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 This paper delves into the critical aspect of managing energy consumption in 

drone operations to achieve the utmost range and ensure accurate state of 

charge (SoC) estimation. Effective energy management is pivotal in 

determining the operational range of drones, allowing for longer distances and 

heavier payloads. The integration of precise energy estimation algorithms into 

operational planning extends the range of drones, facilitating swift, 

environmentally-conscious missions for sustainable and efficient logistics 

solutions. The paper introduces a mathematical model to understand energy 

consumption and battery behavior in drones, utilizing the hybrid pulse power 

characterization test and recursive least square with forgetting factor for 

parameter identification. To overcome the limitations of linear filters, the 

paper employs the accurate extended Kalman filter (EKF) in the nonlinear 

filter section. The EKF significantly enhances the battery management system 

by furnishing precise SoC data. The study evaluates two SoC estimation 

techniques: SoC-AH (ampere-hours) and SoC_EKF, using root mean square 

error for comparison. The SoC_EKF technique demonstrates higher accuracy, 

boasting a lower errors value of 0.78%, thus making it superior for precise 

drone battery SoC estimation. These findings contribute to the improved 

performance, reliability, and overall safety of drones. 
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1. INTRODUCTION 

In recent years, drones have emerged as one of the most extensively researched logistics technologies, 

incorporating technical elements that align with modern transportation and societal developments, including 

autonomy, adaptability, and agility. The first factor influencing a drone's battery life is the payload weight. 

Heavier payloads require more energy to fly, resulting in shorter battery life. For instance, a few kilograms of 

payload can significantly reduce the drone's flight time compared to flying without any payload. Additionally, 

wind speed affects battery life, as flying against the wind consumes more energy while flying with the wind 

can extend flight time. Temperature also plays a crucial role; high temperatures can lead to battery overheating, 

and low temperatures reduce battery capacity and overall performance. Furthermore, flight height influences 

battery life, as maintaining stability and continuous flight demands more energy, resulting in shorter battery 

life. Considering these aspects becomes critical when planning drone operations, especially with payloads, to 

https://creativecommons.org/licenses/by-sa/4.0/
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ensure the drone has sufficient battery life to complete tasks safely and effectively. Drones find extensive use 

in remote guidance and encompass a variety of vehicles, including submarines and land-based autonomous 

vehicles. Notably, hybrid-wing drones, a recent addition to the market, possess fixed and rotary-wing 

capabilities, enabling rapid destination reach through gliding and utilizing four rotors for hovering [1], [2]. 

Achieving operational drones requires addressing three significant challenges through automation research: 

vehicle design, positioning and routing, and vehicle coordination. The vehicle design aspect involves creating 

equipment that is not only efficient but also capable of hovering and adapting to various scenarios while 

maintaining reliability comparable to commercial airliners. This ambitious task demands numerous iterations, 

necessitating the collaboration and contributions of experts from diverse fields to bring forth innovative 

solutions [3]. Numerous studies reveal that drones have some negative limitation related to estimation of 

disposable energy. Kirschstein et al. [4] introduces an energy usage model tailored for drones, aiming to 

delineate the energy needs for drone deliveries based on environmental conditions and flight patterns. The 

model is subsequently employed to gauge the energy consumption of a stationary package delivery system, 

which operates from a designated depot and serves a specific number of clients. A comparative analysis is 

conducted between drone energy consumption and the energy requirements of diesel and electric trucks that 

cater to the same clients from a similar depot. To bolster the accuracy and dependability of SoC estimation, the 

dynamic attributes of a lithium-ion battery (LiB) are approximated through an auto-regressive and moving 

average model. This model effectively compensates for potential discrepancies stemming from voltage and 

discharge current measurements, thereby elevating the precision and reliability of state of charge (SoC) 

estimation [5]. 

Gaining profound insights into LiB performance and its underlying instrument offers valuable 

knowledge. Such understanding facilitates battery performance testing, enabling the identification of several 

factors that impact performance and the governing laws behind their influence. To develop practical battery 

system models for battery management systems (BMS) [6], modeling methods can be employed. These models 

provide satisfactory accuracy while minimizing complex computations. During operation, adaptive control 

technology is utilized to identify battery system parameters, estimate critical battery states such as SoC, state 

of health (SoH), and state of function (SoF), and detect faults. This information is then communicated to the 

vehicle manager over network, ensuring the vehicles' safe and dependable operation [7]. In their research,  

