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 The penetration of electric vehicle (EV) in automobile market is very much 

dependent on the battery technology. Its size, weight, and cost are issues of 

concern. To effectively utilize the battery expertise, precise estimate of state 

of charge (SoC) is vital which greatly depends on the battery model. Current 

models lack consideration for variations in battery capacity over their lifespan. 

This paper develops a battery model which depicts the depletion of battery 

capacity with its life. Subsequently, this model has been utilized for estimation 

using advanced Kalman filtering (KF) algorithms. For the developed model, 

the design and effectiveness of the cubature Kalman filter (CKF) is applied as 

a proposed robust state-estimator for this problem. Moreover, a comparative 

analysis was undertaken with existing non-linear KFs based on performance 

metrics. The optimal choice of estimator is identified, through the results 

obtained from the Octave/MATLAB simulation. The outcomes show CKF 

algorithm based SoC estimator is superior to others in ensuring high accuracy, 

strong robustness even under changes in initial conditions (i.e., initial SoC, 

process and sensor noise levels), system's ability to converge quickly while 

ensuring that the maximum error in state of charge (SoC) estimation remains 

within 1% after convergence. 
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NOMENCLATURE 

z : State of charge x[k+1] : State prediction time update 

v(t) : Terminal voltage 𝛥t : Sampling interval 
i(t) : Battery instant discharge current 𝑖𝑅1  : Current through R1 and C1 

η : Coulombic-efficiency ℎ[𝑘] : Hysteresis 

Q : Capacity 𝛾 : Rate of decay 

T : Temperature M : Maximum plus/minus hysteresis 

R : Resistance Sgn(z) : Forces stability for both dis/charge 

C : Capacitance 𝐴𝑅𝐶 , 𝐵𝑅𝐶 , 𝐴𝐻 : Arbitray constants 

A[k] : State transition matrix R : Gas constant 

B[k] : Control-input matrix Z : Adjustable factor 

u[k] : Control input A : Factor of pre-exponential term 

𝐸𝑎 : Activation energy T : Absolute temperature 

𝑁 : Cycles under discharge/charge 𝑦𝑘   : Output equation 

𝑣𝑘 : Sensor noise 𝑤𝑘 : Process noise 

∑𝑥,𝑘
+  : Error covariance estimate μ : Mean 

https://creativecommons.org/licenses/by-sa/4.0/
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1. INTRODUCTION 

The development of electric vehicles (EVs) will mitigate contingent on fossil fuels for transportation. 

By using electricity, which can be generated from a variety of sources, countries can enrich their utility choices 

therefore mitigate its reliance on oil imports. Ultimately, the overarching goals include mitigating climate 

change, lowering the transportation sector's global emissions while progressing in the stride to a cleaner, 

greener future [1]. The development of EVs fosters technological innovation in various aspects, driving 

improvements in performance, range, efficiency, and user experience. Some notable areas of innovation 

include battery technology, energy storage, electric motors and drivetrain systems, range extension, vehicle-

to-grid technology, autonomous driving integration, and charging infrastructure [2], [3]. The achievement of 

further advancements and widespread adoption of electric vehicles hinges significantly on the effectiveness of 

battery packs as the primary power source. In EV market, lithium-ion batteries are becoming ever more 

prevalent compared to others owing to their superior energy/power density, zero memory impact, deeper life 

expectancy, and extended cycling [4], [5]. Consequently, a critical aspect of enhancing modern EV 

performance is the crucial software component of battery management systems involves parameters (voltage, 

current and temperature) and states (state of charge (SoC), state of health (SoH), and state of power (SoP)) 

monitoring [6]. SoC acts as a key element and host for other operations and calculations, thus, precise SoC 

estimate maximizes battery consumption by providing accurate travel distance and ensures safe operating limits 

for the battery. SoC gives definite estimates in driving range and the leftover capacity within the pack that 

plays an energetic position in optimizing the charging and discharging processes control [7]. Direct 

measurement of SoC is not feasible since it is not a physical quantity. Therefore, SoC can only be reliably 

estimated. Even so, driven by the intense nonlinear properties and time-variance system of batteries, challenges 

persist to achieve precise assessments on SoC upon intricate real-world circumstances, compounded by other 

diverse influencing factors like fluctuating temperature range, and aging status [8]. 

Over the past decade, most research in the issue has emphasized the use of enhancing the accuracy of 

SoC estimation to offer a clear concept to the researchers and manufacturers for the imminent EV progression. 

