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 Efforts to achieve swift and precise dynamic torque control have been 

central in AC drive research. Recent advancements in embedded computer 

systems have highlighted direct torque control (DTC) and field-oriented 

control (FOC) as key methods for enhancing torque dynamics, both utilizing 

space vector modulation (SVM) to optimize voltage source inverter 

positioning. This study introduces a novel synthesis by integrating DTC with 

SVM to address limitations in conventional DTC, which suffers from limited 

voltage vector availability, leading to undesirable torque behavior and 

significant current fluctuations. The primary goal is to develop an optimal 

switching modulator for the fastest torque response through the combined 

application of DTC and SVM. The proposed strategy optimizes DC bus 

usage, reduces torque fluctuations, minimizes total harmonic distortion in 

AC motor current, decreases switching losses, and ensures seamless digital 

system integration. Simulations using MATLAB/Simulink demonstrate 

significant torque, current, and flux linkage ripple reductions, validating the 

approach's effectiveness. This integration overcomes established limitations, 

extending the capabilities of motor control methodologies and offering 

enhanced performance and operational integrity in induction motor  

drive systems. 
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1. INTRODUCTION 

Efforts to achieve swift and precise dynamic torque control have long been a central focus in AC 

drives research. In recent years, advancements in embedded computer systems have propelled two prominent 

methodologies, direct torque control (DTC) and field-oriented control (FOC), to the forefront as pivotal 

avenues for enhancing torque dynamics [1]. Both approaches utilize space vector modulation (SVM) to 

position the voltage source inverter within the overmodulation realm, aiming for optimal torque response. 

This study pioneers a novel synthesis by integrating DTC with SVM, addressing inherent limitations present 

in conventional DTC schemes. Traditional DTC, constrained by limited voltage vector availability to the 

motor, results in undesirable torque behaviors and pronounced current fluctuations [2]-[6]. In this paper, we 

propose the novel method of SVM with DTC is to formulate an optimal switching modulator designed to 

elicit the swiftest achievable torque response. This is achieved through the symbiotic application of DTC and 

SVM. A key strength of the proposed strategy lies in its ability to optimize DC bus usage, dampen torque 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Appl Power Eng ISSN: 2252-8792  

 

A new optimal space vector modulation with DTC switching strategy for induction … (Ahmad Omar Deab) 

863 

fluctuations, attenuate total harmonic distortion in AC motor current, mitigate switching losses, and ensure 

seamless integration into digital systems. The SVM-DTC configuration is meticulously simulated using 

MATLAB/Simulink, demonstrating remarkable reductions in torque, current, and flux linkage ripple. This 

substantiates the effectiveness of the devised approach, positioning it as a significant stride toward achieving 

enhanced dynamic control in induction motor drive systems. By successfully overcoming established 

limitations [2]-[6], the fusion of DTC and SVM extends the frontiers of motor control methodologies, 

offering newfound potential for improved performance and operational integrity. 

 

 

2. TORQUE CONTROL TECHNIQUES 

The two dominant sensorless control methodologies for induction machines (IMs) are field-oriented 

control (FOC) and direct torque control (DTC). Both field-oriented control and direct torque control negate 

the necessity for coordinate transformations, pulse width modulation (PWM) signal generators, current 

controllers, or position encoders, which can introduce delays and mandate the utilization of mechanical 

transducers. Despite its simplicity, DTC offers swift, instantaneous torque control in both steady-state and 

transient operating conditions, in alignment with its fundamental control mechanism [7]. Given the 

imperative need for electric vehicle (EV) drive systems to exhibit rapid torque responses, cost-effectiveness, 

reliability, and robustness, DTC proves to be particularly advantageous for EV applications. 

DTC's fundamental principle revolves around the direct selection of stator voltage vectors based on 

dynamic discrepancies, thereby avoiding the complexities of field-oriented control. The foundational work by 

Takahashi and Depenbrock introduced this methodology, involving the comparison of reference and actual 

torque along with stator flux linkage values [8]. By eliminating the requirement for intricate field orientation 

and inner current regulation loops, DTC achieves both rapid and precise torque responses, making it 

particularly suitable for saturated voltage operations. 

Embracing this principle facilitates decoupled control over flux and torque without the necessity for 

coordinate transformations, PWM pulse generators, or other intricate control strategies. This approach 

involves employing two hysteresis controllers, depicted in Figure 1, to determine the motor's input voltage. 