Xia et al. [8] conducted a study focused on the routing problem of drones featuring load-dependent 

characteristics. The researchers introduced docking hubs as collaborative facilities for trucks and drones, 

effectively expanding the service coverage. To handle the complexities arising from nonlinear load-dependent 

energy consumption, they proposed a mixed-integer model. While predicting the operational range for drones 

has not been a significant challenge due to fast and readily available refueling options, accurately estimating 

the driving or flying range for battery-operated vehicles has become crucial. This increased importance arises 

from the widespread adoption of battery-operated vehicles in countless areas [9]. Addressing energy 

consumption becomes a fundamental constraint in realm of drone operations, unlocking full possible of 

achieving maximum range, cost reduction, and accurate SoC estimation. Optimizing energy usage directly 

influences drones' operational range, determining the distance they can cover and the payload they can carry. 

To fully harness the benefits of drones, it is imperative to develop efficient energy management strategies that 

maximize range while minimizing power consumption. These strategies necessitate considering numerous 

factors, including flight dynamics, payload weight, wind conditions, and operational requirements. Developing 

an accurate energy estimation algorithm and integrating it into operational planning enable drones to extend 

their operational range, facilitating rapid and environmentally friendly operations. Ultimately, this contributes 

to advancing sustainable and efficient last-mile logistics solutions. 

The optimization of energy consumption plays a critical role in determining the operational range and 

payload capacity of drones. To fully harness the potential benefits of drones, efficient energy management 

strategies must be developed to maximize range while minimizing power usage. This challenge also extends 

to aerial drones, where precise flight range planning is essential to ensure continuous service and prevent 

battery depletion during flights. Accurate estimation of the SoC through an effective BMS is crucial for reliable 

power usage modeling. However, existing comprehensive drone models may not precisely align with the actual 

energy strained from LiB due to its non-idealities. To address these issues, this research presents a novel 

contribution focused on predicting and optimizing drone range. The proposed approach offers flexibility in 

accommodating varying levels of accuracy and complexity in both drone and battery models, resulting in 

improved range estimation and planning capabilities. Additionally, drones are often hailed as energy-efficient 

transportation options, given their battery-powered operation. However, to ensure an accurate representation 

of energy requirements for specific drone applications, we have developed a MATLAB program based on 

extended Kalman filter (EKF) to precisely estimate battery charge. 

The paper follows a structured organization as follows: In the introduction, the problem statement is 

highlighted, emphasizing the significance of energy consumption in drone operations. Moving to the system 
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modeling section, the focus shifts to the modeling of drones' energy consumption, offering insights into the 

approach used for estimating energy usage in drones. Next, the paper delves into battery modeling, presenting 

a mathematical model for characterizing battery behavior. Additionally, the utilization of the hybrid pulse 

power characterization (HPPC) test and the recursive least square with forgetting factor (FFRLS) for parameter 

identification in battery modeling is introduced. In nonlinear filter section, the implementation of EKF is 

discussed, serving as a powerful tool for battery state estimation, and overcoming the limitations of linear 

filters. Subsequently, an overview of BMS employed in the study is provided, highlighting its role in effectively 

managing and optimizing battery performance. Finally, the paper concludes by summarizing the key points, 

emphasizing the contributions made by the research, and discussing the broader implications of the study in 

the field of drone energy consumption and battery management. 

 

 

2. METHOD 

The proposed approach for estimating the operational range of drones involves the gathering of both 

drone and battery data. The drone data encompasses mechanical and electrical characteristics that influence 

power consumption, such as motor power, weight, and aerodynamic drag. This data provides valuable insights 

into the energy requirements of different drone types. On the other hand, battery data focuses on the electrical 

properties of the battery cell and its scaling for the battery pack, enabling a comprehensive understanding of 

the energy storage capabilities. 

To estimate the drone's range, a battery model is formulated, taking into consideration power 

conversion efficiency. By analyzing voltage and current waveforms, the model calculates the battery's SoC 

and, consequently, the drone's range. The methodology is designed to be adaptable to various drone types and 

also takes into account variables like weather conditions. It incorporates efficiency trade-offs and adjustments, 

including speed control mechanisms, to optimize power consumption and maximize the drone's operational 

range. This approach ensures a comprehensive estimation of the drone's range and provides insights for 

enhancing flight performance and efficiency. 

