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 Manufacturing, aviation, and robotics have increased servo motor use due to 

their precision, reliability, and adaptability in various applications. This study 

compares three metaheuristic techniques for servo motor model parameter 

estimation with sensor measurement quantization, focusing on their accuracy 

and efficiency. Armature resistance, back electromotive force (EMF) 

constant, torque constant, coil inductance, friction coefficient, and rotor-load 

inertia are crucial to servo motor behavior prediction, significantly impacting 

overall system performance. Each approach was rigorously tested and 

analyzed to evaluate its effectiveness in predicting servo motor characteristics. 

The results revealed that particle swarm optimization and the firefly algorithm 

delivered comparable performance, particularly excelling in scenarios where 

sensor measurement quantization introduced noise or imprecision in the data. 

These methods demonstrated strong resilience and accuracy under such 

challenging conditions. In contrast, the genetic algorithm did not perform as 

well, falling short when compared to the other two techniques in handling 

noisy or imprecise data, indicating its relative inefficiency in such 

environments. These findings give servo motor designers and engineers across 

industries a powerful tool for performance prediction. 
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1. INTRODUCTION 

Robotics, computer numerical control (CNC) machining, printing presses, packing equipment [1], and 

aircraft thrust vector control systems use servo motors due to their precision. These motors provide precise 

torque, velocity, and angular position control, making them essential for many applications. Robot joints and 

limbs move precisely and intricately thanks to servo motors [2]. Their use allows robots to do complex tasks 

with exceptional accuracy, revolutionizing manufacturing and automation. CNC machines precisely regulate 

cutting tool movements with servo motors. This accuracy produces precisely machined components, vital in 

precision-intensive sectors. In printing and packaging, servo motors are crucial. This contribution ensures high-

quality, reliable products that meet these industries' strict requirements. Servo motors drive nozzles and 

surfaces in thrust vector control systems in aerospace. This precise control lets rockets change course, a crucial 

role in space travel [3]. 

Modern industrial control systems use servo motors extensively. Peak performance in these systems 

requires precise parameter estimates. System identification, outlined in [4], requires numerous phases to 

accurately simulate a system's behavior. This method involves careful experiment planning, execution, and 
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evaluation to create models for research projects [5] or adaptive control loops [6]. In physics and other fields, 

mathematical models are essential. Theoretical and experimental models are included. According to Isermann 

and Münchhof [7], experimental model system identification uses non-parametric and parametric models. 

Graphical representations of non-parametric models with ambiguous structures and unbounded parameters are 

common [8]. In contrast, parametric models [9] have well-defined structures and finite parameters, usually 

specified by transfer functions or differential equations. This research analyzes three population-based 

optimization algorithms to demonstrate how to determine model parameters for a simple DC motor while 

considering sensor quantization. Traditional gradient-based optimization techniques are vulnerable to local 

optima. They overcome traditional obstacles with heuristics and random search [10], [11]. Metaheuristics, on 

the other hand, are stochastic optimization algorithms that search the search space for the best solution without 

using gradients but rather heuristics and random search [12]. Fakhar et al. [13] explained metaheuristics are a 

good option. They are ideal for non-convex and multimodal optimization problems because stochastic 

optimization algorithms explore search spaces without gradients. 
 
 

2. PARAMETRIC MODEL IDENTIFICATION 

This paper quantizes continuous rotation data using the floor function and emulates the transfer 

function with an armature-controlled DC servo motor. A DC servo motor's behavior can be quantitatively 

expressed using differential equations [14]. Figure 1 shows how a DC servo motor works: a current passes through 

a coil, creating a magnetic field that interacts with a permanent magnet to rotate the shaft [15]. Creating electrical 

and mechanical equations independently and merging them describes electromechanical relationships [16]. 
 

 

 
 

Figure 1. DC motor circuit diagram 
 

 

The system's input is armature voltage, and its output is the measured shaft angle in degrees. Consider 

the inputs 𝑒𝑎(𝑡) and 𝑒𝑏(𝑡), and the output 𝑖𝑎(𝑡). Wrap KVL around the armature-mechanical dynamics: 
 

𝑒𝑎(𝑡) = 𝑅𝑎 × 𝑖𝑎(𝑡) + 𝐿 × (
𝑑𝑖𝑎(𝑡)

𝑑𝑡
) + 𝑒𝑏(𝑡) (1) 

 

𝑇(𝑡) = 𝐽𝑟 × (
𝑑𝜔𝑚(𝑡)

𝑑𝑡
) + 𝑓𝑣 × 𝜔𝑚(𝑡) (2) 

 

taking Laplace transform on (1) assuming initial conditions to be zero, then: 
 

𝐸𝑎(𝑠) = 𝐿𝑎. 𝐼𝑎(𝑠). 𝑠 + 𝑅𝑎. 𝐼𝑎(𝑠) + 𝐸𝑏(𝑠) (3) 
 

