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ABSTRACT

Multi-feed radial distribution systems are used to reduce the losses in the sys-
tem using reconfiguration techniques. Reconfiguration can reduce the losses in
the system only to a certain extent. Introduction of distributed generators has
vastly improved the performance of distribution systems. Distributed generators
can be used for reduction of loss, the improvement of the voltage profile, and
reliability enhancement. Distribution generators play a vital role in reducing the
losses in the distribution system. Placement of distributed generators in a multi-
feed system is a complex task to be solved using classical optimization methods.
Classical optimization techniques may sometimes fail to provide a converged so-
lution. Installation of distributed generators at suitable locations in a multi-feed
system is found in this paper using the actor-critic learning algorithm. Actor-
critic learning approach uses temporal difference error as a signal in making
judgements regarding actions to be taken for future states in accordance with
rewards that have been obtained by applying the present policy. The approach is
applied to a standard 16-bus distribution system for reduction of system losses,
and the results are discussed.
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1. INTRODUCTION
Distributed generation (DG) has been playing a vital role in the electric power system for the past

few years [1]. It has led to several benefits like environmental protection in case of renewable DG, deferment
of feeder upgradation under load growth, voltage profile enhancement, reduction in losses, and in reliability
enhancement of the system [2]. An extensive research has been made till now for single DG placement, and
relatively little work has been done in the case of multiple DG placement. DG placement using a fuzzy logic
approach has been done in [3]. Previous study [4], the optimal placement of DGs in a microgrid has been
performed. Probabilistic placement of DG has been performed in [5] considering uncertainties. DG planning
using the enhanced search group algorithm is done in [6]. DG planning using a Monte Carlo simulation has
been done in [7]. Distribution system planning to minimize the cost of operation, considering reliability aspects,
has been proposed in this work. A mixed integer linear programming (MILP) model for optimal placement of
DGs along with switches and tie-lines is proposed in [8].

An algorithm for the enhancement of network resilience has been introduced in [9]. An artificial hum-
mingbird algorithm for optimal placement of renewable sources is presented in [10]. Network reconfiguration
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of radial distribution systems for the enhancement of voltage has been discussed in [11]. An optimal placement
of DGs for the enhancement of reliability has been discussed in [12]. Optimal placement of DGs considering
the CIGRE benchmark has been explained in [13]. Optimal placement of DG considering network recon-
figuration for reliability improvement is discussed in [14]. Optimal placement of a wind farm for reliability
enhancement is shown in [15]. Optimal placement of DG for stability improvement is discussed in [16].

Optimal placement of tie-lines and DGs to minimize post-outage operations is discussed [17]. Opti-
mal placement of renewable sources in a microgrid is discussed in [18]. The result in [19], a method to improve
distribution system reliability, has been discussed using the distributed generators available in the system. A
multi-objective planning of DGs and renewables in a microgrid is proposed in [20]. A mixed integer linear
programming (MILP) technique for optimal placement of charging stations is proposed in [21]. Dynamic net-
work reconfiguration in coordination with switchable capacitor banks has been discussed in [22]. Simultaneous
placement of shunt capacitors and DG units has been proposed in [23]. Harris Hawks’ optimization for optimal
placement of DGs is discussed in [24]. Renewable DG integration to grid has been discussed in [25]. DG place-
ment considering a large scale disturbance is discussed in [26]. Optimal sizing and placement of renewables
using metaheuristic technique has been discussed in [27].

Most of the work available in the literature is on single DG placement, and mostly heuristic techniques
have been used. Novelty in this paper is multiple DG placement in a multi-feed system and solving the problem
using a novel approach called actor-critic (AC) learning algorithm. AC is an extension to the reinforcement
learning (RL) algorithm, which is based on the Markov decision process (MDP) [28]. RL can be expected
to give gratifying results in the case of a complex problem having a large number of states. The remaining
content of the paper is divided into the following sections: i) Section 2 brief about the proposed methodology;
ii) Section 3 deals with problem formulation; iii) Section 4 describes the solution methodology; iv) Section 5
followed by a discussion on the results; v) Section 6 gives the conclusion of the work.

2. REINFORCEMENT LEARNING
Reinforcement learning (RL) is a goal-directed method that tackles a problematic situation through

interaction. It basically consists of an agent and an environment. The learner and decision maker is known as
the agent, and everything outside it is known as the environment. RL maps the situations to actions to enhance
the reward signal. During the learning process, the agent gets information about the present environment’s
state, st ∈ S at time step ‘t’. On the basis of this state agent decides the action, at ∈ A(st) to be taken and
receives a reward, rt+1 one time step later and enters into a new state st+1. This is shown in Figure 1.

