- Linear regression (LR) 

Linear regression serves as a basic method for predictive modeling, aiming to determine a straight-

line correlation (in this context, AC power). The objective is to identify an optimal linear equation that 

effectively reduces the sum of squared deviations between forecasted and real outcomes. The equation 

representing a straightforward linear regression model is articulated as (1). 
 

y = b0 + b1x  (1) 
 



                ISSN: 2252-8792 

Int J Appl Power Eng, Vol. 13, No. 3, September 2024: 645-652 

648 

Where y is the predicted AC power; b0 is the intercept (bias) of the linear model; b1 is the coefficient of the 

linear model; and x represents the input features (ambient temperature, module temperature, and irradiation). 

- Gradient boosting regression (Grad) 

Gradient boosting is a technique in ensemble learning that constructs a predictive model through the 

sequential incorporation of weak learners, typically decision trees. This method emphasizes correcting the 

inaccuracies of prior iterations. The culmination of this process is a comprehensive prediction derived from 

the aggregate, weighted sum of the outputs of all the constituent trees. The formula to represent the predictive 

output in gradient boosting is structured as (2). 
 

𝐹(𝑥) = ∑ 𝛾𝑚ℎ𝑚(𝑥)𝑀
𝑚=1   (2) 

 
Where 𝐹(𝑥) is the final prediction; 𝑀 is the number of trees; 𝛾𝑚 is the weight of the m-th tree’s prediction; 

and ℎ𝑚(𝑥) is the prediction of the m-th tree. 

- Neural network (NN) 

Complex model comprises numerous interconnected layers of nodes, commonly referred to as 

neurons. In each layer, every node undertakes the processing of input data and subsequently transmits it to 

the subsequent layer for further information processing. Ultimately, the final layer culminates in producing 

the prediction. The mathematical depiction of a neural network can be broadly defined as (3). 

 

�̇� = 𝑓3 (𝑤3𝑓2(𝑤2. 𝑓1(𝑤1𝑥)))  (3) 

 

Where ẏ is the predicted output (AC power); x represents the input features; 𝑓1, 𝑓2,  𝑓3 are activation 

functions; and 𝑤1, 𝑤2,  𝑤3 are weights of the neural network layers. 

- Support vector regression (SVR) 

SVR is a regression methodology that draws upon the principles of SVR. The fundamental objective 

of SVR is to locate a hyperplane that optimally accommodates the data points while concurrently allowing 

for a pre-determined margin of error. The SVR model can be mathematically represented as (4). 

 

𝑓(𝑥) = ∑ (∝𝑖−∝𝑖
∗)𝐾(𝑥,𝑥𝑖) + 𝑏

𝑛

𝑖=1
  (4) 

 

Where 𝑓(𝑥) is the predicted output; ∝𝑖 , ∝𝑖
∗ are Lagrange multipliers; 𝐾(𝑥,𝑥𝑖) is the Kernal function; and 𝑏 is 

the bias term. 

- Ensemble of models (ENS) 

Ensemble methods have emerged as a powerful approach in enhancing prediction accuracy and 

mitigating over fitting by amalgamating the outputs of multiple individual models. A prevalent manifestation 

of this technique is the weighted average of predictions. The representation of the ensemble prediction can be 

succinctly expressed as (5). 
 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑥) = ∑ 𝑤𝑖𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖(𝑥)
𝑁

𝑖=1
  (5) 

 

Where 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 (𝑥) is the final ensemble prediction; 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖(𝑥) is the prediction of the i-th individual 

model; and 𝑤𝑖  are the weights assigned to each individual model’s prediction. 

 

3.1.  Detailed methodology description 

Stage 1: Data collection and preprocessing: The study begins by loading historical data, which 

includes both generation and weather sensor data (Step 1). This data is critical as it encompasses key 

variables like power output and environmental conditions that influence solar power generation. Feature 

selection is also conducted in this phase to identify the most relevant variables for predictive modeling. 

Stage 2: Predictive algorithms employed: The modeling phase (Steps 3 to 5) includes the application 

of five distinct predictive algorithms: linear regression, gradient boosting, neural network, support vector 

regression, and an ensemble approach. Each algorithm is chosen for its unique strengths and suitability in 

handling different aspects of solar power prediction. Linear regression serves as a baseline, while advanced 

methods like gradient boosting and neural networks cater to complex non-linear relationships in the data. 

Stage 3: Data analysis techniques: Post-modeling, the evaluation phase (Step 6) involves calculating 

R-squared scores for each model to compare their performance. This metric is crucial for understanding how 

well the models can explain the variance in the observed data. The final step (Step 7) visualizes the results, 

juxtaposing actual AC power values with predictions from each model, providing an intuitive understanding 

of each model's predictive accuracy. 
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3.2.  Predicting AC power output 

Suppose we have historical data points for ambient temperature, module temperature, irradiation, 

and DC power. Let’s assume the ambient temperature is 25 °C, module temperature is 27 °C, irradiation is 

0.5 kW/m², and the DC power at that time is 100 kW. The gradient boosting algorithm is trained with 

historical data. In this training process, the model learns the complex relationships between the selected 

features (like temperature and irradiation) and the target variable, which is AC power output. Gradient 

boosting works by sequentially adding predictors (trees), where each one corrects its predecessor, minimizing 

the prediction error over iterations. Once trained, the model can predict AC power output based on new input 

data. For example, if the current ambient temperature is 28 °C, module temperature is 30 °C, irradiation is  

0.6 kW/m², and DC power is 120 kW, the model will use these inputs to predict the AC power. 