𝑖𝑎(𝑠) = [
1

𝐿𝑎.𝑠+𝑅𝑎
] . [𝐸𝑎(𝑠) − 𝐸𝑏(𝑠)] (4) 

 

taking Laplace transform on mechanical system dynamics on (2), then: 
 

𝑇(𝑠)    = [𝐽𝑟 ∙ 𝑠 + 𝑓𝑣] ∙ 𝛺𝑚(𝑠)  ⇒ 𝛺𝑚(𝑠) = [
1

𝐽𝑟∙𝑠+𝑓𝑣
] ∙ 𝑇(𝑠) (5) 

 

[
𝛺𝑚(𝑠)

𝐸𝑎(𝑠)
] = [

 𝐾𝑇 

𝐿𝑎∙𝐽𝑟∙𝑠2+(𝐿𝑎∙𝑓𝑣+𝑅𝑎∙𝐽𝑟).𝑠+(𝐾𝑇 ∙𝐾𝐸+𝑅𝑎∙𝐵𝑚 )
] (6) 

 

solving for 𝛩𝑚(𝑠) = [
1

𝑠
] ∙ 𝛺𝑚(𝑠) can be given as (7). 

 

[
𝛩𝑚(𝑠)

𝐸𝑎(𝑠)
] = [

 𝐾𝑇 

𝐿𝑎∙𝐽𝑚∙𝑠3+(𝐿𝑎∙𝑓𝑣+𝑅𝑎∙𝐽𝑚).𝑠2+(𝐾𝑇 ∙𝐾𝐸+𝑅𝑎∙𝐵𝑚 )∙𝑠
] (7) 

 

Figure 2 depicts a control system for an actual servo motor. Initially, an input signal undergoes 

modification through the transfer function of the servo motor, expressed as 1/La.s+Ra. Subsequently, the 
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system traverses several stages, including a torque constant Kt, a mechanical transfer function 1/(J.s+fo), and 

a floor operation, culminating in the “servo measured output.” A feedback loop integrates a back electromotive 

force constant Kb, contributing to the overall closed-loop control system. 
 

 

 
 

Figure 2. Actual or modeled block diagram of the DC-servo motor along with the rotary encoder 
 

 

3. MODEL VERIFICATION AND RESPONSE 

A system with an integrator will increase output over time with a step input. Since the integrator 

accumulates input, the output grows with time. The system has a pole at the origin, hence step input response 

is infinitely large [17], as seen in Figure 3. Thus, when given a step input, the system's output rises indefinitely. 

This unbounded growth is important to consider in integrator system design and analysis because it can affect 

real-world applications. This uses a 1 V step input. Figure 4 magnifies Figure 3 to show sensor quantization. 

The integral absolute error (IAE) cost function was used to evaluate optimization strategies in the 

paper to reduce computing complexity [18]. Heuristics are used to minimize IAE, the cost function in this 

study. La, Ra, Kt, Kb, J, and Fo are the DC-servo motor transfer function predicting parameters. Each set of six 

variables is a solution. 
 
 

  
 

Figure 3. Step response of the motor to 1 V armature voltage 
 

Figure 4. Magnified portion of Figure 3 
 
 

4. DETERMINATION AND IMPLEMENTATION OF THE ALGORITHMS 

4.1.  Genetic algorithm (GA) 

The genetic algorithm (GA) is an optimization technique based on natural selection and genetic 

evolution. In 1975, John Holland introduced genetic algorithms. They use genetic operations including selects, 

crossover, and mutation to iteratively evolve a population of candidate solutions to discover the best answer 

[19]. Figure 5(a) shows the basic steps of a genetic algorithm [20]. The algorithm generates a population of 

potential solutions. A set of random people representing different problem solutions is usually used. The 

population depends on the problem and computational resources. Fitness is used to assess each person's 

problem-solving ability. The fitness function, adapted to the individual situation, establishes the parameters for 

evaluating the solution’s quality [21], [22]. Applying the fitness function to each person gives a fitness score. 

Each population member's fitness score is calculated during evaluation. The genetic algorithm is extensively 

used in optimization problems such as finding the optimal solution to a mathematical equation, designing 

optimal engineering structures, and optimizing financial portfolios. 
 

4.2.  Particle swarm optimization (PSO) 

PSO is a population-based optimization method inspired by bird and fish behavior. Kenndy and 

Eberhart introduced PSO in 1995. PSO mimics the social behavior of a swarm of particles searching a multi-

dimensional space to solve optimization problems. The particles update their positions and velocities based on 
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their best position, the nest position found by any particle in the swarm, and their current position as they search 

the space. Figure 5(b) shows the PSO stages [22]. 
 