 

2.1.  Battery modeling 

Battery storage system holds paramount importance in electric vehicles, calling for the utilization of 

sophisticated battery models to refine energy processes and design. In tasks such as estimating drones' flight 

duration and predicting their operational range, advanced lithium-ion battery (LiB) models and estimation 

techniques play a crucial role. Existing literature outlines three primary categories of LiB models: 

mathematical, electrochemical, and electrical equivalent circuit models (ECMs). Considering the complexities 

associated with parameter identification and the computational demands of mathematical and electrochemical 

models, we have opted for an ECM to emulate battery performance. This decision enables us to strike a 

harmonious balance between precision and computational efficiency, rendering it well-suited for practical 

applications in both drones and electric vehicles [10], [11]. 

 

2.1.1. Mathematical model 

An ECM consists of resistors, capacitors, and voltage or current sources, providing a reasonably 

balanced deals among accuracy and simplicity. In domain of electronic design, the ECM depicted in Figure 1 

is widely recognized as a standard configuration due to its effectiveness and practicality. Accurately estimating 

the SoC of LiBs hinges on the precise representation of its dynamic characteristics using an equivalent model. 

 

 

 
 

Figure 1. Electric circuit model for batteries 

 

 

Thevenin's model offers a promising solution by incorporating a Rint model with a parallel RC circuit, 

effectively addressing the limitations of the Rint model, which fails to capture the dynamic properties of Li-
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ion batteries. As depicted in Figure 1, this model visualizes the terminal voltage as UL, the ohmic voltage as 

UR, and the ohmic internal resistance as R0. The RC circuit includes a polarization resistor Rp and a polarization 

capacitor Cp, effectively characterizing the polarization effect in Li-ion batteries, with the voltage across the 

polarization element denoted as Up. By employing Kirchhoff's law, in (1) establishes the voltage and current 

representations within the equivalent circuit, enabling an improved and more accurate estimation of the 

battery's SoC. These advanced modelling technics own a big possibility for enhancing battery management 

systems and optimizing battery performance in numerous applications, including electric vehicles and portable 

electronic devices [12]. 

 

{
𝑈𝐿 = 𝑈𝑜𝑐 − 𝐼𝑅0 − 𝑈𝑝  

�̇�𝑝 = −
1

𝐶𝑝𝑅𝑝
𝑈𝑝 +

1

𝐶𝑝
𝐼
 (1) 

 

2.1.2. Hybrid pulse power characterization (HPPC) method for parameter identification 

The hybrid pulse power characterization (HPPC) method stands as a pivotal technique in 

comprehensively characterizing LiB. It involves subjecting the battery to a series of hybrid pulse power 

profiles, essentially a set of distinct current pulses with varying magnitudes and durations, while concurrently 

measuring the battery's response in terms of voltage and current. This method operates under varying 

conditions, encompassing different load levels, charging, and discharging cycles, to gather an expansive 

dataset. HPPC conditions encompass a spectrum of scenarios, simulating real-world usage patterns by 

integrating abrupt changes in load conditions, rapid charging, and discharging. Through this controlled yet 

diverse dataset, HPPC facilitates the extraction of critical parameters that significantly influence LiB behavior. 

Parameters obtained through HPPC encapsulate vital attributes such as internal resistance, capacity, and voltage 

response at varying SoC. Method enables the derivation of critical battery model parameters like open circuit 

voltage (OCV) versus SoC relationship, which forms the fundamental basis for predicting the battery's behavior 

under different operating conditions. This method not only aids in enhancing battery model accuracy but also 

plays a crucial role in predicting battery behavior and performance across a range of real-world scenarios. 

The battery model is developed using parameters derived from characterization. Extracting these 

parameters requires a series of characterization tests, following established standards and research 

methodologies [13]. Initially, the capacity test determines the battery's effective nominal capacity through a 

standard charge and discharge test. The second OCV test, is conducted to extract the OCV-SoC  

relationship and battery model parameters. This approach deviates from employing the hybrid pulse power 

characterization (HPPC) test, as the study exclusively focuses on the standard C-rate. Baccouche et al.'s 

research [14] emphasizes accurate modeling of the nonlinear OCV-SoC relationship crucial for adaptive Li-ion 

battery operation. This model, employing five parameters within double exponential and quadratic functions, 

closely aligns with experimental curves, boasting a mere 1 mV fitting error. It covers wide temperature ranges, 

accounts for OCV voltage hysteresis, and when integrated into EKF for SoC estimation, significantly 

minimizes execution time and reduces estimation error to 3%, outperforming other models at 5%. Rigorous 

experiments validate the model's reliability and precision across diverse loads and temperatures. 