Various SoC estimation techniques that are widely employed are voltage-based/look-up, current-

based/coulomb-counting/ampere-hour integration, model-based, and data-driven techniques. In majority of the 

cases, researchers predominantly focused on model-based and data approaches [9], [10]. The traditional look-

up table used the direct-mapping correlation between SoC and parameters describing exterior characteristics, 

such as impedance and open-circuit voltage. The relation was tabulated through thorough lab tests. In real-

world applications, especially beyond controlled laboratory settings, lithium ion batteries (LIB) was typically 

operated continuously, hence not practical. In contrast, the coloumb counting (CC) was fairly accurate under 

known initial conditions, precise sensor calibration, and aging levels. Inaccuracies couldn't be avoided in this 

case because of its open-loop mechanism. Despite the simplicity of traditional methods (voltage, and current-

based), the results realize the flaws of long resting time, unknown initial SoC, high accuracy measurement in 

voltage, and sensor error. This uncertain initial value creates an error of 20% more which can be reduced by 

effective error recalibration from the mapping relationship of SoC versus open circuit voltage (OCV) table as 

presented in [11], [12]. With known initial SoC, sensor calibration, and updated capacity, ampere-hour 

integration (AHI) attains accurate accuracy as stated in [13]. From the author’s findings, it is observed that the 

combination of these methods may possibly give better accuracy but remains ubiquitous and inapplicable for 

online assessment. The idea of a combined approach is supported by studies [14], [15], which deliver efficient 

operation. Despite the fact, measuring the OCV in real-time proves challenging due to uncertain driving cycles, 

complex application circumstances, and other variables. Based on these findings, identifying a precise and 

straightforward model is a crucial concern, necessitating the widespread utilization of model-based methods 

(analytic and statistical/empirical linearization) like observers, and filtering techniques for accurate SoC 

estimation [16]-[18]. Another possibility would be data-driven approaches, that rely on the analysis and 

utilization of data for estimation process. Instead of relying solely on predefined models, these approaches use 

real-world data to make predictions and assess the status of a battery. From the experimental datasets, 

researchers employ meta-heuristic techniques, and machine learning or statistical methods to process and 

interpret the information obtained from the battery [19], [20]. They don't rely on a predefined model structure 

and can adjust to diverse and dynamic scenarios. Also, can learn directly from operational data, reducing the 

impact of modeling errors. But then, they come with inherent drawbacks like limited generalization, data 

dependency, absence of physical interpretability, overfitting, computational complexity, and robustness concerns. 

To anticipate the internal dynamic behaviors of a battery, it is essential to create a model for the 

battery. Equivalent circuit models [21], characterized by their simple structures, offer a practical approach 

without requiring prior knowledge of electrochemistry as mentioned in [22]. However, these conventional 

models lack physical insights, and uncertainties like hysteresis and aging effect and, consequently, are not 

suitable for estimating the health-related states and power management. In comparison, models rooted in 

fundamental electrochemical and thermodynamic principles, commonly referred to as physics-based models 

like pseudo-two-dimensional as presented in [23], excel in providing more valuable and essential information. 



                ISSN: 2252-8792 

Int J Appl Power Eng, Vol. 13, No. 4, December 2024: 886-899 

888 

They prove adept at predicting battery health and play a crucial role in the development of optimal control 

strategies [24]. But then implementing highly nonlinear partial differential-algebraic equations on battery 

management system (BMS) for online application is impractical due to computational complexity as mentioned 

in [25]. In light of these conclusions, there is a need for an enhanced circuit model of a lithium-ion battery that 

can address uncertainties, thereby making accurate estimation possible. Among the existing models, the 

absence of degradation dynamics, capacity estimation and adaptive estimation of unknown error covariance 

results in inaccuracy of the performance as mentioned in [26], [27]. For many years, this capacity degradation/ 

aging effect phenomenon was surprisingly neglected in the modelling and estimation process. The above 

finding is related to the study of [28] that the theory of Li-ion battery ageing results in capacity fade, and 

nonlinear ageing. These studies focus on developing a model that can predict lifetime prediction of cell 

capacity. Following this, forecasts both linear/nonlinear degradation based on varied constant current cycling 

data (C/3 charging - 4C discharging) (here C-Crate; a relative measure of current), demonstrating a 98% 

goodness-of-fit-error with surpassing the performance of established aging models. The result in [29]-[32] 

addressed certain challenges mentioned earlier, suggesting an enhanced battery model for SoC estimation and 

degraded-capacity through an improved extended Kalman filter (KF). A similar model is used by [33] with 

particle swarm optimization technique to mitigate the potential for prediction deviation, alongside fostering the 

process-noise covariance vector resulting from accumulated errors during prolonged operation.  