 

3.3.  Outcomes and relation to prediction 

The predictive modeling of AC power output in solar energy management leverages algorithms 

including linear regression (LR), gradient boosting (GRAD), neural networks (NN), support vector 

regression (SVR), and ensemble (ENS) techniques. These models digest data on factors like irradiation and 

temperature fluctuations to anticipate power generation. Understanding these correlations is pivotal, as 

accurate predictions ensure optimal energy grid functioning and the efficient harnessing of solar resources. 

The precision of these forecasts underpins key operational decisions in solar power facilities, encompassing 

maintenance planning, load distribution, and the seamless integration of solar power into the overall energy 

supply, thereby highlighting the substantial impact of predictive analytics in renewable energy sectors. 

 

 

4. RESULTS AND DISCUSSION 

The predictive outcomes of the examined algorithms were distinct in their alignment with the actual 

AC power values. Linear regression (LR) exhibited predictions that subtly deviated from the actual values, 

hinting at a cautious approach. Conversely, gradient (GRAD) predictions showcased a parallel yet distinctive 

trend compared to the actual values, introducing an intriguing perspective. In contrast, neural network (NN) 

predictions closely mirrored the actual values, demonstrating a high degree of concordance. Support vector 

regression (SVR) predictions unfolded with noticeable deviations from the actual values, implying a more 

pronounced divergence. Notably, ensemble (ENS) predictions amalgamated insights from a composite of 

methods, culminating in predictions that encapsulated the inherent data essence. According to Figure 2, we 

present a visual representation of the predicted value differences when compared to the actual AC power 

values across all implemented methods. This depiction offers a comprehensive overview of how each 

method's predictions deviate from the true AC power values. The spread and distribution of points provide 

insights into the consistency and accuracy of the predictive algorithms. The chart aids in identifying trends 

and patterns in the deviations, which can help inform decisions regarding model refinement and selection for 

optimal AC power prediction. Figure 3 delves into a more focused comparison, specifically analyzing the 

predicted value differences for the linear regression (LR) and gradient boosting (GRAD) methods. 

Fundamental to this analysis were two pivotal metrics: "Mean Difference" and "Deviation." While specific 

numerical values are omitted, these metrics stood as quantitative indicators of the extent of deviation between 

predicted and actual values as given in Table 2. The "Mean Difference" metric provided an average portrayal 

of the disparity, encompassing both overestimations and underestimations. 

In tandem, the "Deviation" metric illuminated the consistency of these deviations, underlining the 

stability of predictive trends across methods. Figure 4(a) gives visually represents the disparities between 

predicted and actual AC power values across all implemented prediction methods. This graphic provides an 

insightful overview of the prediction accuracies of various methods, helping to assess their performance 

consistency and the extent of deviations from actual values. Figure 4(b) offers a clear snapshot of how LR 

and GRAD approaches perform individually in terms of predictive accuracy. This targeted analysis aids in 

understanding the specific strengths and limitations of these methods and assists in informed decision-

making when choosing between LR and GRAD for AC power prediction in solar power plants. 

 

 

Table 2. Performance comparison of prediction methods 
Methods Deviation Mean difference 

LR 6.29 0.125 
GRAD -6.26 -0.125 

NN 10.56 0.211 

SVR 76.25 1.525 
ENS 27.21 0.544 
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Figure 2. Predicted value difference with actual for all methods 
 

 

 
 

Figure 3. Predicted value difference with actual for LR and GRAD methods 

 
 

  
(a) (b) 

 

Figure 4. Comparative analysis of prediction accuracy and deviation for different methods (a) predicted 

value differences with actuals and (b) mean differences with actuals 
 
 

In our research, while primarily centered on large-scale solar plants, the methodologies proposed are 

adaptable for domestic solar power systems. The adaptation involves recalibrating the predictive models, 

such as linear regression and gradient boosting, to align with the smaller scale and unique environmental 

conditions of residential settings. This would entail adjusting the data analysis to account for factors like 

smaller solar arrays, varying rooftop orientations, and localized shading effects typical in-home installations. 

By refining the models to reflect these residential-specific parameters, the methodologies can be effectively 

applied to optimize solar power generation in domestic environments. The research achieved significant 

advancements in AC power prediction in solar plants by implementing advanced predictive algorithms like 

linear regression, gradient boosting, neural networks, SVR, and ensemble methods. Prior work mainly 

focused on solar irradiance forecasting or solar thermal systems, often employing fewer comprehensive 

methods like support vector regression and random forests. This study uniquely applied these sophisticated 

algorithms to solar photovoltaic plants, enhancing prediction accuracy, and offering a novel approach in the 

field of renewable energy management. 
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5. CONCLUSION 

The work implements accurate prediction of AC power in solar power plants by employing a range 

of advanced predictive algorithms. The study's methodology leverages these diverse algorithms to interpret 

the complex relationships within the solar power generation data. The ultimate goal is to identify the most 

accurate method for predicting AC power, thereby enabling more efficient operation and integration of solar 

energy into power grids. The findings from this analysis provide valuable insights for optimizing solar power 

generation and enhancing the overall efficiency of solar power plants. These methods, including linear 

regression, gradient boosting, neural networks, SVR, and ensemble techniques, mark a significant departure 

from traditional models like support vector regression and random forests used in prior research. The 

proposed study applies to solar PV plants and the comprehensive integration of various environmental and 

operational data, resulting in enhanced accuracy and reliability. 
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