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 Nowadays, multi-objective optimization plays a vital role in solving optimal 

power flow problems. Multi-objective optimal power flow (MOOPF) is a 

nonlinear optimization problem aimed at optimizing control variables while 

balancing multiple objective functions and satisfying both equality and 

inequality constraints and addresses this by integrating two more objectives 

into a single objective using a weighting factor. In this paper this weighted 

sum type multi-objective technique has been used to formulate the objective 

function. The whale optimization algorithm (WOA) has been used to reduce 

the cost, emission, losses, and voltage stability by considering various multi 

objectives like fuel cost along with emission, fuel cost with losses, fuel cost 

with voltage stability, fuel cost with voltage deviation and finally fuel cost 

with emission, losses, voltage deviation. In this paper, the IEEE 30 bus 

structure has been used to analyze the effect of WOA on the improvement of 

system performance. Obtained results with WOA have been compared with 

other optimization techniques like ensemble constraint handling technique 

with differential evolution (ECHT-DE), the superiority of feasible differential 

evolution (SF-DE), moth swarm algorithm (MSA), and moth-flame 

optimization (MFO), available in the literature. 
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1. INTRODUCTION 

In the power system deregulation market, the optimal power flow (OPF) problem is very crucial. This 

issue is non-linear, static, controllable, large-scale and convex, non-convex type that optimizes based on 

objective function and its solving efficiency with limitations imposed on the power system model, lines, busses 

and all equipment’s to satisfy all operating and physical constraints. There will be equality and inequality 

constraints to balance all the nodal power flow representations and limitations to control all the state variables 

involved. These variables are generator active and reactive powers, its bus voltages, transformer tap changing 

are considered as controllable parameters. The load reactive powers, load bus voltages, real and reactive power 

flow in the transmission lines are considered as load busses. The economic operation, optimal sharing of power 

https://creativecommons.org/licenses/by-sa/4.0/
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between the sources and to the loads meeting all the constraints and also to meet the electric utilities and firms 

needs most optimally is referred to as OPF [1].  

In the last few years, various bio-inspired optimization OPF algorithms are proposed by many authors 

to solve very effectively and easily large complex and multi-objective (MO), multi-constrained problems [2]. 

The trial and error methods are involved in solving these OPF to achieve the tolerance based optimal 

solution(s). The population or bio-inspired optimization problems developed and found to give most optimal 

desired solutions [3]. The bio-inspired algorithms are classified as four classes namely, evolution based, swarm 

intelligence [4], ecology and multi-objective based. The evolutionary OPF problems are artificial neural 

networks [5], genetic algorithms, evolution strategies [6], differential evolution and paddy-field algorithm [7]. 

The particle swarm, ant-colony [8], artificial bee, fish swarm, bacterial forging [9], fire-fly [10], group-search, 

artificial immune system [11], shuffled frog-leaping are famous methods in multi-objective OPF swarm 

optimization algorithms. In the ecology based OPF algorithms, invasive weed [12], bio-geography, multiple-

species co-evolution [13] are few important types. The more advanced OPF methods are multi-objective bio-

inspired algorithms such as nondominated sorting genetic algorithm (NSGA-II) method [14], population based 

ant-colony [15], strength-pareto, vector evaluated GA, pareto archived evolutionary strategy algorithms [16].  

The differential evaluation, solved based on minimizing fuel-cost, increasing voltage stability and 

voltage profile. Modified differential evolution [17] algorithm is a non-smooth and non-convex technique for 

optimal fuel-cost constraints for a large power system network. An improved scatter search [18] technique is 

used to solve environmental and economic power dispatch problem to solve large network with multiple 

objectives and constraints. Pareto dominance and crowding distance based  neo control method [19], enhanced 

genetic algorithm [20], decoupled quadratic load flow [21] for solving optimally fuel cost, line losses and 

voltage stability index. A distributed and parallel OPF algorithm for effective use of renewable energy sources 

(RES) in smart grid network with fuel cost minimization and carbon emission reduction as constraints to solve 