In contrast, the study by [34] indicated that an improved adaptive extended Kalman filter can 

accomplish co-estimation for battery capacity and SoC and is proven, ensuring that the SoC error remains 

within ±1.2% during the initial 50 seconds, and the relative capacity error is restricted to within 2% after 

convergence. However, the study solely considered the hysteresis effect, and complexity of driving conditions 

and overlooked the potential challenges that the battery encounters during prolonged exposure to high C-rates 

and aging as shown by the studies in [35], [36]. On the other hand, a search of the literature revealed that 

limited studies have focused on machine learning (ML) techniques due to the complexity in model-based [37], 

[38]. Having said that in future, integration of model and data-driven methods can be an effective progression 

for further accuracy [39]. Authors in [40], [41] added that multi-state estimation plays a critical role in the 

enhancement of battery performance. Their methodology incorporates the application of an ensemble-

empirical mode decomposition with adaptive noise, combined to an autoencoder considering model 

uncertainties. Updates on various parameters and time scales is accomplished through the dual-extended 

Kalman filter. For improving the rate of estimator, the study used the variable forgetting factor limited memory 

recursive least squares technique. Similarly, the authors in [42], [43] found that electrochemical impedance 

spectroscopy is also a powerful tool for achieving precise state estimation. Conversely, in real-world 

applications, the implementation of electrochemical impedance spectroscopy (EIS) may require specialized 

equipment, sophisticated analytical techniques, and careful control of experimental conditions. Alternatively, 

the study by [44] suggested an adaptive fractional-order square root unscented KF which dynamically updates 

disturbance statistics in real-time addressing the problem of deviation brought on by improper noise covariance 

matrices. In comparison to other KFs as mentioned above, the studies by [45], [46] suggest that cubature 

Kalman filter (CKF) excels in handling the complexities of nonlinear dynamics, providing more reliable, and 

precise estimates. Its adaptability and effectiveness make it a valuable tool for applications ranging from 

robotics and navigation systems to signal processing and control engineering.  

Even though there has been quantitative analysis of various estimation techniques, no detailed 

investigation of model uncertainties (hysteresis), capacity estimation concerning the aging effect, which are 

the major challenges to be addressed for enhancement or of battery performance, and practicality. In regard to 

this, advancements should collectively aim to address these confronts correlated with the superior state 

estimation procedure, achieving more reliable and robust battery state estimation in various applications. 

Interestingly, previous research has not explored battery modeling with hysteresis and ageing effects in the 

estimation practice. In view of these shortcomings, CKF, as a robust state estimator, is proposed in this field 

of work. The key contribution of the article is as follows: 

- A state-space representation of the battery model and mathematical model of capacity degradation or aging 

effect is made for the effective state estimation; 

- As a state-of-art robust algorithm, the CKF method is developed to obtain better accuracy in SoC estimation 

under capacity degradation or aging effect; and 

- Comparative analysis of the proposed CKF with other KFs under equivalent nonlinearities and aging effect.  

The remaining paper is organized as follows. Section 2 first describes the complete battery model. 

Next, the detailed mechanism for aging is presented and its mathematical model has been developed for 

capacity estimation. Section 3 explains conventional and proposed SoC estimation methodologies with its 

algorithms. In section 4, the effectiveness of the proposed robust CKF technique is verified with comparison 

of other filtering techniques. Finally, section 5 provides a summary of the findings. 
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2. BATTERY MODEL AND MODEL PARAMETERS IDENTIFICATION  

2.1.  Enhanced self-correcting model 

Developing a concise and accurate battery model is the pre-requisite condition that significantly 

impacts the precision of the SoC estimation. Compared to various models available for Lithium-ion batteries, 

as discussed earlier concerning stability, nonlinearities, precision, and less complicated computing in SoC 

estimation, the enhanced self-correcting (ESC) model was developed, as depicted in Figure 1. The developed 

model incorporated parameters related to diffusion, OCV as a measure of SoC, and ohmic resistance, including 

the hysteresis effect. Hysteresis is a path-dependent voltage that does not decay to zero when the cell rests, 

unlike diffusion voltages that change with time. The model parameters were determined using experimental 

data from the 18650-battery cell. To determine the model parameter values, the functions were associated with 

a toolbox named ESC in Octave/MATLAB which provides access to the model fields (process OCV and 

process dynamic). Table 1 tabulates the battery specifications. 