These controllers select the appropriate voltage vectors from an inverter's lookup table, ensuring that stator 

flux and torque remain within the limits defined by two hysteresis bands, as shown in Figure 2 [9]. The 

associated switching table, illustrated in Table 1, dictates the voltage vector based on the stator flux position 

and the required variations in stator flux magnitude and torque [10]. The voltage source inverter (VSI) 

comprises two zero voltage vectors and six voltage vectors that are uniformly spaced and possess equal 

amplitudes. Figure 3 provides a visualization of the VSI's voltage vectors. 

 

 

 
 

Figure 1. The block diagram of general DTC 
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(a) (b) 

 

Figure 2. Hysteresis-based comparison: (a) stator flux and (b) torque 

 

 

Table 1. Switching table 
Flux error position Torque error position Sec I Sec II Sec III Sec IV Sec V Sec VI 

1 1 V2 V3 V4 V5 V6 V1 

0 V7 V0 V7 V0 V7 V0 
-1 V6 V1 V2 V3 V4 V5 

0 1 V3 V4 V5 V6 V1 V2 

0 V0 V7 V0 V7 V0 V7 
-1 V5 V6 V1 V2 V3 V4 

 

 

 
 

Figure 3. VSI voltage vectors 

 

 

Despite its simplicity, direct torque control (DTC) faces several notable challenges. The basic DTC 

strategy utilizing hysteresis controllers exhibits several noteworthy drawbacks. These include fluctuations in 

inverter switching frequency, considerable torque fluctuations, and a resulting increased requirement for 

sampling to address digital implementation concerns [11]-[13]. 
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3. PROPOSED DTC WITH SPACE VECTOR MODULATION SYSTEM 

In this section, we will introduce the DTC-SVM methodology, which employs a closed-loop 

approach for torque control. The schematic representation of this configuration is illustrated in Figure 4. DTC 

involves the anticipation of the voltage required to achieve a predefined output torque, leveraging an 

induction motor model [14], [15]. Instantaneous stator flux and output torque can be ascertained using solely 

current and voltage information. Subsequently, the voltage essential to steer the flux and torque towards the 

desired levels within a specified timeframe is projected through the utilization of an induction motor model. 

The objective of the DTC-SVM approach, distinct from conventional DTC, centers on approximating a 

reference stator voltage vector V*S for the purpose of orchestrating the power gate operations of the inverter 

with consistent switching frequency. The inverter can now generate a voltage vector with varying direction 

and magnitude during each sampling interval. As a result, variations in stator flux deviations can manifest in 

diverse directions and magnitudes, leading to smoother alterations in torque. In the latter part of the 1980s, a 

team of German researchers introduced the concept of space vector modulation (SVM) for the first time. 

Since then, extensive investigations have been undertaken concerning the dq theory and the utilization of 

SVM methodologies. SVM techniques offer a spectrum of advantages, encompassing enhanced utilization of 

the DC bus, diminished torque fluctuations, reduced total harmonic distortion (THD) in the current of the AC 

motor, minimized switching losses, and seamless integration into digital systems. Within the framework of 

the direct torque control (DTC) paradigm, the SVM methodology is implemented within each cycle period to 

ascertain the requisite voltage space vector for precise recalibration of flux and torque discrepancies [16]. 

The integration of SVM with DTC has significantly curtailed torque ripple, maintaining a consistent 

switching frequency [17]-[19]. 

The computation of the stator flux vector, denoted as Ψ_s, and the resultant motor torque, T_em, can 

be accomplished using (9) and (10). These equations primarily rely on familiarity with the voltage vector 

previously employed, the computed stator current, and the stator resistance. 

 

𝛹𝑠 = (𝑉𝑠 − 𝐼𝑠𝑅𝑠)∆𝑡 (9) 

 

𝑇𝑒𝑚 =
3

2

𝑝

2
(𝛹𝑠 × 𝐼𝑠) (10) 

 

Upon determining the magnitude of the current stator flux and the resulting torque, it becomes possible to 

calculate the necessary modification to attain the desired values by the end of the ongoing switching interval 

[20]-[23]. The voltage essential for nullifying torque and flux discrepancies is directly ascertained. This 

anticipated voltage is subsequently implemented, with the utilization of space vector modulation (SVM) to 

generate the voltage patterns. In cases where the inverter is unable to deliver the necessary voltage, the 

voltage vector that steers torque and flux closer to the desired level is chosen and maintained throughout the 

cycle duration [24], [25]. 

 

 

 
 

Figure 4. Proposed system block diagram (DTC-SVM) 
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The following equations can be used to compute the switching times. 