OPF problem. The biogeography-based optimization based on heuristic optimization algorithm to solve 

convex/non-convex fuel cost characteristics for OPF problem [22]. Modified shuffle frog leaping algorithm to 

solve emission & financial issues and fuzzy evolutionary and particle swarm optimization hybrid scheme for 

getting solution to OPF problem with fuel expenditure with various non-linear and linear constraints. Multi-

objective harmony search technique, fast nondominated sorting GA (NSGA-II) technique [23], artificial bee 

colony algorithm [24] with multiple linear and non-linear, balanced and unbalanced constraints with multiple 

objectives to solve convex and non-convex fuel-price minimizing, environment-friendly with lowering carbon 

and other flue-gasses emission, voltage profile and stability enhancement, real power loss decreasing, and 

reactive power optimizing as major constraints. Firefly [25] is a hybrid new and effective algorithm, that 

improved particle swam optimization (PSO) for multi-objective OPF (MOOPF) issue considering the cost, 

voltage stability index, emission, and power loss [26]. 

The fuzzy adaptive chaotic ant swarm hybrid optimization with sequential quadratic programming 

technique employed for resolving economic load dispatch (ELD) issues. Gravitational search method with 

various objective functions for the minimization of fuel price, stability of the voltage and enhancement of 

profile [27]. The neo hybrid optimization technique employed for modified PSO and shuffled frog leaping 

algorithm (SFLA) called as MPSO-SFLA obtain OPF solution under the limitations like forbidden zones and 

valve point effect demonstrate  their technique is effective in obtaining solution for OPF and ELD problem in 

the power systems. This method is found to be effective in improving the overall system profile meeting all 

the constraints compared to the earlier methods. 

In this paper, five major objective functions like fuel cost, emission, true power losses and voltage 

stability and voltage deviation of the network are taken attention  in planning  of power system that is employed 

in whale optimization algorithm. This method is very strong, effective with superior speed to attain the outputs 

compared to earlier techniques. Also, with increase in the network size and constraints, its effectiveness also 

increases as compared with earlier methods. This is because, the method is a group algorithm and other reason 

is because of colonial groups competition based algorithm. The whale algorithm technique is estimated on the 

standard Institute of Electrical and Electronics Engineers thirty bus system. The work is studied under different 

combinations of five objectives and the best compromise solution is detailed here. The multi-objective OPF 

issues shows suggested whale technique  is best  while comparing to earlier techniques. This paper is 

categorized as five sections: section 2 involves in a multi-objective issues formulation section 3 demonstrates 

about architecture of whale optimization technique, section 4 is allocated for  the results and performance 

analysis mentioned methods  which are employed to encounter the literature studies of multi-objective OPF 

problem on IEEE thirty bus system and finally, in section 5, the conclusion of the implementation for the 

proposed technique is presented 
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2. MATHEMATICAL FORMULATION OF MULTI OBJECTIVE OPTIMAL POWER FLOW 

(MOOPF) PROBLEMS 

Multi-objective optimal power flow (MOOPF) is nonlinear optimization issue . the primary focus is 

to optimize control variables while addressing two or more objective functions, while also satisfying both 

equality and inequality constraints. This paper accomplishes the integration of two objectives converts in  one 

objective by introducing a weighting factor as crucial consideration. 

 

2.1.  Objective 1: cost minimization 

The sum of cost function for fuel  is  set of generating units is represented in the following equation. 

The initial objective function aims to minimize the generation cost [28]. In (1), α, β, and γ are the cost 

coefficients of thermal power plants. 

 

𝐹1 = (∑ 𝛼𝑖
𝑁𝑇𝐺
𝑖=1 + 𝛽𝑖𝑃𝑇𝐺𝑖 + 𝛾𝑖𝑃𝑇𝐺𝑖

2 )$/𝐻𝑟 (1) 

 

2.2.  Objective 2: minimization of emission 

The warm generator delivers the discharge of SOx, NOx with contaminates the environment. Thus, it 

is needed to decrease the emanation by accepting this one as an objective. In (2), 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are the 

emission coefficients of the thermal generation unit.  