The discrete form of mathematical equations is written for the above model. In discrete time, the 

assumption was made that the current remains persistent within the entire interval. Each attribute of dynamic 

nature ensues within (1) and (2). 

 

𝑥[𝐾 + 1] = 𝐴[𝐾]𝑥[𝐾] + 𝐵[𝐾]𝑢[𝐾] (1) 

 

[

𝑧[𝐾 + 1]

𝑖𝑅1[𝐾 + 1]

ℎ[𝐾 + 1]
] = [

1 0 0
0 𝐴𝑅𝐶 0
0 0 𝐴𝐻[𝐾]

] [

𝑧[𝐾]

𝑖𝑅1[𝐾]

ℎ[𝐾]
] + [

−𝜂[𝐾]∆𝑡/𝑄 0
𝐵𝑅𝐶 0

0 𝐴𝐻[𝐾] − 1
] [

𝑖[𝐾]

𝑠𝑔𝑛(𝑖[𝐾])
] (2) 

 

Since SoC (the battery residual/leftover capacity) isn’t a physical quantity. Therefore, SoC can be 

approximated utilizing the battery-measured values (voltage, current, and temperature). 

 

𝑆𝑜𝐶 =
𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑄𝑟𝑎𝑡𝑒𝑑
;  Z[𝑘 + 1] = Z[𝑘] −

∆t

Q
𝑖[𝑘] (3) 

 

Computing terminal voltage of the battery as (4) and (5). 

 

𝑦[𝐾] = 𝐶[𝐾]𝑥[𝐾] + 𝐷[𝐾]𝑢[𝐾] (4) 

 

𝑉[𝑘] = 𝑂𝐶𝑉(𝑧[𝐾], 𝑇[𝐾]) +  𝑀0𝑆[𝐾] + 𝑀ℎ[𝑘] − 𝑅1𝑖𝑅1[𝐾] − 𝑅0𝑖[𝐾] (5) 

 

This mathematical model was subjected to integration with filtering algorithms for estimating the battery states. 

 

 

 
 

Figure 1. Battery model 

 

 

Table 1. Battery cell particulars 
Battery parameter Specification 

Type LiNMC 

Upper/lower cut-off voltage 4.2/2.5 V 
Nominal voltage 3.6 V 

Nominal capacity 25 Ah 
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2.2.  Capacity degradation/aging model 

Understanding and mitigating the effects of aging is crucial for optimizing battery lifespan and 

maintaining reliable performance. Apart from various aging mechanisms referred to [47] were tabulated in 

Table 2, temperature, C-rate, depth of discharge, SoC, were the central variables imperiling the development 

of aging. To demonstrate the impact of aging, the model was developed by incorporating the temperature and 

power-law relation. This combination provides a comprehensive approach, allowing us to understand 

temperature variations and the complex, non-linear nature. Thus, the model that incorporates the above factors 

helps account for the impact of aging on capacity. With this, the relative capacity was assessed, inferring the 

extent of aging and degradation that occurred. 

The temperature dependence of reaction rates by Arrhenius equation can be of the form as (6). 

 

K(T) = 𝐴 × exp (
−𝐸𝑎

𝑅𝑇
) (6) 

 

Here, k(T) is the reaction rate constant at temperature, 𝐴 is the pre-exponential factor depends on current 

(assumed to be 1×10−6 nm/s for illustrative purposes), 𝐸𝑎 is the activation energy for cycling aging (in J/mol 

or kJ/mol), 𝑅 is the universal gas constant (8.314 J/mol\cdotpK), 𝑇 is the absolute temperature in Kelvin. 

For instance, the growth of the SEI layer can often be described by a power law of the form as (7). 

 

𝑆EI thickness = K(T) × Nz (7) 

 

Here, SEI thickness is the thickness of the SEI layer (nanometers (nm) over time and cycle count), k(T) is the 

temperature-dependent rate constant from the Arrhenius equation, N is cycle count, z is the power law 

exponent. Capacity loss is calculated as (8). 

 

𝑄𝑖𝑛𝑖𝑡𝑖𝑎𝑙  × (1- K(T) × Nz) (8) 

 

The parameter values for capacity loss calculation are given in Table 3. The battery's capacity has diminished 

to around 20 ampere-hours (Ah) after 1000 cycles as shown in Figure 2. 