 

 

 
 

Figure 2. Experimental OCV-SOC curves at 25 °C 
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Figure 2 illustrates the experimental OCV discharge test [14]. The test involves initially fully charging 

the battery, followed by discharging current pulses equivalent to 5% of the SoC step. This is interspersed with 

a 30-minute rest time to ensure complete cell discharge and stabilize the OCV at a consistent value. Extracting 

OCV points at different SoC levels is essential to construct the analytical model representing the mapping 

between OCV and SoC 

HPPC test involves several key steps. Firstly, it is employed to establish the (OCV-SoC) connection, 

and it also serves to identify parameter values from ECM derived through the offline parameter identification 

method [15]. The HPPC test commences by placing the battery cell in at 25 °C for four hours. Subsequently, 

constant current of 1C is applied to the cell until it reaches a voltage of 4.2 V, which is then maintained until 

the current decreases to ≤0.05C. After 1 hour break, cell is discharged with a 1C current until it reaches a SoC 

of 90%. Following another 1-hour break, the cell is further discharged with a 3C current for 10 seconds, 

followed by a 30-second rest period. Lastly, the cell is loaded with a 2.25C current for 10 seconds. This 

sequence is repeated for various SoC values, ranging from 80% to 10%. Subsequently, a sextic polynomial (2) 

is employed to accurately fit the relationship where 𝑘0~𝑘6 are the constants. 

 

𝑉𝑜𝑐𝑣 = 𝑘0 + 𝑘1𝑆𝑜𝐶 + 𝑘2𝑆𝑜𝐶
2 + 𝑘3𝑆𝑜𝐶

3 + 𝑘4𝑆𝑜𝐶
4 + 𝑘5𝑆𝑜𝐶

5 + 𝑘6𝑆𝑜𝐶
6 (2) 

 

By utilizing the HPPC test in conjunction with advanced fitting algorithms, the battery's parameters can be 

accurately determined in real-time, providing valuable insights for battery management and performance 

optimization in practical applications. 

 

2.1.3. FFRLS algorithm 

In addition to the careful selection of an appropriate battery model, ensuring compatible parameters 

is of equal importance. To assess the impact of different OCV-SoC curves on SoC estimation individually, it 

is logical to mitigate the influence of pulse input method (PIM) outcomes related to Ohmic resistance and the 

RC network on SoC estimation. Consequently, this study utilizes the widely accepted fast Fourier recursive 

least squares (FFRLS) method for the identification of key parameters [16], [17], specifically R0, RP, and CP. 

The derivation processes are outlined as follows. Applying the Laplace transformation to (3) [18], [19], the 

frequency-domain function of the Thevenin model can be expressed as in (3): 

 

𝑈𝑡(𝑠) − 𝑈𝑜𝑐(𝑠) = 𝐼𝑡 (𝑠) (𝑅0 +
𝑅𝑝

1+𝑅𝑝𝐶𝑝𝑠
) (3) 

 

where s denotes the frequency operator. By introducing 𝐸𝑡(𝑠) =  𝑈𝑡(𝑠) − 𝑈𝑜𝑐(𝑠) transfer function can be 

represented as in (4): 

 

𝐺(𝑠) =
𝑈(𝑠)−𝑈𝑜𝑐(𝑠)

𝐼(𝑠)
= (𝑅0 +

𝑅𝑝

1+𝑅𝑝𝐶𝑝𝑠
) (4) 

 

to convert the transfer function into a discrete form, this paper employs the commonly used bilinear 

transformation, with the formulation provided in (5). 

 

𝑠 =  
2

𝑇𝑠

1−𝑧−1

1+𝑧−1
 (1) 

 

Where z is the discretization operator and Ts is set to 1 in this paper. Moreover, the discrete form of equation 

(G(s)) can be expressed as in (6). 

 

𝐺(𝑧−1) =
𝑎2−𝑎3𝑧

−1

1+𝑎1𝑧
−1  (6) 

 

these coefficients 𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎3 are formulated as in (7). 