 

𝐹2 = ∑ 10−2𝑁𝑇𝐺
𝑖=1 (𝑎𝑖 + 𝑏𝑖𝑃𝑇𝐺𝑖 + 𝑐𝑖𝑃𝑇𝐺𝑖

2 ) + 𝑑𝑖 𝑒𝑥𝑝(𝑒𝑖𝑃𝑇𝐺𝑖) (2) 

 

2.3.  Objective 3: minimization of actual power losses 

These are calculated employing the (3) [29]. In (3), 𝑉𝑖 is the voltage at ith bus, 𝑉𝑗 is the voltage at jth 

bus. NT is the number of transmission lines. 

 

𝐹3 = ∑ 𝐺𝑘(𝑖,𝑗)[𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 𝑐𝑜𝑠( 𝛿𝑖𝑗)𝑁𝑇
𝑘=1  (3) 

 

2.4.  Objective 4: voltage stability 

To improve the voltage stability in the system, the L-index is calculated for all heap transports, with 

the highest value among them serving as the global indicator for system stability. In this manner, the main 

focus  of system stability is defined as (4) [30]. 

 

𝐹4 = |1 − ∑ 𝐹𝑗𝑖
𝑉𝑖

𝑉𝑗

𝑁𝐺
𝑖=1 | → 𝑤ℎ𝑒𝑟𝑒 → 𝑗 = 1,2, . . . . , 𝑁𝐿 𝑎𝑛𝑑 → 𝐹𝑗𝑖 = −𝑖𝑛𝑣[𝑌𝐿𝐿][𝑌𝐿𝐺] (4) 

 

2.5.  Objective 5: minimization of voltage deviation 

Voltage deviation has been determined using (5), here 𝑉𝑛 is the voltage at node n, and 1 is considered 

as reference voltage. 

 

𝐹5 = 𝑉𝐷 = ∑𝑛=1
𝑁𝑏 |𝑉𝑛 − 1|  (5) 

 

Considering the previously mentioned mono objectives, multiple objectives have been obtained in several 

technical studies [13]. 

 

2.6.  Case 1: reduction of fuel cost and emission 

The formulation of the objective function, containing of fuel cost and emission, and the selected 

weight factor is 100. In (6), F1 is the objective1 which is reduction cost and F2 is the objective2 which is 

emission reduction. These are combined with weighting factor W1. 

 

𝐹𝐹1(𝑋, 𝑈) = 𝐹1 + 𝑊1 ∗ 𝐹2 (6) 

 

2.7.  Case 2: curtailment of fuel cost and losses 

In the power systems operation transmission loss is the most important element to determine 

effectiveness. To minimize the transmission loss in the network together with minimization of cost generation. 

The formulation of the objective function, which consists of fuel costs and losses with a chosen weight factor, 

is 40. 

 

𝐹𝐹2(𝑋, 𝑈) = 𝐹1 + 𝑊2 ∗ 𝐹3 (7) 
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2.8.  Case 3: reduction of fuel cost and improvement of voltage stability 

This objective function is focused to reduce cost of fuel while improving system voltage stability. The 

multiple objectives are consolidated into one objectively as (8). 

 

𝐹𝐹3(𝑋, 𝑈) = 𝐹1 + 𝑊3 ∗ 𝐹4 (8) 

 

Taken the weight factor is hundred from [9]. 

 

2.9.  Case 4: reduction of cost of fuel and voltage deviation 

The main focus of the objective function is to reduce system's voltage variation and fuel expense. 

Multiple objective functions are reduced to a single goal as (9). 

 

𝐹𝐹4(𝑋, 𝑈) = 𝐹1 + 𝑊4 ∗ 𝐹5 (9) 

 

The weight factor 100 is taken [10]. 

 

2.10.  Case 5: minimization of fuel cost, emission, voltage deviation and losses 

This case study combines four objective functions. The simultaneous minimization of fuel cost, 

emissions, voltage variation, and real power loss in the network. The objective function is given by (10). 

