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 Dynamic wireless charging of electric vehicles (EVs) has become popular in 

intelligent transportation systems (ITS). However, both economic and smart 

city perspectives should be taken into account in the integration of wireless 

charging infrastructure for electric vehicles. Current research mainly focuses 

on power transfer (PT) or autonomous vehicle-to-grid (V2G) transfer. This 

paper presents a multilayered approach that combines optimal PT planning 

based on urban traffic and energy efficiency data with dynamic V2G 

planning. Simulation results show that the efficiency of PT placement and 

V2G scheduling increases and provides good results for smart city 

enterprises. This multilayered approach not only optimizes the efficiency of 

power transfer placement and V2G scheduling but also positions itself as a 

pivotal driver for the sustainable evolution of urban mobility. As dynamic 

wireless charging continues to shape the future of intelligent transportation 

systems, this research stands at the intersection of technological innovation, 

economic prudence, and urban planning, offering a blueprint for the 

seamless integration of EVs into the fabric of smart cities. 
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1. INTRODUCTION  

Wireless charging systems of electric vehicle (EV) have become important in smart cities because 

they integrate with internet of things (IoT) devices and enable energy management. These systems are 

designed to provide urban EV users with convenient and flexible electric services beyond the limits of 

traditional payment methods. Wireless power transfer (WPT) technology enables wireless charging of the 

electric vehicle from a remote location, which can be divided into a fixed system or power [1]. Wireless 

charging involves using permanent connections to transmit power to the EV’s charging station. However, the 

downside is that EVs need to be parked for a long time to complete the charging process. Dynamic wireless 

charging systems offer great opportunities by allowing electric vehicles to be charged while driving. These 

systems utilize charging tracks embedded in traffic highways to facilitate power transfer while EVs are on the 

move. Various studies [2], [3] have proposed models for dynamic wireless charging, analyzing hardware 

efficiency and optimizing charging protocols during slow-moving traffic. The placement of power transfer 

(PT) devices in a smart city's traffic network is a crucial aspect that requires technical and economic 

considerations. Researchers have explored optimal locations for dynamic charging centers, addressing 

deployment costs and charging delays. Additionally, the interaction between EVs and the smart grid (SG) 

system plays a vital role in managing the city's energy needs. EVs, with vehicle-to-grid (V2G) technology, 

can contribute auxiliary services to the SG, including returning energy and providing supplementary services. 

https://creativecommons.org/licenses/by-sa/4.0/
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This study aims to bridge research gaps by proposing an integrated dynamic wireless charging system of 

EVs, considering facility locations and operations. The multi-layer system contributes to the development of 

the electricity payment system in smart cities by solving the energy transmission [4] and V2G problems of 

different electricity groups in the city [5]. 

The flowchart of a proposed system of a network is depicted in Figure 1. The street network of a 

clever metropolis [6], EVs [7], PTs [8], and device evaluate [9] are the four key components of the multistage 

framework, which are provided on this segment. The subsequent illustrations show every element's specific. 

A city street is modeled as a graph G (V, E), where nodes (V) represent intersections and edges (E) represent 

roads [10]. The travel distance (dij) between nodes is determined using the Dijkstra method for traffic routing. 

There are wired and wireless charging stations throughout the city [11]. While there are wired charging 

stations with physical chargers in the parking lot, the wireless system includes dynamic charging pads in the 

parking lot and permanent electrical equipment along the road. This work focuses on the design of a wireless 

charging system for EVs, considering the deployment of PTs in urban networks. 

EVs are mobile batteries, and they function as movable energy storage units in urban settings. These 

vehicles, equipped with quick start and rapid response capabilities, act as dynamic power storage devices. EV 

batteries can receive power management signals, allowing them to provide various auxiliary services in 

cities, including frequency regulation [12]. The system operator issues power management signals to 

coordinate subordinate EVs, optimizing their charging and discharging schedules through regular control 

signals. This contribution of EVs aids in maintaining SG stability, particularly in frequency control, where a 

group of EVs significantly enhances the grid's capacity [13]. Figure 2 presents a viable track option in the 

city of Bhubaneswar, Odisha, India. This track has a very high volume of traffic and is one of the most 

common roadways of communication in the city. Power transfer devices (PTs) are the power supply units for 

roadway powering systems. PTs operate on WPT technology, specifically near-field electromagnetic 

induction [14]. They fall into two main categories: magnetic induction and electrostatic induction, each 

tailored to different power levels and gap separations. Deployed on city road segments, PTs enable EVs to 

wirelessly charge and discharge using WPT technology [15]. The collection of PTs in a city is denoted as  

set K, with each road segment (i, j) containing an embedded PT. 
 