 

{
 
 

 
 𝑎1 =

2𝑅𝑝𝐶𝑝−1

2𝑅𝑝𝐶𝑝+1

𝑎2 =
𝑅0+𝑅𝑝+2𝑅0𝑅𝑝

2𝑅𝑝𝐶𝑝+1

𝑎3 =
𝑅0∆𝑡+𝑅𝑝∆𝑡−2𝑅0𝑅𝑝∆𝑡

2𝑅𝑝𝐶𝑝+1

 (7) 

 

The model parameters can be expressed as in (8). 
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{
 
 

 
 
𝑅0 =

𝑎2−𝑎3

1−𝑎1

𝑅𝑝 =
2(𝑎1𝑎2+𝑎3)

1+𝑎1
2 −

𝑎2−𝑎3

1−𝑎1

𝐶𝑝 =
(1+𝑎1)

2

4(𝑎1𝑎2+𝑎3)

 (8) 

 

2.2.  Energy modeling of drones 

Drone operation is affected by a multitude of factors, encompassing the drone type, battery capacity, 

and weather conditions. Several factors can impact the battery life of a drone, such as payload weight, wind 

speed, temperature, and flight altitude. Ensuring that the drone's battery has sufficient power for the round trip, 

accounting for payload and unpredictable weather conditions, is crucial. Careful planning of the flight path is 

necessary to avoid obstacles like buildings, power lines, and trees, as well as densely populated areas and 

sensitive sites like airports. Additionally, climate conditions, such as velocity, temperature, and precipitation, 

can significantly affect drone performance and stability. Checking the weather forecast before each flight and 

avoiding adverse conditions is essential. Anderea [3] conducted valuable research on the techno-economic 

analysis of drone operations with such specifications. The study focused on understanding key factors 

impacting the cost and profitability of drone operations in this context, including drone cost, battery life, 

payload weight, and operating environment. Furthermore, the research explored the potential applications of 

drones with these specifications. The power consumption in kW can be approximated by the research findings. 

 

PCons =
(mp+mv)v

370ηr
+ Pelec (9) 

 

The power consumption in kW can be calculated using the following approximation, as shown in (9). 

Furthermore, a study by Anderea provides parameter values, where the cruising velocity has a direct impact on 

the power consumption of the drones (see Table. 1). Figure 3 illustrates the power consumption (P_Cons) for 

various combinations of payload mass and cruising velocity using the given input parameters. The 3D bar plot 

visually represents power consumption trends across different payload masses and cruising velocities. The 

overview of the data indicates the size of the matrix and a minimum, maximum, mean, and standard deviation 

of power consumption. The optimal operating point is identified as the payload mass and cruising velocity 

combination with the lowest power consumption, while the worst operating point is the combination with the 

highest power consumption. The 3D bar plot helps visualize how power consumption changes with varying 

payload masses and cruising velocities, providing valuable insights into power consumption behavior. 

 

 

Table 1. Input parameter 
Parameter Description Value 

PCons Power consumption in kW  

Pelec Power consumption of electronics in kW 0.1 kW 

mp mp represents the payload mass in kg 2 kg 

mv Vehicle mass in kg 4 kg 

v Cruising velocity in km/h from 0 to 45 km/h 

r Represents the lift-to-drag ratio 3 

η Power transfer efficiency 0.5 

 

 

 
 

Figure 3. Power consumption of a drone as a function of velocity and payload mass 
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To derive an estimation of the worst-case energy requirement in kilowatt-hours (kWh), a practical 

approach can be utilized. By employing precise calculations and thoughtful considerations, it becomes feasible 

to approximate the system's highest energy demand it might encounter. This estimation holds significant 

importance in determining the suitable capacity and sizing of energy storage systems, ensuring optimal 

performance and dependable operation in (10). 

 

PCons(worst) =
d

1−HWF
(
(mp+mv)

370ηr
+

Pelec

v
) (10) 

 

The maximum range, represented by "d" and measured in kilometers, is influenced by the head wind 

factor (HWF), which signifies the ratio of headwind to airspeed. To illustrate with numerical examples: Let's 

assume a maximum range varying from 2 to 25 km, an airspeed range from 0 to 45 km/h, and a headwind of 

30 km/h. The graph in Figure 4 illustrates multiple lines representing the worst-case power consumption for an 

aerial vehicle system, considering different combinations of cruising velocity and maximum range. The results 

demonstrate that power consumption increases with higher cruising velocities and maximum ranges,  

attributed to the heightened energy requirements for propulsion and electronics. For example, at a cruising 

velocity of 30 km/h and a maximum range of 10 km, the worst-case power consumption is approximately 8.5 

kW. As the cruising velocity increases to 45 km/h and the maximum range extends to 15 km, the power 

consumption peaks at around 12.3 kW. This analysis emphasizes the significance of optimizing flight 

parameters to minimize power demands and progress efficiency and endurance of the aerial vehicle system. 