 

𝐹𝐹5(𝑋, 𝑈) = 𝐹1 + 𝑊5 ∗ 𝐹2 + 𝑊6 ∗ 𝐹3 + 𝑊7 ∗ 𝐹5 (10) 

 

W5=19, W6=21, and W7=22 are taken to balance between the objectives. 

 

2.11.  Equality constraints 

Basic load flow equations like these require that the power produced match the power demand and 

losses [28]. In below equations 𝑃𝐺𝑖  is the true power generation and 𝑃𝐷𝑖 is the true power demand. 𝑄𝐺𝑖  is the 

imaginary power generation and 𝑄𝐷𝑖 is the imaginary power demand. 
 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗
𝑁𝑏
𝑖=1 (

𝐺𝑖𝑗 𝑐𝑜𝑠 𝜃𝑖𝑗

+𝐵𝑖𝑗 𝑠𝑖𝑛 𝜃𝑖𝑗
) = 0 (11) 

 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗
𝑁𝑏
𝑖=1 (

𝐺𝑖𝑗 𝑠𝑖𝑛 𝜃𝑖𝑗

𝐵𝑖𝑗 𝑐𝑜𝑠𝜃𝑖𝑗
) = 0 (12) 

 

2.12.  Inequality constraints 

Maximum and minimum values of generator bus voltages and load bus voltages considered as 

inequality restrictions. They get along with imaginary power generation limits, limits of the transformer tap 

settings and capacitor banks minimum and maximum values [30]. 
 

𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝑁𝑔 (13) 
 

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝑁𝑙  (14) 
 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝑁𝑡 (15) 
 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑚 ≤ 𝑇𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝑁𝑐 (16) 
 

𝑄𝑐𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑐𝑖 ≤ 𝑄𝑐𝑖

𝑚𝑎𝑥, 𝑖 ∈ 𝑁𝑐 (17) 

 

 

3. WHALE OPTIMIZATION ALGORITHM (WOA) 

Whales are magnificent creatures, with humpback whales standing out due to their remarkable hunting 

strategy known as the bubble-net feeding technique. This foraging behavior involves two distinct maneuvers 

known as 'upwinding' and 'double loops.' During the former, humpback whales dive approximately 12 meters 

deep and then create a twisting pattern of bubbles around their prey as they ascend toward the surface. The 

latter maneuver consists of 3 distinct phases: coral circle, lob tail, and capture circle. You can find more detailed 

information about this behavior elsewhere. It's important to emphasize that bubble-net feeding is a unique 

behavior exclusive to humpback whales. The bubble net method of the whale is shown in Figure 1 [2]. 
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=𝐷
→ | . ∗ (𝑡)𝑋

→ − (𝑡)𝑋
→ |𝐶

→  (18) 
 

(𝑡)𝑋
→ = ∗ (𝑡)𝑋

→ − . |𝐷
→

𝐴
→  (19) 

 

 =  2𝐴
→ . − .𝑎

→
𝑟

→
𝑎
→  (20) 

 

 = 2. .𝑟
→

𝑐
→  (21) 

 

Whale, denoted as 'r' is expressed as vector comprising of actual values are written as (22) [27]. 
 

𝑌𝑖 = (𝑌𝑖,1, 𝑌𝑖,2, … . 𝑥𝑖,𝑘)
𝑇

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 0 < 𝑥𝑖.1 … … < 𝑥𝑖,𝑘 < 𝐿 (22) 
 

The positions of the whales are determined arbitrarily using (23). 
 

𝑌𝑖,𝑗 = 𝑔𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) (23) 
 

Control parameter limits are provided in Table 1 and values of WOA are given in Table 2. Steps to 

Implementing the WOA to solve the MOOPF: 

- Randomly generate initial positions of whales and set algorithm parameters such as population size, 

maximum iterations, and convergence criteria. 

- Calculate the fitness function value of each whale based on the MOOPF objective function 

- Update the positions of the whales using the encircling prey, bubble-net attacking, and search for prey 

mechanisms of WOA. 