 

𝑉𝑠
∗ = 𝑉𝑠𝑑 + 𝑗𝑉𝑠𝑞  (11) 

 

The values of Vsd and Vsq are obtained from the suitable voltage vectors corresponding to each sector: 
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During the phase of steady-state operation, the reference vector, indicated as V*s and defined by an 

unchanging amplitude and frequency, is recorded at regular intervals of Tz. Within this defined sampling 

period, the inverter experiences transitions between different switching states, occupying them for varying 

spans of time. This controlled modulation guarantees that the mean space vector formulated over the course 

of the sampling interval aligns accurately with the sampled characteristics of the reference vector in regards 

to both magnitude and orientation [26]-[28]. 

The permissible array of switching states within Tz encompasses not only the two zero states but 

also the active states, SA and SB, orchestrated through vectors V1 and V2, serving to establish the bounds of 

the sector's initiation and conclusion, as visually depicted in Figure 5. Active switching states specifically 

denote the two modes, SA and SB, with SA representing inverter states (001), (100), or (010), and SB 

symbolizing inverter switching states (101), (110), or (010), (011). The time intervals attributed to active 

switching states, namely TA and TB, are defined as active vector periods. Additionally, the temporal spans 

linked to null switching states, S0 (000) and S7 (111), are denoted as null vector periods, T0 and T7. By 

integrating the space vector pulse width modulation (PWM) methodology within DTC, not only is the 

transient performance and robustness of DTC retained, but the amplitude fluctuations of the steady-state 

torque are also mitigated [29]. Furthermore, the inverter's continuous and fully adjustable switching 

frequency remains a prominent feature [30]. 

 

 

 
 

Figure 5. Boundaries of the sector 



Int J Appl Power Eng ISSN: 2252-8792  

 

A new optimal space vector modulation with DTC switching strategy for induction … (Ahmad Omar Deab) 

867 

4. RESULTS AND DISCUSSION 

The simulation segment encompasses the creation and assessment of the tailored direct torque 

control (DTC) methodologies. These methodologies were conceived and subsequently simulated using the 

MATLAB/Simulink environment, as depicted in Figure 6. To model the system, an induction motor is 

utilized, and its pertinent specifications are detailed in Table 2. 

 

 

 
 

Figure 6. Simulation setup for SVM-DTC controlled induction motor system 

 

 

Table 2. Technical specification of the induction motor 
Parameter Value 

Stator resistance 𝑅𝑠 = 1.405 Ω 

Rotor inductance  𝐿𝑟 = 0.005839 𝐻 

Stator inductance  𝐿𝑠 = 0.005839 𝐻 

Base speed  𝑁𝑏 = 1430 𝑟𝑝𝑚 

Frequency 𝑓 = 50 𝐻𝑧 

Rotor resistance 𝑅𝑟 = 1.395 Ω 

Mutual inductance 𝑀 = 0.1722 𝐻 

Phase voltage 𝑉 = 240 𝑉 

Inertia 𝐽 = 0.003 𝑘𝑔𝑚2 

 

 

4.1.  Simulation setup and motor model 

Exploring the intricacies of advanced direct torque control (DTC) strategies necessitated the 

development of a robust simulation framework, meticulously crafted within the versatile MATLAB/Simulink 

software. This platform served as the testing ground where innovative adjustments to the conventional DTC 

approach were seamlessly incorporated. Through a series of methodical simulations, the repercussions and 

efficiencies of these proposed modifications were thoroughly scrutinized, shedding light on their potential 

advantages and drawbacks within the dynamic context of motor control systems. 
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4.2.  Motor selection and data incorporation 

For the purpose of system modeling, an asynchronous motor was selected as the core component. 

The inherent characteristics and parameters of this motor, crucial for accurate simulation, were extracted 

from pertinent datasheets. These specifications, providing a solid foundation for the model, are 

comprehensively outlined in Table 1. 

 

4.3.  DTC scheme design and implementation 

To enhance the performance of direct torque control (DTC), innovative schemes were meticulously 

formulated with the specific aim of refining and optimizing its operational efficiency. These novel strategies, 

carefully designed to meet predefined objectives, were subsequently translated into functional Simulink 

blocks. This transformation facilitated the seamless integration of the conceptual enhancements into the 

simulation environment, allowing for a real-time assessment of their impact on the asynchronous motor. 

 

4.4.  Simulation architecture and evaluation 

The MATLAB/Simulink platform facilitated the construction of a dynamic simulation architecture. 

This architecture intricately integrated the modified DTC strategies with the asynchronous motor model. The 

resultant simulations enabled the systematic observation and analysis of the motor's behavior under various 

operational conditions. By establishing this robust simulation setup and accurately incorporating motor 

specifications, the simulation section of this study lays the foundation for comprehensive insights into the 

performance enhancements offered by the proposed DTC schemes. 

Figures 7 to 11 illustrate the steady-state performance of an induction motor under SVM-DTC. In 

Figure 7, we observe the pulse sequences for switches S1-S6, obtained via space vector PWM technique. 