 

 

Table 2. Aging mechanisms 
Cause Effect Leads to Enhanced by 

Continuous low-rate electrolyte 
decomposition builds SEI 

Li loss, impedance rise Capacity/power 
fade 

SoC, temperature rise 

SEI growth leading to surface area reduction impedance rise Power fade SoC, temperature rise 

Changes in porosity due to volume change 
and SEI growth 

impedance rise Power fade Increased SoC, cycling 
rate 

Metallic Li plating, subsequent electrolyte 

decomposition 

Lithium (electrolyte) loss Capacity 

(power) fade 

Low temperature, 

high charge rates 
Graphite exfoliation, gas evolution, solvent 

co-intercalation 

Active material failure, Li loss Capacity fade Overcharge 

Contact b/w particles lost due to volume 
changes 

Loss of active material Capacity fade High rate, low cell 
SOC 

Decomposition of binder Mechanical stability deficit, Li deficit Capacity fade SoC, temperature rise 

Graphite exfoliation, gas evolution, solvent 
co-intercalation 

Li loss, active material deficit Capacity fade Overcharge 

Phase transitions Cracking of active particles Capacity fade High rates, high/low 

SOC 
Structural disordering Li sites lost and Li trapped Capacity fade High rates, high/low 

SOC 

Metal dissolution and/or electrolyte Migration of soluble species Capacity fade High/low SOC, high 
temperature 

Decomposition Reprecipitation of new phases, form 

surface layer 

Power fade  

Electrolyte decomposition Gas evolution  High temperature 

Binder decomposition, oxidation of 

conductive agent 

Connectivity loss Power fade  

Corrosion of current collector Connectivity loss Power fade High SOC 

 

 

Table 3. Parameter values for capacity degradation model 
A Ea/R z 

0.3687 1472 0.6405 
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Figure 2. Degradation in capacity observed in a Li-ion cell after undergoing 1000 cycles 
 
 

3. METHODOLOGY 

Every approach implements a different methodology to evaluate the SoC performance. Alternative to 

the conventional approaches discussed, KF makes it a top choice for real-time state estimation for its optimality, 

adaptability, efficiency, robustness, versatility, ability to handle sensor data, and well-established mathematical 

theory. KF is a special case of sequential probabilistic inference, yielding an optimal state estimate through the 

minimum mean-squared error approach. However, its reliance on a Gaussian distribution assumption posed 

challenges when confronted with non-Gaussian distributions, a common occurrence in real-world scenarios 

[48]. As batteries were subjected to non-linear characteristics, it was critical for models relating to them to also 

be of a non-linear nature. A non-linear relationship between the SoC and resultant voltage was observed in 

rechargeable batteries, rendering the entire propagation potentially incompatible with a Gaussian environment. 
 

3.1.  Non-linear KF techniques 

Unlike linear Kalman filters, which were specifically designed for linear systems, non-linear Kalman 

filters, were more flexible and capable of accommodating non-linear relationships [49]. In the presence of non-

linearities, these filters contributed to enhancing the performance and reliability of BMS. Different non-linear 

variants for state estimation were applied to the developed battery model with its aging affect.  
 

3.1.1. Extended KF  

Extended Kalman filter (EKF), an analytical linearization of the system model under every time 

instance. Similar to KF, EKF followed the same working principle but employed a linearization approach, 

operating through a two-step estimation process shown in Figure 3. Generalizing the nonlinear case with 

system dynamics: 
 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1) (9) 
 

𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘, 𝑣𝑘) (10) 
 

estimator provides an output state estimate 𝑥̂𝑘
+, error covariance estimate ∑𝑥̃,𝑘

+ , however, exists high certainty 

that the true value falls within 𝑥̂𝑘
+ ± 3√diag(∑𝑥,𝑘

+ ) (bounds) and expecting until subsequent interval comes, 

updating k and proceeding to state prediction step. Hence, this demonstrates a recursive process. 
 

3.1.2. Central difference KF  

Central difference Kalman filter (CDKF), a statistical or empirical linearization of the system model 

for every time instance. Given an input random variable x ∈ R^n and x ~ (μ, ∑), where μ or x̅ or X₀ represents 

the mean and ∑ is the covariance, the generation of p + 1 = 2n + 1 (with n being the system dimension) sigma 

points entail the creation of a matrix with a specified essential. Central difference transformation: 
 

x̅ or X0 = X̂(k|k) (11) 
 

for i=1, ..., n Xi(k|k) = (X0 + γ√∑x̃)i (12) 
 

for i=n+1, ..., 2n Xi(k|k) = (X0 − γ√∑x̃)i−n (13) 
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where, X̂(k|k) is a vector of length n for which the sigma points are computed, ∑x̃ is its covariance matrix and 

𝑤𝑚  and 𝑤𝑐 are weights associated with the sigma points for estimating the mean vectors and covariance matrices, 

respectively. (γ√∑x̃)𝑖  is the ith column of the matrix square root, e.g., lower triangular Cholesky factorization. 