- Repeat the evaluation and update steps for a set number of iterations.  

- After convergence, take the values of optimal generator settings, power losses, fuel cost, and fitness  

function value. 
 

 

 
 

Figure 1. Bubble net method of whale 
 

 

Table 1. Control parameters limits 
Control parameters Min – Max (p.u) 

Generator voltages 0.95 – 1.10 

Transformers tap settings 0.90 – 1.10 

Shunt capacitors 0.00– 0.20 

 

 

Table 2. Control - parameters values for WOA 
S.No Parameter 

Search Agents_no 30 

Max_iteration 500 

a Linearly is reduced from 02 to 00 
r1 and r2 Random numbers in [0,1] 

 

 

4. RESULTS AND DISCUSSION 

In this section, it is explained the results of research and at the same time is given  

the comprehensive discussion. Results can be presented in figures, graphs, tables and others that make  

the reader understand easily [14], [15]. The discussion can be made in several sub-sections. 
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This paper introduces an optimization approach aimed at minimizing the total cost of real power 

generation while considering factors such as losses, emissions, and voltage stability. The proposed method 

involves the control of generator bus voltages, the adjustment of reactive power compensation device ratings, 

and the optimization of transformer tap settings. Table 3 gives information about IEEE 30 bus system. The cost 

coefficient values of generators, bus data, load data, and line data are taken from [27]. 

From Table 4 it is observed that by optimizing only fuel cost, cost has been reduced to 800.3196 $/hr 

but emission is 0.5437 p.u, with emission optimization fuel cost is 944.921 $/hr but emission getting reduced 

to 0.2048. By applying single objective optimization that particular objective value became lower but other 

objectives have high values, therefore to avoid this multi-objective optimization has been used. From this table 

it is also observed that by combining fuel cost and emission provides the moderate values. Here cost is 802.172 

$/hr and emission is 0.3293 p.u. From the Table 4 it has been also observed that by combining fuel cost and 

losses provides the moderate values. Here cost is 857.81 $/hr and losses are 4.4755 MW. From Table 5 obtained 

multi objective values, cost is 800.36 $/hr and voltage stability is 0.1266 p.u. Table 5 also obtained multi 

objective values, cost is 800.36 $/hr and deviation of voltage is 0.2011 p.u. 
 
 

Table 3. The main characteristics of the studied system 
IEEE 30 

Characteristics Value Details 

Buses 30 -- 

Branches 41 -- 

Generators 06 Buses: 1, 2, 5, 8, 11, and 13 
Load voltage limits 24 [0.94 p.u - 1.06 p.u] 

Shunt VAR compensation 09 Buses:10, 12, 15, 17, 20, 21, 23, 24, and 29 

Transformers with off-nominal tap ratio 04 Branches: 11, 12, 15, and 36 
Control variable 24 -- 

 

 

Table 4. Optimal solutions obtained for combined fuel cost and emission and combined fuel cost and power 

losses by WOA for IEEE 30 bus system 
 Combined fuel cost and emission Combined fuel cost and power losses 

Control variables and 
parameters 

In fuel cost 

minimization 
scheduling 

of generator 

units and 
other 

parameters 

In emission 

minimization 

scheduling of 
generator units 

and other 

parameters 

In combined 

(Case 1) 