Additionally, the power consumption trend reveals that higher cruising velocities generally lead to increased 

power consumption due to greater air resistance. The sensitivity to the head wind factor (HWF), which is 

assumed as 2/3 of the headwind-to-airspeed ratio, is not explicitly depicted in the graph; however, it is 

considered a constant factor in the power consumption equation. Next, let's consider the economic aspect: 

Energy cost per kilometer compared to cruising velocity. 

 

ECost(𝑘𝑚) =
𝐶𝑒𝑙𝑒𝑐

𝐶ℎ𝑎𝑟𝑒𝑓𝑓
(
(mp+mv)

370ηr
+

Pelec

𝑣
) (11) 

 

An estimation of the average energy cost per kilometer can be represented as 𝐶𝑒𝑙𝑒𝑐  is the cost of electricity à 

0.12 $/kW h and 𝐶ℎ𝑎𝑟𝑒𝑓𝑓  is charging efficiency (about 0.8). 

 

 

 
 

Figure 4. Worst-case power consumption vs. velocity and maximum range 

 

 

Figure 5 illustrates the energy cost per kilometer (E_Cost) for an aerial vehicle system, considering 

various cruising velocities within the range of 0 to 45 km/h. The results show that as the cruising velocity 

increases, the energy cost per kilometer generally decreases. For instance, at a low cruising velocity of 5 km/h, 

the energy cost is approximately $0.022 per kilometer. However, as the cruising velocity rises to 30 km/h, the 

energy cost reduces to around $0.008 per kilometer. This inverse relationship is due to higher cruising velocities 

resulting in better energy efficiency and lower energy consumption per kilometer. The analysis emphasizes the 

economic benefits of optimizing cruising velocities for cost-effective operations, wherein higher speeds can 

lead to significant savings in energy expenses per kilometer traveled [8], [20]. 
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Figure 5. Energy cost per kilometer vs. cruising velocity 

 

 

2.3.  Nonlinear filter: Extended Kalman filter (EKF) 

Estimating SoC is decisive for enhancing the performance and reliability of drones. However, SoC 

estimation is heavily influenced by complex issues such as self-discharge, discharge current, and battery aging, 

which can lead to imprecise results. To tackle this challenge, several SoC estimation methods have been 

developed. One commonly used approach is the ampere-hour (AH) method, chosen for its simplicity. Yet, in 

practical applications, this method is susceptible to errors arising from factors like noise and random 

interference, which accumulate over time. To address these random errors, various model-based algorithms 

have been proposed [21]. 

Model-based methods, such as the equivalent circuit model, are commonly employed for SoC 

estimation. The Kalman filter is a widely utilized model, but its applicability is limited to linear systems. To 

address the nonlinearity in battery systems, researchers have developed extensions like the extended Kalman 

filter (EKF) [22], [16], [23]. While the EKF reduces convergence time and accurately estimates system states 

under various operating conditions, it comes at the cost of augmented computational load on LiB management 

system. EKF achieves accurate SoC estimation through first-order polynomial accuracy, achieved by 

discarding higher-order terms. However, for complex system monitoring, especially in Li-ion battery packs, 

further improvements are necessary. To estimate SoC using the EKF, a linearized state-space model must be 

utilized near the latest estimate. This model is then combined with linear Kalman filter (LKF) equations, with 

the charge/discharge current serving as input and the battery voltage as output. This comprehensive approach 

is essential for achieving precise and reliable SoC estimation in complex battery systems [24], [25]. 

When dealing with a nonlinear system, the formulation of the discrete state-space model equation 

becomes more intricate, as it must account for the dynamic behavior of LiB. Discrete state-space model 

considers relationships between the system's states, inputs, and outputs at discrete time intervals. Incorporating 

the system dynamics into this equation is essential to accurately capture the nonlinearities and complexities 

inherent in the system's behavior. By accounting for the dynamics, the discrete state-space model provides a 

more comprehensive representation, enabling precise modeling and estimation of the system's states and 

responses over time. This approach is particularly valuable when dealing with nonlinear systems, such as 

complex battery dynamics in real-world applications, where accurate modeling and estimation are critical for 

efficient and reliable operation. 

 
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑑𝑘
𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑠𝑘

 (12) 

 

The expression of discrete state-space model equation, which incorporates system's dynamics, takes 

the following form: 

 
𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑑𝑘
𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) + 𝑠𝑘

 (13) 

 

Incorporating the nonlinear state transition function 𝑓(𝑥𝑘 , 𝑢𝑘) and measurement function 𝑔(𝑥𝑘 , 𝑢𝑘), where x_k 

represents state variables and u_k denotes input variables, the state equation can be formulated. Additionally, 

considering measurement noises, we can further express in (14). 