Values in weights used by CDKF are (14)-(17). 
 

γ = h (14) 
 

w0
(m)

=
h2−n

h2  (15) 

 

w0
(c)

=
h2−n

h2  (16) 

 

for i=1, ..., n wi
(c)

= wi
(m)

=
1

2h2 (17) 

 

Thus, the ensemble of sigma points is produced as outlined (18). 
 

𝜒 = { 𝑋0 , (𝑋0 + 𝛾√∑𝑥), (𝑋0 − 𝛾√∑𝑥)} (18) 
 

𝑋̂(𝑘|𝑘) is computed from the sigma points generated, ∑𝑥 is covariance, and weights related to mean and 

covariance are 𝑤𝑚, 𝑤𝑐. √∑𝑥̃𝑖
 gives the factorization under the lower-triangular-Cholesky division. Here h=√3; 

tuning parameter. 
 
 

 
 

Figure 3. Implementation flowchart of KF, EKF algorithm 
 

 

3.1.3. Unscented/Sigma point KF  

Unscented Kalman filter (UKF)/sigma point Kalman filter (SPKF), a statistical linearization system. 

Sigma points (a deterministic sample points) were chosen to precisely estimate the statistics of the propagating 

method. Unscented transformation: 
 

X0 = X̂(k|k) (19) 
 

for i=1, ..., n Xi(k|k) = (X0 + γ√∑x̃)i (20) 
 

for i=n+1, ..., 2n Xi(k|k) = (X0 − γ√∑x̃)i−n (21) 
 

where, X̂(k|k) is a vector of length n for which the sigma points are computed, ∑x̃ is its covariance matrix and 

𝑤𝑚  and 𝑤𝑐 are weights associated with the sigma points for estimating the mean vectors and covariance 

matrices, respectively. (√(n + λ)(∑x̃)𝑖 is the ith column of the matrix square root, e.g., lower triangular 

Cholesky factorization. 
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Weight values for UKF/SPKF are (22)-(25). 
 

γ = √n + λ (22) 
 

w0
(m)

=
λ

n+λ
 (23) 

 

w0
(c)

=
λ

(n+λ)+(1−α2+β)
 (24) 

 

for i=1, ..., n wi
(c)

= wi
(m)

=
1

2(n+λ)
 (25) 

 

Where, 𝜆 = 𝛼2(𝑛 + 𝐾) − 𝑛, within the range of (10−2 ≤ 𝛼 ≤ 1) and 𝑘𝜖{0,3, −𝑛}. In the given context, λ 

serves as the scaling parameter, k represents secondary scaling parameter, and to integrate preceding realization 

regarding the x propagation, β was employed. Additionally, α plays a crucial role in determining propagation 

around the mean x̄ (typically around 1e-3). In general, k and β were usually chosen as 0 and 2 respectively. The 

parameters for tuning the Gaussian probability density function were selected as follows: β=2, α=0.001, and 

k=0. Figure 4 illustrates the flow diagram of CDFK, UKF/SPKF algorithm. By incorporating the weights as 

{ 𝛾, 𝑤(𝑚), 𝑤(𝑐)}; 𝑤(𝑚), 𝑤(𝑐) possess real scalar quantities, weighted moments were computed as (26) and (27). 
 

𝑋0 = ∑ 𝑤𝑖
(𝑚)

𝜒𝑖
2𝑛
𝑖=0   (26) 

 

and ∑𝒙̃ = ∑ 𝑤𝑖
(𝑐)(𝜒𝑖 − 𝑥̅)(𝜒𝑖 − 𝑥̅)𝑇2𝑛

𝑖=0  (27) 
 

Followed by the propagation over sigma points through the function of nonlinearity, wherein transformed set of 

sigma points as Ỿ is obtained. Then, computing output first statistical moments of Ỿ transformed points as stated: 
 

Ỿ𝑖 = 𝑓(𝜒𝑖) (28) 
 

𝑌0 = ∑ 𝑤𝑖
(𝑚)

Ỿ𝑖
2𝑛
𝑖=0  (29) 

 

and ∑𝒙̃ = ∑ 𝑤𝑖
(𝑐)(Ỿ𝑖 − 𝑦̅)(Ỿ𝑖 − 𝑦̅)𝑇2𝑛

𝑖=0  (30) 
 

Some of the theoretical differences in the functional process of NKFs were summarized in Table 4. 