scheduling of 
generator units 

and other 

parameters 

In fuel cost 

minimization 

scheduling of 
generator units 

and other 

parameters 

In power loss 

minimization 
scheduling of 

generator 

units and 
other 

parameters 

In combined 

(Case 2) 
scheduling of 

generator 

units and 
other 

parameters 

PTG1 176.0386 64.1557 162.75 176.0386 51.299 102.64 
PTG2 48.5459 67.6433 51.7207 48.5459 80.0000 54.4114 

PTG5 21.2817 50.0000 21.8936 21.2817 50.0000 36.7556 

PTG8 21.6116 35.0000 27.1089 21.6116 035 035 
PTG11 12.5939 30.0000 13.6142 12.5939 030 29.6401 

PTG13 12.1423 40.0000 14.8104 012.1423 040 29.5766 

VTG1 01.1 01.10 1.1000 01.1 01.1 0 1.10 
VTG2 01.1 01.10 01.10 01.1 01.1 01.10 

VTG5 01.1 01.10 01.10 01.1 01.08 01.0838 

VTG8 01.08869 01.10 01.0903 01.08869 01.1 01.10 
VTG11 01.1 01.10 01.10 01.1 01.1 01.0432 

VTG13 01.1 01.10 01.10 01.1 01.1 01.1000 

QC10 4.32262 0.4593 0 4.32262 05 3.2100 
QC12 0 1.8154 4.6101 0 05 05.0 

QC15 0 4.1381 0 0 05 05.0 

QC17 2.57489 5.0000 0 2.57489 05 05.0000 
QC20 4.11584 5.0000 4.6122 4.11584 05 5.0000 

QC21 2.5457 5.0000 1.9727 2.5457 05 5.0000 

QC23 1.75619 5.0000 4.6147 1.75619 05 5.0000 
QC24 3.97527 5.0000 4.6099 3.97527 05 5.0000 

QC29 1.86436 5.0000 4.6108 1.86436 02.5237 5.0000 

T11 0.983227 1.1000 1.0022 0.983227 00.9458 0.9740 
T12 1.00358 1.1000 1.0022 1.00358 01.10 1.1000 

T15 0.992703 1.1000 0.9983 0.992703 00.9960 1.1000 

T36 1.00521 1.1000 1.0021 1.00521 00.9849 1.0356 
Fuel cost ($/hr) 800.3196 944.921 802.172 800.3196 966.69 857.81 

Total power loss (MW) 8.8140 3.399 8.1001 8.8140 2.899 4.4755 

Voltage stability p.u 0.1542 0.1455 0.1299 0.1542 0.1260 0.1355 
Voltage deviation p.u 1.7624 1.0149 1.6701 1.7624 2.0857 1.3687 

Emission p.u 0.5437 0.2048 0.3293 0.5437 0.20724 0.2283 

Fitness function value 800.3196 0.2048 834.91 800.3196 2.899 1036.53 
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Table 5. Optimal solutions obtained for combined fuel cost and voltage stability and combined fuel cost and 

voltage deviation by WOA for IEEE 30 bus system 
Control variables and 

parameters 
Combined fuel cost and voltage stability Combined fuel cost and voltage deviation 

In fuel cost 

minimization 

scheduling of 
generator 

units and 

other 
parameters 

In voltage 

stability 

minimization 
scheduling of 

generator units 

and other 
parameters 

In combined 

(Case 3) 

scheduling of 
generator 

units and 

other 
parameters 

In fuel cost 

minimization 

scheduling 
of generator 

units and 

other 
parameters 

In voltage 

deviation 

minimization 
scheduling of 

generator units 

and other 
parameters 

In combined 

(Case 4) 