 

𝑥𝑘+1 = �̂�𝑘𝑥𝑘 + 𝑓(�̂�𝑘 , 𝑢𝑘) − �̂�𝑘�̂�𝑘 + 𝑑𝑘
𝑦𝑘 = �̂�𝑘𝑥𝑘 + 𝑔(�̂�𝑘 , 𝑢𝑘) − �̂�𝑘�̂�𝑘 + 𝑠𝑘

 (14) 

 

Upon considering the discussed linearization process, it becomes evident that EKF effectively overcomes 

limitations of linear Kalman filter (LKF) by integrating the nonlinear system model into both the state 
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prediction and correction steps. EKF effectively utilizes nonlinear LiB modeling to predict both the system 

state and output. At each time step 𝑘, the nonlinear LiB modelling is linearized based on the predicted state 

�̂�_�̂�𝑘
− to derive the matrices �̂�𝑘, �̂�𝑘, and �̂�𝑘. These matrices are crucial in calculating and updating the 

covariance matrix of the state estimation errors, as well as in determining the Kalman gain. 

In essence, the EKF overcomes the challenges of linearization encountered in LKF by skillfully 

incorporating the nonlinear battery model. By doing so, it ensures accurate state estimation and improved 

overall performance. This integration of nonlinear battery models in the EKF enables the filter to handle the 

complexities and variations present in real-world battery systems, providing reliable and precise state 

estimations even in dynamic and challenging conditions. Thus, the EKF stands as a powerful tool for state 

estimation in BMS, enhancing performance and reliability of LiBs applications [26], [27]. Even though EKF 

estimation is utilized for SoC estimation, initial values of Kalman parameters are strongminded in following 

manner: 

 

𝑃0 = [
1𝑒−1 0
0 1𝑒−1

], 𝑄 = [2𝑒
−8 0
0 5𝑒−3

] and 𝑅 = 2𝑒−1 (15) 

 

 

3. RESULTS AND DISCUSSION 

For this study, we leveraged the outcomes derived from an experimental drone flight test conducted 

by the team of Chen et al. [28], due to the nonlinear nature of batteries, accurately estimating real flight time 

can be challenging, as many battery models do not account for all non-ideal characteristics. In their research, 

they present a battery-aware model designed to provide a precise analysis of drone energy consumption. Our 

primary objective was to accurately capture the power profile associated with the load and utilize it as an input 

profile in our simulation study. This allowed us to gain insights into the battery's performance and its energy 

consumption in real-world flight scenarios by ensuring precise SoC estimation. We conducted an in-depth 

analysis of energy consumption during an experimental drone test, as depicted in Figures 6 and 7. Our focus 

centered on scrutinizing the current load profile and Ampere-hours of SoC for the drones under investigation. 

Initially, as shown in Figure 6, the drones operated with fully charged batteries. However, as flight conditions 

evolved, including variations in drone velocity and external factors like wind speed, the energy load profile 

was directly affected, leading to alterations in input current. To estimate SoC, we applied an empirical  

method detailed in the preceding section, and the results of SoC estimation are presented alongside the current 

load analysis. 

 

 

 
 

Figure 6. Evaluation of present load profile and Ampere-hours SoC for examined drones [28] 
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The proposed SoC estimation model comprises three essential components, each component is 

necessary for estimation process. First part is data input step, where the input data is initialized. To achieve 

this, the model utilizes the FFRLS algorithm and conducts the HPPC test. Through this process, the initial 

values of system variables 𝑘0~𝑘6 and parameters (𝑅0, 𝑅𝑝, 𝐶𝑝) are carefully determined. These values form the 

fundamental basis for predicting the load state, thereby ensuring accurate and reliable SoC estimation. Next, 

the HPPC algorithm is employed to establish the correlation between OCV and SoC of LiBs. The HPPC test 

involves subjecting the battery to a series of hybrid pulse power profiles, which generates valuable data about 

the battery's behavior. This resulting data is then fitted using a polynomial function of order 6. By fitting the 

data with a polynomial equation, the model accurately models the rapport between LiBs OCV and its SoC. 

This information is crucial to predict battery's behavior and facilitates the prediction of its performance under 

different load conditions. The coefficients 𝑘0~6, as shown in Table 2, are derived from this fitting process [29]. 