Notably, S1's pulses are complementary to those of S4, as are S2's to S5's, and S3's to S6's. This symmetry in 

pulse behavior contributes to coordinated switch operation within the SVM-DTC strategy. The obtained 

simulation results hold pivotal implications in showcasing the efficacy of the proposed direct torque  

control (DTC) approach integrated with space vector modulation, especially in comparison to prior 

methodologies. This section provides a comprehensive analysis of each figure's outcomes, along with a 

succinct comparison highlighting the significance of the present work. 

 

 

 
 

Figure 7. Switching pulse patterns for SVM-DTC in induction motor control 
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4.4.1. Stator flux dynamics  

In Figure 8, the stator flux behavior is unveiled. This figure provides a clear visualization of how the 

proposed DTC with space vector modulation influences the stator flux, accentuating the precise control 

achieved under dynamic conditions. Comparing these results to previous approaches underscores the 

advancements in achieving optimized stator flux regulation, thereby enhancing overall motor performance. 

 

4.4.2. Rotor flux variation 

The rotor flux trends are depicted in Figure 9. This figure unveils the rotor flux's behavior within the 

proposed DTC framework, underscoring the robustness and accuracy of the approach in maintaining desired 

flux levels. By contrasting these outcomes with those of earlier methods, the progress achieved becomes 

evident, solidifying the claim that the proposed DTC with space vector modulation yields improved rotor  

flux dynamics. 

 

 

 
 

Figure 8. Stator flux dynamics in proposed SVM-DTC induction motor system 

 

 

 
 

Figure 9. Rotor flux variation in SVM-DTC controlled induction motor system 
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4.4.3. Line voltage and current 

Figure 10 presents a dual depiction of line voltage and current profiles. The upper portion illustrates 

voltage behavior, while the lower portion showcases current trends. This combined view provides a 

comprehensive insight into the interaction between voltage and current under the proposed approach. The 

juxtaposition of these aspects emphasizes the seamless integration achieved in the DTC system. This 

advancement, compared to preceding work, exemplifies the achievement of enhanced voltage and current 

control synchronization, a crucial achievement for motor stability. 

 

 

 
 

Figure 10. Line voltage and current behavior in SVM-DTC induction motor control 

 

 

 
 

Figure 11. Speed and torque profiles in proposed SVM-DTC induction motor system 
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4.4.4. Speed and torque dynamics 

In Figure 11, the speed and torque variations are portrayed. This tandem visualization accentuates 

the agility and precision of the proposed DTC methodology. The upper segment portrays speed, while the 

lower segment exhibits torque dynamics. A comparative analysis with prior research reveals that the 

proposed DTC with space vector modulation not only maintains speed stability but also exhibits superior 

torque response, significantly improving transient motor performance. 
 

4.4.5. Comparative significance: enhancements and insights 

The pivotal significance of this study lies in its ability to improve upon conventional DTC strategies. 

By integrating space vector modulation, the proposed methodology demonstrates improved control precision 

in stator and rotor flux, enhanced synchronization between voltage and current, and optimized speed and 

torque response. This advancement signifies a marked leap from previous work, offering a more effective, 

accurate, and stable control approach for induction motor operations. The proposed approach's ability to 

address and improve upon key motor control aspects accentuates its relevance and applicability within the 

realm of motor drive systems. 
 

 

5. CONCLUSION 

The integration of space vector modulation (SVM) within the direct torque control (DTC) 

framework has effectively addressed significant shortcomings, notably the pronounced flux and torque 

ripples. This innovative amalgamation has yielded substantial improvements in dynamic control across 

diverse operational scenarios, encompassing load variations, speed reversals, and low-speed operation. The 

successful reduction in torque ripple achieved through SVM-DTC, while simultaneously preserving a 

consistent switching frequency, underscores the method's competence. The validation of these advancements 

was conducted through comprehensive simulations utilizing MATLAB/Simulink. The outcomes substantiate 

the superiority of the proposed DTC scheme compared to existing counterparts. The amassed evidence points 

to a notable enhancement in the performance of the induction motor (IM) drive. The salient improvements 

encompass not only refined torque control and minimized flux ripple but also the overall robustness and 

operational integrity of the system. In summation, the outcomes affirm that the proposed DTC approach is 

highly compatible with IM drive operations. By effectively circumventing historical limitations and fostering 

enhanced performance attributes, the SVM-DTC method emerges as a noteworthy contribution to the realm 

of motor drive systems. The results obtained through simulations and subsequent analyses firmly support the 

conclusion that the proposed approach stands as a commendable solution for the efficient and optimized 

operation of IM drives. 
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