scheduling of 
generator 

units and 

other 
parameters 

PTG1 176.0386 80.528 175.67 176.0386 127.8870 180.5493 

PTG2 48.5459 80.0000 48.0976 48.5459 73.2439 49.0249 
PTG5 21.2817 50.0000 20.7299 21.2817 30.8068 23.3954 

PTG8 21.6116 35.0000 23.2889 21.6116 15.2479 14.9210 

PTG11 12.5939 30.0000 12.2847 12.5939 18.6419 11.8863 
PTG13 12.1423 12.0000 12.1561 12.1423 29.5643 14.2723 

VTG1 01.1 01.1000 01.1000 1.1 0.9661 1.0298 

VTG2 01.1 01.1000 01.0891 01.01 1.0306 1.0106 
VTG5 01.1 01.1000 01.0616 01.01 1.0025 1.0019 

VTG8 01.08869 01.1000 01.0795 01.08869 1.0288 1.0162 

VTG11 01.1 01.1000 01.1000 1.1 1.0596 1.0330 
VTG13 01.1 01.1000 01.1000 1.1 1.0098 1.0399 

QC10 4.32262 5.0000 0.3549 4.32262 0.2454 0 

QC12 0 5.0000 0 0 2.5816 2.0817 
QC15 0 5.0000 3.0558 0 1.6725 3.9460 

QC17 2.57489 5.0000 0.8241 2.57489 2.2052 1.1293 

QC20 4.11584 5.0000 0 4.11584 0 1.9271 
QC21 2.5457 5.0000 2.2320 2.5457 4.2276 4.2315 

QC23 1.75619 5.0000 2.1422 1.75619 2.7822 0.6253 

QC24 3.97527 5.0000 1.7377 3.97527 4.0040 1.1877 
QC29 1.86436 5.0000 1.8542 1.86436 4.5123 1.7332 

T11 0.983227 0.9000 0.9183 0.983227 0.9560 0.9462 

T12 1.00358 0.9000 1.1000 1.00358 1.0546 1.0074 
T15 0.992703 0.9000 0.9321 0.992703 0.9474 0.9432 

T36 1.00521 0.9000 0.9504 1.00521 0.9713 0.9660 

Fuel cost ($/hr) 800.3196 919.692 800.36 800.3196 855.5189 806.105 

Total power loss (MW) 8.8140 4.128 8.8442 0.5437 0.2676 0.3751 

Voltage stability p.u 0.1542 0.1088 0.1266 8.8140 11.89 10.609 

Voltage deviation p.u 1.7624 3.4375 1.7154 1.7624 0.2011 0.2022 
Emission p.u 0.5437 0.2250 0.3621 0.1542 0.1463 0.1482 

Fitness function value 800.3196 0.1088 813.03 800.3196 0.2011 826.1644 

 
 

Figure 2 shows the convergence curves for case 1 to case 5. From the Figure 2 it has been observed 

that case 5 consisting of multiple objectives produce the compromising solution. Table 6 presents the control 

variables of all single objectives and multi objective consisting of all the objectives. From this it is observed 

that by combining all the objectives best optimal values have been achieved. Table 7 presents the comparison 

of case 2, case 3, and case5 of WOA with other algorithm available in literature. From this table it is observed 

that fitness function value with WOA is best compared to ensemble constraint handling technique with 

differential evolution (ECHT-DE), superiority of feasible differential evolution (SF-DE), moth swarm 

algorithm (MSA), and moth-flame optimization (MFO). 
 

 

 
 

Figure 2. Convergence curves for various cases 
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Table 6. Optimal solutions obtained for combined fuel cost, voltage deviation, power losses and emission 

by WOA for IEEE 30 bus system 
Control variables and 

parameters 
In fuel cost 

minimization 

scheduling of 

generator units and 
other parameters 

In voltage deviation 
minimization 

scheduling of 

generator units and 
other parameters 

In power loss 
minimization 

scheduling of 

generator units 
and other 

parameters 

In emission 
minimization 

scheduling of 

generator units 
and other 

parameters 

In combined 
(Case 5) 