Despite limitations, EKF was sensitive to the choice of initial conditions, and incorrect initialization or poor 

observability could lead to convergence issues, potentially diverging or converging to a local minimum. In 

contrast, UKF's effectiveness relied on the proper placement of sigma points, and as the state dimension 

increased, the growing number of sigma points could impact efficiency. Although UKF avoided EKF's 

linearization errors, the choice of sigma points introduced approximation errors, leading to inaccuracies in 

certain scenarios. Consequently, the aim was to address some of the limitations associated with other advanced 

NKF. Thus, proposed cubature KF as a robust estimator for SoC estimation. 
 

3.1.4. Cubature KF: proposed robust state-estimator 

CKF, a Bayesian filtering algorithm designed for nonlinear systems. CKF employed a cubature rule, 

instead of linearization, for accurate propagation of the system's covariance. The computational burden 

associated with CKF was comparatively lighter since it employed only 2n cubature points (where n is the 

system dimension), while UKF utilized 2n+1 sigma points for state and covariance propagation. Cubature 

transformation: 
 

for i=1, ..., n Xi(k|k) = (X0 + γ√∑x̃)i (31) 
 

for i=n+1, ..., 2n Xi(k|k) = (X0 − γ√∑x̃)i−n (32) 
 

for i=1, ..., n wi =
1

2n
 (33) 

 

In this context, Q(k) and R(k) represented the matrices of covariance for process and sensor noises, 

respectively. Utilizing the weighted estimated covariance matrix, both UKF and CKF conversions generated 

sample indicates. Notably, for CKF, all points, including the center point, were assigned equal weight, resulting 

in a total of 2n points used. This uniform weighting simplified the sigma points and covariance calculations in 

CKF, ensuring a consistent treatment across all points. CKF does not involve as many tuning parameters as 

UKF. The selection of cubature points is often straightforward, making CKF a more parameter-free alternative, 
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simplifying the implementation, and reducing the need for parameter tuning. Figure 5 gives the flow diagram 

of CKF algorithm. 
 
 

 
 

Figure 4. Flow diagram of CDKF and UKF/SPKF algorithm 
 
 

Table 4. Theoretical comparison of non-linear KFs for estimating SoC 

System Applicability Assumptions Limitations 
Computational 

Complexity 
Rate of 
estimate 

EKF Moderate nonlinear 

systems, Gaussian 

Taylor-series expansion to 

linearize system equations 

for covariances 

Linearizes the system at each 

step, may lead to inaccuracies in 

highly nonlinear systems 

Moderate High 

 

CDKF/ 

UKF/ 

SPKF 

Highly nonlinear 

systems, Gaussian 

2n+1 sigma points, avoids 

linearization using 

carefully chosen sigma 
points 

Requires tuning of scaling 

parameters, increased 

computational complexity 
compared to EKF 

Moderate to 

high 

High 

 

CKF Highly nonlinear, 

non-gaussian 

2n cubature points, utilizes 

deterministic cubature 
sampling technique 

Can be computationally 

intensive, especially in high-
dimensional state spaces 

High Very high 

 

 

 
 

Figure 5. Flow diagram of CKF algorithm 
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4. RESULTS AND DISCUSSIONS  

Using the developed battery model including aging effect, these filtering techniques are implemented 

and simulated in Octave/MATLAB software. Based on the metrics: root mean square error, mean absolute 

error, and maximum error, the performance is assessed. Let N be the number of observations, 𝑣̂[𝑘] be the 

estimated battery state, and 𝑣[𝑘] be the true (actual) battery state. 

Root mean square error (RMSE) is a measure of the average magnitude of the errors between predicted 

values and actual values in a dataset. 

 

RMS = √
1

𝑁
∑ (𝑣[𝑘] − 𝑣̂[𝑘])2𝑁

𝑗=1  (34) 

 

Maximum error (MAX) represents the maximum deviation or difference between predicted values and actual 

values in a dataset. 