4.3.  Firefly algorithm (FA) 

The flashing patterns and attraction behavior seen in fireflies served as the inspiration for the FA, 

which Xin-She Yang first published in 2008 [23], [24]. The basic objective of this method is to identify the 

best solution by mimicking the flashing and attracting behavior of each firefly, which symbolizes a potential 

solution. It shows efficiency in dealing with issues where there are numerous local optima. The following steps 

are a part of the FA, which is depicted in Figure 5(c) [25], [26]. FA is a powerful optimization method used to 

solve complicated problems. FA is highly effective in solving a wide range of challenges that require 

optimization, such as optimizing engineering designs [27], [28]. One of the strengths of the FA is its capability 

to discover the global optimum solution in a search space with multi-modes [29]. 
 
 

 
  

(a) (b) (c) 

 

Figure 5. Flowchart for pseudo code to program (a) GA, (b) PSO, and (c) FA 
 

 

5. RESULTS AND ANALYSIS 

This research initialized all three optimization methods with 5 sets of solutions randomly distributed 

over the search space with lower and higher bounds of [0.0001 0.0001 0.0001 0.0001 0.0001] and [1.5 1.5 1.5 

1.5 1.5 1.5] for La, Ra, Kt, J, fo, and Kb. Three algorithms must minimize the IAE cost function. Simulink 

models are similar in all three techniques. After defining algorithm parameters, simulations began. Best-cost 

advancement across each cycle for the three optimization calculations was plotted. 

Figure 6 shows the cost-value evolution for genetic, PSO, and firefly algorithms. 

Figure 6(a) shows the cost-value evolution for GA and it has the worst best-cost and time performance. Figures 

6(b) and 6(c) show that PSO and firefly algorithms converge to similar solutions. GA has the worst best-cost 

and time performance. PSO exceeds others in best-cost evolution speed. As shown above, PSO reaches its 

lowest cost around the 270th iteration, whereas FA and GA lag behind. PSO is known for its fast convergence 

due to its efficient search space exploration and ability to approach the best solution. The FA may need more 

rounds to converge, especially for complex tasks. Genetic operators make the GA computationally complex 

and slow [30], [31]. The table compares techniques based on global best cost [32], DC-motor parameter values, 

and gain and phase margin from the three anticipated models' frequency response estimation. 

Figure 7 depicts bode plots of the actual system, PSO, GA, and FA. From Figure 7, it can be concluded 

that in spite of the fact that all four DC-servo motor models produced the same time domain response, they 

don’t appear to have the same frequency response. By comparing the gain margins and phase margins of the 

models, it is seen that they are stable in a closed loop in all the models. Table 1 gives a comparison of different 

calculations based on the best cost fetched, values of DC-motor parameters, and the frequency response gain 

margins of the three models along with the actual system. 
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(a) (b) 

 
(c) 

 

Figure 6. The cost-value evolution for (a) genetic, (b) PSO, and (c) firefly algorithms 
 

 

 
 

Figure 7. Bode plots of the actual system, PSO, GA, and FA 



                ISSN: 2252-8792 

Int J Appl Power Eng, Vol. 14, No. 1, March 2025: 101-108 

106 

Table 1. Simulation results 
Algorithm PSO GA Firefly algorithm Actual system 

Best-cost 4.7092 deg 42.8792 deg 4.7148 deg - 
La(H) 0.0001 0.0011 0.87116 0.02 

Ra(Ω) 0.0001 0.2554 1.4494 1.2 

Kt((N-m)/A) 0.0111 1.5 1.182 0.06 
J(N.m.s2/rad) 0.0221 0.0727 0.00026979 6.2 x 10-4 

fo(N.m.s/rad) 1.3621 0.1949 0.016418 0.0001 

Kb(V.s/rad) 0.0498 0.0289 0.041856 0.06 
Gain margin 11.8 dB 23.3 dB 11.8 dB 11.4 dB 

Phase margin 24 deg 29.2 deg 24 deg 23.7 deg 

 

 

6. CONCLUSION 

Effective optimization method firefly algorithm solves complex issues. A well-planned process with 

initialization: a swarm of fireflies represents search space solutions in the algorithm. Fireflies are randomly 

placed in this space and given fitness values reflecting optimization efficiency. This fitness value begins with 

the firefly position. Firefly fitness testing is essential. Dedicated fitness functions evaluate firefly solutions. 

How well the firefly's location fits problem goals is assessed by this function. A numerical score shows firefly's 

fitness and performance. Firefly beauty depends on luminosity and fitness. Shiny fireflies naturally pull their 

swarm mates harder. Fireflies attract each other via distance and brightness. Fireflies' brightness attracts people. 

The most gorgeous firefly attracts fireflies. Attraction rating, which considers brightness and inter-firefly 

distance, influences this movement. Fireflies naturally approach the most appealing ones. Fireflies can also 

brighten to attract swarms. Repeat fitness evaluation, attraction, and movement till halting. This iteration helps 

the algorithm find optimal solutions. The firefly algorithm optimizes complex problems utilizing these 

mimicked fireflies’ collective intelligence. 
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