scheduling of 

generator units 
and other 

parameters 

PTG1 176.0386 127.887 51.299 64.1557 125.49 

PTG2 48.5459 73.2439 80.000 67.6433 53.9522 
PTG5 21.2817 30.8068 50.000 50.0000 31.0859 

PTG8 21.6116 15.2479 35.000 35.0000 35.0000 

PTG11 12.5939 18.6419 30.000 30.0000 21.5385 
PTG13 12.1423 29.5643 40.000 40.0000 21.7013 

VTG1 1.1 0.9661 1.1000 1.1000 1.1000 

VTG2 1.1 1.0306 1.1000 1.1000 1.0864 
VTG5 1.1 1.0025 1.0862 1.1000 1.0599 

VTG8 1.08869 1.0288 1.1000 1.1000 1.0690 

VTG11 1.1 1.0596 1.1000 1.1000 1.0832 
VTG13 1.1 1.0098 1.1000 1.1000 1.0173 

QC10 4.32262 0.2454 5.0000 0.4593 1.6604 

QC12 00 2.5816 5.0000 1.8154 4.0284 
QC15 00 1.6725 5.0000 4.1381 3.8585 

QC17 2.57489 2.2052 5.0000 5.0000 0.1981 
QC20 4.11584 00 5.0000 5.0000 4.0745 

QC21 2.5457 4.2276 5.0000 5.0000 4.1727 

QC23 1.75619 2.7822 5.0000 5.0000 4.2522 
QC24 3.97527 4.0040 5.0000 5.0000 4.8502 

QC29 1.86436 4.5123 2.5237 5.0000 4.3251 

T11 0.983227 0.9560 0.9458 1.1000 1.1000 
T12 1.00358 1.0546 1.1000 1.1000 1.0052 

T15 0.992703 0.9474 0.9960 1.1000 1.0635 

T36 1.00521 0.9713 0.9849 1.1000 1.0478 
Fuel cost ($/hr) 800.3196 855.518 966.69 944.921 824.82 

Emission p.u 0.5437 0.2676 0.20724 0.2048 0.2584 

Total power loss (MW) 8.8140 11.89 2.899 3.399 5.5871 

Voltage deviation p.u 1.7624 0.2011 2.0857 1.0149 0.4943 

Voltage stability p.u 0.1542 0.1463 0.1260 0.1455 0.1468 

Fitness function value 800.3196 0.2011 2.899 0.2048 962.96 

 

 

Table 7. Comparison of the WOA with ECHT-DE, SF-DE, MSA, and MFO for IEEE 30 bus system 

considering various cases 
Objective function Objective WOA ECHT-DE SF-DE MSA MFO 

Case 5 Fuel cost ($/h) 824.82 830.1156 830.1366 830.639 830.9135 

Emission (ton/h) 0.2584 0.25293 0.25313 0.25258 0.25231 
PLoss (MW) 5.5871 5.5894 5.5887 5.6219 5.5971 

L-index 0.1468 0.14748 0.14756 0.14802 0.14556 
Fitness function 962.96 964.1331 964.1254 965.2905 965.8077 

Case 3 Fuel cost ($/h) 800.36 800.4321 800.4203 801.2248 801.668 

Emission (ton/h) 0.3621 0.36585 0.36592 0.36106 0.34299 
PLoss (MW) 8.8442 9.0043 8.9985 8.9761 8.5578 

L-index 0.1266 0.13739 0.13745 0.13713 0.13759 

Fitness function 813.03 814.1708 814.1649 814.9378 815.4270 
Case 2 Fuel cost ($/h) 857.81 858.867 859.1458 859.1915 858.5812 

Emission (ton/h) 0.2283 0.22902 0.2289 0.22899 0.22947 

PLoss (MW) 4.4755 4.5321 4.5245 4.5404 4.5772 
L-index 0.1355 0.13796 0.13785 0.13814 0.13806 

Fitness function 1036.53 1040.151 1040.125 1040.808 1041.671 

 

 

5. CONCLUSION 

The whale optimization algorithm (WOA) combined with optimal power flow (OPF) demonstrates 

superior performance across multiple objectives, including fuel cost, emissions, losses, voltage stability, and 

voltage deviation. From the results, it has been observed that by using weighted sum type multi-objective all 

the objectives optimized simultaneously and provided the compromising solution. In case 2, minimizing the 

fuel cost along with emission the objective function value is 1036.53 p.u. In the case 3, minimizing the fuel 

cost along with losses the objective function value in 813.03 p.u, to get the compromising solution by 

combining all the cases the objective function value became 962.96 p.u. it indicated that all the objectives were 
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optimized simultaneously. The results indicate that, when compared to ECHT-DE, SF-DE, MSA, and MFO, 

the WOA-based approach with regulated variables consistently delivers superior outcomes. These findings 

have been validated using the IEEE 30 bus system. Additionally, future research could explore the integration 

of flexible AC transmission system (FACTS) devices to further optimize system performance. 
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