 

MAE =
1

𝑁
∑ |𝑣[𝑘] − 𝑣̂[𝑘]|𝑁

𝑗=1 , and (35) 

 

Mean absolute error (MAE) is a measure of the average magnitude of the errors between predicted values and 

actual values in a dataset. Unlike RMSE, MAE does not square the errors, making it less sensitive to outliers. 

 

MAX = max |𝑣[𝑘] − 𝑣̂[𝑘]| (36) 

 

Figures 6 and 7 indicate the estimation analysis for extended EKF and CDKF algorithms. The 

representation includes a black solid line denoting the estimate, a green solid line illustrating the true SoC 

versus time, and red lines indicating the SoC bounds. The calculation of error versus time involves determining 

the difference between the true value and the estimate, considering its bounds. To maintain a fair comparison, 

an identical random input is applied to both filters. EKF and CDKF algorithms' results indicate that errors 

surpass the bounds in EKF (RMSE: 0.42308%) but stay within bounds in CDKF (RMSE: 0.51543%) for the 

executed iterations. 

Figure 8 indicates the estimation analysis for UKF/SPKF algorithm. Upon examination of the 

visualization, a clear understanding of the error magnitude in comparison to the true SoC emerges with RMSE 

of 0.57199%, highlighting the effective performance of the SPKF. Due to the increased number of sigma points, 

a computational burden occurred, along with tuning challenges for the parameters, making the filter less efficient. 

 

 

  
(a) (b) 

 

Figure 6. EKF algorithm results for (a) SoC estimation and (b) SoC estimation error 
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(a) (b) 

 

Figure 7. CDKF algorithm results for (a) SoC estimation and (b) SoC estimation error 
 

 

  
(a) (b) 

 

Figure 8. UKF/SPKF algorithm results for (a) SoC estimation and (b) SoC estimation error 
 

 

Figure 9 indicates the estimation analysis for CKF algorithm. This is a significant improvement 

compared to other filters under non-Gaussian noises and uncertainties with less computational complexity. The 

achievable RMSE is 0.49553%. In a practical system, the error constantly remains within the expected ranges 

and seldom approaches 0, due to the continuous influence of process noise on the actual system and the 

persistent presence of additive sensor noise in the measurements. Thus, errors stay within bounds, ensuring 

correct operation. 
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Table 5 lists the statistical comparison of non-linear KF estimators. This thorough comparison 

establishes the superiority of the CKF as a proposed robust estimator in SoC estimation, particularly in 

addressing high-dimensional nonlinear filtering challenges. Moreover, CKF exhibits operational proficiency 

in handling uncertainties related to modeling, initialization, and persistent noise (covariance). The suggested 

CKF approach functions well in real-time applications owing to processing power is a constant concern. 
 

 

  
(a) (b) 

 

Figure 9. CKF algorithm results for (a) SoC estimation and (b) SoC estimation error 
 
 

Table 5. Statistical comparison of non-linear KF state estimators 
Filtering method RMSE of SoC (%) MAE (%) MAX (%) 

EKF 0.42308 0.32789 0.89901 
CDKF 0.49298 0.36951 1.0029 

UKF/SPKF 0.57199 0.43713 1.1293 

CKF 0.49553 0.36870 1.0125 

 
 

5. CONCLUSION 

In this study, the goal was to develop an enhanced Li-ion battery model with an aging effect and assess 

the CKF's effectiveness as a robust Kalman filter variant for precise state estimation. This research has identified 

certain notable uncertainties, such as hysteresis and degradation/aging effect, which impact the battery 

characteristics and their performance in the practice of battery modelling and state estimation. Alongside the 

enhanced model with uncertainties, the study has gone some way towards enhancing our understanding of aging 

behaviour by generalizing with respect to temperature, cycle count, and combinations of stress factors. The 

simulation results from this study indicate that the modelled battery cell experiences capacity loss after 1000 

cycles. Additionally, the findings from the filtering algorithms suggest that CKF quickly converges, reaching an 

RMSE of 0.49% across all uncertainties, showcasing its robustness and adaptability. The comparative results 

assist our understanding that CKF is superior and outperforms other non-linear KF under non-Gaussian and 

highly nonlinear systems. Further research might explore alternative degradation dynamics, concurrent 

estimation of both SoC and SoH, integration with cutting-edge models, and the development of non-intrusive or 

sensor less SoC estimation methods using CKF. These proposed areas hold significant potential in enhancing 

driving range accuracy, optimizing performance, ensuring safety, and achieving cost savings. Accordingly, they 

pave the way for more efficient and dependable battery management in the EV industry. 
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