Figure 1. Architecture of reinforcement learning

This process of the agent deciding the action to be taken, the environment reciprocating to these
actions and presenting new rewards and states takes place for each time step and during each time step, the
agent does mapping between the present state and the probability of deciding each possible action when the
agent is in this state. This mapping is known as Agent’s Policy, represented as π(st, at). Agent, based on the
experience changes its policy. The objective of the RL agent is to maximize the sum of rewards over the long
run. These reinforcement learning algorithms use the value function, V π(s), to estimate “how good it is for the
agent to take a particular action for a present state”. V π(s) represents the expected value of return when the
system begins in state s and then follows a policy π. Mathematically, this can be represented as (1).

V π(s) = Eπ{Rt|st = s} = Eπ{
∞∑
j=0

γkrt+j+1|st = s} (1)

Int J Appl Power Eng, Vol. 14, No. 2, June 2025: 319–327



Int J Appl Power Eng ISSN: 2252-8792 ❒ 321

Where, V π(s) is the value function of a policy π, Eπ is the expected value for a given policy, γ is the discount
factor, and rt+j+1 is the reward gained when agent moves from state st+j to state st+j+1. Solving a problem
using reinforcement learning involves finding an optimal value function, which is expressed as (2).

V ∗(s) = max(V π(s)), ∀ s ∈ S (2)

Where, V ∗(s) is the optimal value function.

3. PROPOSED METHODOLOGY
The DG placement problem in this work is solved using the actor-critic (AC) learning method. AC

learning method is an extension to the reinforcement learning problem. AC learning embeds reinforcement
learning in it. In actor-critic architecture, the policy selects actions, hence, it is termed as an actor, and the
estimated value function is termed as the critic, as it criticizes the actions taken by the policy. Learning is done
in an on-policy manner, the critic must learn about and must criticize the policy that is presently followed by
the actor. The criticism made is in the form of temporal difference (TD) error, hence, this method comes under
temporal difference methods. TD error acts as a scalar signal for the output given by critic and helps in learning
process that takes place between actor and critic as shown in Figure 2.

Figure 2. Architecture of actor-critic learning

Mathematically TD error, δt is given as (3).

δt = rt+1 + γV (st+1)− V (st) (3)

Where, δt is temporal difference and rt+1 is the reward gained when agent moves from st to st+1 state. If TD
error is positive, the tendency to select an action at in future should be strengthened and if it is negative the
tendency to select an action at in future should be weakened. This is done by updating the tendency as (4).

p(st, at)← p(st, at) + βδt (4)

Where, p(st, at) is the tendency to select an action at in future when state is st and β is the step size parameter.
Policy is evaluated using Gibbs softmax method as (5).

πt(s, a) =
ep(s,a)

B∑
b=1

ep(s,b)

(5)

Where, πt(s, a) is the policy corresponding to state st and action at. The state values are updated as (6).
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V (st)← V (st) + αδt (6)

Where, α is the step size parameter.

4. PROBLEM FORMULATION
It is assumed that the distribution system and the DGs to be placed in the system are owned by the

same utility. This paper focuses on finding the suitable locations (DGloc) and sizes (DGsize) of DGs in each
feeder that reduce the total system real power loss (TPL). Mathematically, it can be expressed as (7).

Min{TPL(DGloc, DGsize)} (7)

Subject to below mentioned constraints.

4.1. Voltage constraints
Installation of DG, though reduces real power loss compared to the base case, sometimes it may

result in voltage violations at some buses. Hence, there is a need to put a constraint on the node voltages.
Substation buses are taken as reference, and voltages at these buses are maintained at 1 p.u. In accordance with
ANSI C84.1, voltages at remaining buses are constrained amid 0.95 p.u. and 1.05 p.u. [29], [30]. That can be
expressed as (8).

0.95 ≤ Vn ≤ 1.05 (8)

Where, Vn is the voltage at load bus n.

4.2. Real and reactive power balance
According to IEEE Std 1547-2003 [31], DG connected in the distribution system should operate at

unity power factor. Therefore, the real power consumed by load and losses in each feeder is fed from grid and
DG, connected to the respective feeder, whereas reactive power load and associated losses are supplied by the
grid alone. Hence, the power balance equations for real and reactive powers can be expressed as (9)-(10).

Pgridm
+ PDGm,n

= Ploadm
+ Plossm (9)

and Qgridm
= Qloadm

+Qlossm (10)

Where, Pgridm
is the real power supplied by the grid to feeder m, PDGm,n

is MW capacity of DG placed at
bus n in feeder m, Ploadm

is the real power load connected to feeder m, Plossm is the real power loss in feeder
m, Qgridm

is the reactive power supplied by the grid to feeder m, Qloadm
is the reactive power load connected

to feeder m, and Qlossm is reactive power loss in feeder m.