 

 
 

Figure 1. Flowchart of proposed system 
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In a smart city, the integration of intelligent transportation systems (ITS) and the SG forms a 

cohesive system. The SG manages EV charging, while ITS focuses on urban vehicle mobility [16]. Both 

systems coordinate EVs, combining mobility and charging operations through shared information. Consider a 

simplified, where an EV's itinerary involves strategic use of power transfer devices for joint movement and 

charging, optimizing battery usage. Creating a strategic plan for PT deployment based on transportation and 

EV conditions is critical for deployment [17]. The multi-stage strategy includes evaluation of energy demand 

and traffic data, followed by optimal PT placement (first stage) and dynamic V2G handover (second stage). 

EV users can choose between dynamic V2G transmission and normal travel, enabling reliable city planning. 

PT facilitates travel and payment planning in a multi-layered process as shown in Figure 1. 
 

 

 
 

Figure 2. A 3.68 km track for viable placement of track 
 

 

2. METHOD 

First, the complex synchronization of a power track (PT) placement schematic is highlighted, where 

sophisticated traffic data analytics are combined with cutting-edge geographic information system (GIS) 

technological capabilities [18]. With the use of GIS technologies to handle spatial data, this complex 

combination results in a careful examination of municipal traffic patterns. Finding the best places to 

strategically position PTs-essential parts of a dynamic wireless charging infrastructure is the result [19]. With 

the addition of real-time and historical traffic data analytics, the GIS tools allow for a more sophisticated 

knowledge of high-traffic regions and the best routes for EVs. As such, a strategic placement plan that aims 

to optimize accessibility and coverage for dynamic wireless charging infrastructure in urban environments is 

informed by this scientific methodology [20]. The EV wireless charging procedure is briefly shown in  

Figure 3, which also provides a clear visual representation of consumption and related operations.  

The picture provides a clear synopsis of the complex workings of the EV wireless charging system by using a 

variety of scenarios to illustrate the suggested system model informatics. 

The second point explores the complexities of the dynamic V2G scheduling schematic, an advanced 

framework that utilizes state-of-the-art communication protocols and SG technology. The effective 

bidirectional connection between EVs and the power grid is key to this schematic's operation. The spine of 

the SG is its infrastructure, which allows scheduling dynamics to be adjusted in real-time in response to 

changes in energy demand, the availability of renewable energy sources, and the stability of the power 

system [21]. Most importantly, communication protocols like MQTT and CoAP are used to set up dependable 

data exchange systems that make it easier for EVs and the power grid to integrate and coordinate [22].  

This point accentuates the scientific prowess inherent in the orchestration of SG technologies and 

communication protocols, creating a responsive and adaptable framework that optimally manages the 

bidirectional energy flow between EVs and the power grid in dynamic wireless charging systems. 

A Simulink model block diagram illustrating the WPT process is shown in Figure 4. In order to 

assess the model's performance, it is put through a rigorous investigation and testing process. This results in a 

detailed visualization of all the various parts that are involved in the wireless power transfer process. The 

graphical representation in Figure 5 illustrates the dynamic trends in voltage, current, and battery percentage 

over time, offering a comprehensive visual insight into the temporal variations of these crucial parameters. 

The battery percentage dips over time as the power is being used by the brushless DC (BLDC) motor of  
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the EV. The current and voltage stay constant over the same period of time showing the stability factor of this 

Simulink model. The time-dependent representation in Figure 6 visually displays the variations in speed and 

torque of the bladeless DC motor in the EV providing a clear and detailed overview of their dynamic 

behavior. The speed starting at zero has a negative response in initial stages, attains a peak constant after 

some time. The torque starts at zero attain a specific operational torque and at half operation touch a sudden 

peak for a moment and returns to its operational value. 