The system parameter identification is used to obtain model parameter according to the OCV-SoC 

curve. The result of parameters based on the FFRLS algorithm is given in Table 3. The graph labeled as 

Figure 7 illustrates three distinct curves portraying the SoC of the studied system. The first curve represents 

the observed SoC, showcasing actual measured SoC values and serving as the reference for comparison. The 

second curve, labeled as SoC extended Kalman filter (SoC_EKF), closely follows the observed SoC curve, 

indicating a highly accurate SoC approximation. SoC_EKF employs advanced estimation techniques to 

improve the precision. On the other hand, the third curve represents the SoC Amper hours (SoC_AH). While 

the SoC_AH curve provides an acceptable estimation of the SoC, it falls slightly short of achieving the same 

level of accuracy as the SoC_EKF. The SoC_AH relies on Amper hours techniques to estimate the SoC, which 

may introduce some degree of error during the estimation process. 

As time progresses, it becomes apparent that the differences between the observed SoC and the 

estimated SoCs increase significantly. This trend indicates a deterioration in the accuracy of both the SoC_EKF 

and the SoC_AH over time. Several factors could contribute to these increasing errors, including battery aging, 

measurement uncertainties, and limitations in the estimation algorithms employed. 

 

 

Table 2. OCV-SoC fitting results at 25 °C 
𝒌𝟎 𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 𝒌𝟓 𝒌𝟔 

𝟑. 𝟑𝟓𝟑 2.478 −9.902 19.01 −14.44 2.351 1.319 
 

Table 3. Model parameters at 25 °C 
𝑹𝟎(𝛀) 𝑹𝑷(𝛀) 𝑪𝑷(𝑭) 
𝟎. 𝟎𝟕𝟎𝟑 0.0481 750.6747 

 

 

 

 
 

Figure 7. SoC_EKF estimation compared with SOC_Ah estimation 

 

 

According to Figure 8, the EKF method provides an accurate estimation of the SoC, with a lower root 

mean squared error (RMSE) value 0.78% making it superior for precise drone battery SoC estimation. These 

findings contribute to enhanced drone performance, reliability, and overall safety. In conclusion, SoC_AH 
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offers an acceptable estimation of the SoC, but it is slightly less accurate compared to SoC_EKF. This is 

because SoC_AH utilizes ampere-hours techniques for estimation, which introduces some degree of error 

during the process. To measure the amount value of differences among the estimated SoC versus actual values, 

the RMSE is employed, resulting in an RMSE value (0.78e-04) for SoC_EKF. The overall results underscore 

a deal between accuracy and computational complexity in selecting an estimation technique for real-world 

applications. The SoC_EKF method offers highly accurate estimations but may require more computational 

resources, while the SoC_AH method provides a more practical and computationally efficient alternative with 

an acceptable level of accuracy. 

 

 

 
 

Figure 8. Errors between the observed SoC and the estimated SoCs 

 

 

4. CONCLUSION 

Addressing energy consumption in drone operations is paramount for maximizing range, reducing 

costs, and accurately estimating the SoC. Optimizing energy usage is crucial in determining drones' operational 

range and payload capacity, enabling them to cover greater distances and carry heavier loads. By integrating 

precise energy estimation algorithms into operational planning, drones can extend their range and facilitate 

rapid, eco-friendly missions. Recently, LIBs have gained significant attention due to their sustainable 

development. Nevertheless, accurately measuring SoC of LIBs remains a challenge for ensuring their  

safe operation. 

In this paper, we delve into drones' energy consumption modeling and present a mathematical model 

for their energy consumption and battery behavior. We introduce the HPPC test and FFRLS for parameter 

identification. In the nonlinear filter section, we focus on implementing an accurate EKF for battery state 

estimation, surpassing the limitations of linear filters. The EKF algorithm provides precise SoC data, enhancing 

the BMS by enabling more accurate monitoring and optimization of battery performance. In our study, we 

present our findings, along with a comprehensive analysis and results interpretation. We investigate the 

accuracy of SoC estimation techniques: ampere-hours and extended Kalman filter. The study result 

demonstrates that while ampere-hours estimation provides an acceptable SoC estimation, it is slightly less 

accurate compared to extended Kalman filter estimation. The ampere-hours technique introduces some degree 

of error during the estimation process. Finlay, we employed the RMSE, a amount magnitude of differences 

between estimated SoC values and actual values. resulting in an RMSE value of 0.78% for extended Kalman 

filter estimation. These results highlight the superiority of the SoC_EKF technique in providing more precise 

estimates of the SoC for drone batteries. 
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