4.3. DG power constraints
DG solution resulted from the optimization algorithm should be a positive value and it should be a

less than a maximum value. Hence, this condition can be expressed as (11).

0 ≤ PDGm,n ≤ PDGmax (11)

Where, PDGmax
is the maximum limit of PDG.

5. SOLUTION METHODOLOGY
This paper discusses multiple DG placements in a multi-feed system. The objective is to place a DG

in each feeder at an optimal location with an optimal size that minimizes the total system losses. In case of a
multi-feed system, the situations, possible load in each feeder, and the actions to be taken, a combination of
DG locations and sizes of it in each feeder, will increase with the increase in the size of the system. In such
a situation, it would be better to use a technique that decides on the solution by mapping existing states with
possible actions. The reinforcement algorithm maps the states to actions and maximizes the values of a policy
that leads to maximum expected return. AC algorithm is an improvement to reinforcement learning, and since it
embeds the features of both dynamic programming and Monte-Carlo methods. This method has been adopted
to solve the problem of DG installation.
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5.1. Evaluation of states
A standard 16-bus distribution system with 3 feeders, shown in Figure 3, is used to apply the actor-

critic learning approach for minimization of total system real power losses. In this figure, solid lines encircled
with numbers 1-13 are sectionalizing branches, and the dashed lines encircled with numbers 14-16 are tie
branches of the system for the base case. Total power losses produced in the system for each possible DG
location and quantum represent states. Location set {b1, b2, b3} represents a state in this paper, where:

b1 = {n ∀ n = 4, 5, 6, 7} (12)

b2 = {n ∀ n = 8, 9, 10, 11, 12} (13)

b3 = {n ∀ n = 13, 14, 15, 16} (14)

Figure 3. Single line diagram of a 16-bus radial distribution system

5.2. Evaluation of actions
In this paper, DG-connected bus behaves like a PQ bus. The minimum value of DG capacity is taken

as 0 MW. 0 MW indicates a case of no DG placement. The maximum capacity of DG in each feeder is limited
to 30% of the load in the feeder to make proper utilization of the present substation sunk cost [32]. DG sizes are
chosen to be positive integers from a practical point of view. The Cartesian product of location set {b1, b2, b3}
and DG capacity set {c1, c2, c3} represents the possible actions in this paper. Real power load on feeder 1,
feeder 2, and feeder 3 are 8.5 MW, 15.1 MW, and 5.1 MW, respectively.

5.3. Evaluation of rewards
For each state-action pair, real power losses are evaluated for the best configuration of the system.

Reciprocal of total system real power losses is taken as a reward for a particular state-action pair.

rt+1 =
1

TPL
(15)

The mathematical procedure of agent making transition between different states, by taking actions according
to the policy (actor) and correction of these actions by value function (critic) is given in flowchart in Figure 4.
For the policies and values obtained using the actor-critic algorithm, the optimum value is obtained using (2).
State-action pair corresponding to this optimal value, known as optimal policy, π∗ gives the DG solution for
each feeder.
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Figure 4. Flowchart for actor-critic learning method

6. RESULTS
The information obtained for DG solution in each feeder using AC approach is shown in Table 1. The

voltage profiles at various buses before and after the placement of DG is shown as a plot in Figure 5. Voltages at
substation buses are maintained at 1 p.u. Apart from the substation buses, there is a significant improvement in
voltages at other buses. Real power loss in the system and minimum node voltage in the system, with and with-
out DG, are shown in Table 2. Percentage reduction in losses compared to the base case without DG is found
to be 48.35% and the minimum node voltage has improved from 0.9568 p.u. to 0.9710 p.u. after placement
of DG.
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Table 1. Optimum location and size of DGs
Feeder no. Optimum location Optimum size (MW)

1 7 3
2 12 5
3 16 2

Table 2. Total real power loss and minimum node voltage
Case Total real power loss in MW Minimum node voltage (p.u.)

Without DG 0.5995 0.9568
With DG 0.3097 0.9710

Figure 5. Voltages at various buses with and with out DGs in a 16-bus distribution system

7. CONCLUSION
In case of a multi-feed system, the problem of multiple DG placement comes out with several combi-

nations of DG locations and sizes. Reinforcement learning and actor-critic learning algorithms have a feature of
mapping situations with possible actions. These algorithms find a potential application in case of complex and
uncertain situations. Actor-critic learning algorithm embeds the features of reinforcement learning, dynamic
programming, and Monte-Carlo approaches. Hence the problem of optimal placement of DGs in a multi-feed
system is solved in this paper using actor-critic learning algorithm. In actor-critic learning algorithm, actions
taken by the policy (actor) are corrected by the value function (critic). The approach is applied to a standard 16-
bus radial distribution system for minimization of system real power losses. The results obtained are discussed
for both the cases of with and without DG.
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