The third point describes the complex field of wireless charging technology, which is a key element 

of the architectural framework that maximizes the scheduling of V2G traffic and the placement of power 

tracks (PTs). This technology, which may be implemented via resonant or inductive approaches, is the 

primary means of facilitating the contactless transmission of electrical energy to EVs. Resonant wireless 

charging reduces energy losses during this transmission process by resonating at particular frequencies, 

whereas inductive wireless charging uses electromagnetic fields to transmit energy without physical  

touch [23], [24]. The goal of developing effective, contactless EV charging systems is central to this 

scientific discussion, since it guarantees the ease and adaptability that come with wireless charging. 
 

 

 
 

Figure 3. Flowchart for EV charging 
 

 

 
 

Figure 4. Block diagram of simulation of WPT power charging by Simulink 
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(a) (b) 

 
(c) 

 

Figure 5. Li-ion battery: (a) change in SOC, (b) change in current, and (c) change in voltage 
 
 

  
(a) (b) 

 

Figure 6. In BLDC motor: (a) change in speed and (b) change in torque 
 

 

The realm of optimization algorithms is explored in this point, which is an advanced aspect of the 

control of a dynamic wireless charging system [25]. This scientific endeavor constantly improves the 

system's performance by utilizing cutting-edge machine learning algorithms and optimization methodologies. 

These algorithms respond dynamically to changes in traffic patterns, energy consumption, and environmental 

circumstances by operating within the framework of adaptability [26], [27]. The integration of machine 

learning allows the system to learn from data and experiences, enabling it to autonomously optimize power 

track (PT) placement and V2G scheduling [28], [29]. This scientific method guarantees a system that adapts to 

the complex dynamics of urban surroundings on its own, which adds to sustainability and cost-effectiveness. 

The use of optimization algorithms is evidence of the scientific rigor that went into building a 

flexible and responsive infrastructure [30], [31]. By means of ongoing learning and improvement, these 

algorithms surpass traditional programming models, enabling a self-adjusting system that corresponds with 

the dynamic subtleties present in urban environments [32], [33]. Thus, this point summarizes a high-level 

scientific endeavor by highlighting the revolutionary potential of optimization and machine learning in the 

orchestration of dynamic wireless charging systems. 
 

 

3. RESULTS AND DISCUSSION 

In this section, it is explained the results of the research and at the same time is given  

the comprehensive discussion. Results can be presented in figures, graphs, tables, and other forms that make  

the reader understands easily. The discussion can be made in several sub-sections. A simple but 

representative model is offered by the simulation code for V2G scheduling and ideal placement for EV 

dynamic wireless charging. This simulation simulates a city setting by randomly generating EV and charging 

station sites within a 100×100 grid as shown in Figure 7. EVs have beginning battery levels ranging from 

30% to 70%, and charging is either planned or not. The charging state and rates are used to dynamically 
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update the battery levels. The costs per kWh related with charging demand are computed using EV states and 

rates. The simulation results are tabulated in Table 1. To simulate the spread of infrastructure, a new charging 

station is introduced at random in the simulation. The code does not specifically optimize the location of the 

wireless charging station, but it does make it easier to visualize the simulated scenario with line plots 

showing the EV states over time, battery level trajectories for individual EVs, and scatter plots for EV and 

station locations. 

The results of the Python simulation code for charging and discharging EVs were informative and 

provided insight into the dynamic energy interactions that occur inside the system. The cyclical nature of 

charging and discharging processes is effectively illustrated by the graphical representation in Figure 8, 

which also highlights the subtle energy transfer over time. The simulation accurately depicts how responsive 

the EVs are to the infrastructure for charging, with distinct peaks signifying spikes in demand and valleys 

signifying periods of discharge or reduced energy use. Informed decision-making about the management of 

energy resources is aided by this visual representation, which offers a thorough understanding of the 

interactions between the simulated EVs and the charging stations. The simulation also provides a way to 

assess the efficacy and efficiency of the infrastructure for charging by illustrating instances of possible 

overload or underutilization. To sum up, the simulation is an invaluable resource for researching the nuances 

of EV charging and discharging dynamics, enabling the development of robust and sustainable electric car 

energy systems optimization solutions. 
 
 

 
 

Figure 7. A city modeled graph for placement of charging location 
 

 

Table 1. Simulation results 
EV locations EV station locations EV states Battery levels Charging costs 

10.8017   49.5067 90.4355   33.6533 1 34.4667 0 

51.6997   70.6407 3.3179   18.7713 0 54.75 1.5 
14.3156   24.3573 53.2426   32.1927 0 44.4667 1.6 

55.9371   78.5070 71.6497   40.3857 1 40.3333 0 

0.4580    7.4090 17.9302   54.8566 1 42.2667 0 
76.6682   39.3883 72.5182   22.9886 0 37.3 0.6 

84.8709    0.3394 90.8102   55.2175 0 70 0 

91.6821   22.0677 23.1792   39.6290 0 71.3333 2 
98.6968    0.1301 95.4103   54.2813 0 65.1 0 

50.5133   18.9180 12.7037   23.2240 0 62.2667 0 

27.1422   14.2484 74.6148   15.4829 0 40.3333 2 
10.0751   26.8076 74.8509   54.3299 1 45.6333 0.7 

50.7849   17.4892 82.6450   57.3464 0 38.8667 0.8 

58.5609   13.8649 19.6205   30.3852 0 32.5 1 
76.2887   59.8886 65.1997    6.6160 1 44.5333 0 

8.2963   90.1058 72.6630    9.4489 1 60.3833 1.1 

66.1596   93.9380 27.9039   67.5375 0 56.5 0.9 
51.6979   22.1184 61.7851    7.0214 0 53.4 0.7 

17.1048   48.2671 51.5766   83.7841 1 50.2 1.1 

93.8558   37.6011 36.6833   73.9480 0 42.6667 0 
59.0483   52.3780 85.0679   55.8565 1 51.1667 0.7 

44.0635   26.4873 85.5772   67.0797 1 63.2 1.1 

94.1919    6.8357 86.1596   71.1735 1 62.1 0.6 
65.5914   43.6327 80.6467   60.1399 0 56.0333 0 

45.1946   17.3853 19.3202   61.6421 0 60.8333 0 

83.9697    2.6107 98.5246   60.8759 1 59.2667 1.4 
53.2624   95.4678 82.8096   50.7435 1 39.25 0 

55.3887   43.0597 40.2952   51.0040 0 52 0 

68.0066   96.1559 5.2224   68.3308 1 46.2 1.2 
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Figure 8 illustrates the electric vehicle (EV) charging and discharging status in the context of 

vehicle-to-grid (V2G) scheduling. The pie charts represent three different scenarios: Figure 8(a) represents 

EVs that are exclusively in driving mode (100% driving, 0% charging); Figure 8(b) represents a balanced 

state where 64% are charging and 36% are driving; and Figure 8(c) represents the majority of EVs that are 

charging (97%) while a small percentage (3%) are driving. These distributions are crucial for efficient  

V2G scheduling, ensuring optimal utilization of EV batteries for grid stabilization while considering user 

mobility demands. 

Analytical findings were obtained by simulating the hourly charging profile of EVs in a grid. The 

visual depiction in Figure 9 demonstrates how the requirement for charging varies throughout the day. Peak 

times and lulls in EV charging activity were clearly visible thanks to the excellent visualization of the whole 

hourly charging demand the capacity of the grid or the charging station was exceeded, warnings were 

produced properly, providing a proactive way to spot any operational issues. Overall, the simulation helps 

with informed decision-making in the design and optimization of electric car charging systems by capturing 

the complex dynamics of EV charging and acting as a useful tool for evaluating the reliability and 

effectiveness of the grid infrastructure. 

 

 

   
(a) (b) (c) 

 

Figure 8. Pictograph: (a) driving mode, (b) balanced state, and (c) EV charging discharging majority 

 

 

 
 

Figure 9. Hourly charging profile of EVs 
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4. CONCLUSION 

This study adds to the body of knowledge by providing a thorough and multi-layered framework for 

optimizing vehicle-to-grid (V2G) scheduling and placing power tracks (PTs) strategically in relation to 

dynamic wireless charging of EVs. Proposed method integrates economic concerns and smart city 

viewpoints, acknowledging the growing popularity of dynamic wireless charging in intelligent transportation 

systems (ITS) beyond traditional research bounds. The study deviates from the prevailing emphasis on 

discrete elements of autonomous V2G transfer or power transfer (PT). Rather, it takes a comprehensive 

strategy, fusing dynamic V2G planning with optimum PT planning based on urban traffic and energy 

efficiency data. The simulation findings provide significant gains in V2G scheduling and PT placement 

efficiency, demonstrating the efficacy of this multilayered technique. These results validate the possible 

advantages of our methodology for smart city firms' undertakings, in line with the overall objective of 

augmenting the sustainability and intelligence of urban transport systems. 
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