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To foster the widespread adoption of solar power, especially that produced
by photovoltaic (PV) systems, we must move beyond the mere utilization of
renewable energy sources. Prioritizing cost-effective approaches through
innovative grid integration is essential. This strategic transformation
significantly contributes to the global expansion of electrical energy
production. One pioneering approach involves the implementation of
inverters operating at high frequencies to efficiently filter and eliminate
undesirable current harmonics, thus enhancing system performance. This
innovative technique relies on the generation of rapid complementary digital
pulse width modulation (PWM) signals, complete with built-in dead time, to
manage a half-bridge inverter with a single phase. The paper recommends
employing the IR2110 driver, an often-used component for MOSFET switch
management, to execute this strategy. The entire system is controlled by
high-frequency PWM signals, meticulously programmed for precision,
generated by a microcontroller driver board. With its adaptability to various
renewable energy conversion devices, this methodology extends its utility

beyond solar energy. Practical tests have confirmed the efficacy of this
strategy. Future research in this field should scrutinize the effect of PWM on
system stability and harmonic distortion, explore advanced modulation
methods, align PWM approaches with upcoming power electronics
technologies, and work towards improving system efficiency.
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1. INTRODUCTION

Global energy demand, projected to increase by 50% between 2018 and 2050, along with concerns
over the environmental impact of fossil fuel consumption, has hastened the transition to sustainable energy
sources such as solar, hydroelectric, and wind [1]. Fossil fuels, which continue to dominate the global energy
sector, are a major source of carbon dioxide (CO2) emissions, playing a critical role in accelerating climate
change and environmental degradation. In 2018, an estimated 89% of global CO2 emissions were attributed
to the combustion of fossil fuels and industrial activities, underscoring their significant impact on the planet's
ecological balance [2], [3].

The process of turning solar energy into electrical power is made possible by photovoltaic (PV)
technology. PV systems need inverters to convert solar-generated direct current (DC) into alternating current
(AC), which may be used effectively [4]. Beyond this essential conversion, inverters also play a role in
optimizing system performance, monitoring output levels, and ensuring compliance with safety standards.
PV systems have become a key element in the transition to clean energy. Over the past decade, global solar
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capacity has expanded significantly. In 2022, more than 200 GW of solar installations were added
worldwide, with total installed solar capacity increasing by 203 GW that year [5]. This growth is driven by
falling PV panel costs, technological advancements, and supportive policies [6].

To ensure the efficient use of solar energy, inverters play a crucial role in converting the DC
generated by PV panels into AC, which is suitable for use in homes and on the grid. Modern inverter
technologies achieve conversion efficiencies of up to 98%, significantly reducing energy losses during the
conversion process [7]. However, solar energy generation is inherently intermittent, and inverters must be
able to manage these fluctuations while maintaining a consistent AC output [8].

A key component in this transition is the inverter, an electronic device that transforms DC electricity
generated by renewable sources like solar panels and wind turbines into AC electricity, suitable for
households, businesses, and the power grid [9]. Inverters play a pivotal role in renewable energy systems,
ensuring the compatibility of electricity generated by these sources with the existing electrical infrastructure.
However, optimizing the efficiency, reliability, and cost-effectiveness of both renewable energy sources and
inverters is crucial to making them more accessible to a wider range of users. Many renewable energy
sources are intermittent, generating electricity at varying times, which presents challenges in ensuring a
stable and reliable power supply [10]. Inverters must be meticulously designed to efficiently handle these
varying input sources and provide a constant output of high-quality AC electricity [11], [12]. In essence, the
challenge of harnessing renewable energy and the role of inverters are intertwined, working in harmony to
establish a more sustainable and reliable energy system for the future. As technology advances and
innovations emerge, continued progress can be expected in the development of renewable energy and
inverter technologies. Inverters generate outputs that can be categorized into three distinct types according to
their waveform: square wave, modified sine wave, and pure sine wave. The various waveforms are depicted
in Figure 1. In terms of quality, pure sine wave inverters outperform other technologies, particularly with
respect to total harmonic distortion (THD). Pure sine wave inverters exhibit significantly lower distortion
levels, ensuring a higher quality of electrical power generation. Therefore, it is highly recommended to use
pure sine wave inverters for solar panel applications to optimize both the efficiency and the quality of the
electrical supply [13].

Among inverter control methods, pulse width modulation (PWM) is the most widely employed
technique. The main goal of these modulation methods is to closely approximate sine waves, thereby
improving the quality of the inverter output [14]. PWM, by shifting harmonics to frequencies at a higher
level, facilitates efficient filtering. There are various types of modulation techniques, with the most
recognizable ones including [15]: i) sinusoidal pulse width modulation, ii) modified pulse width modulation,
iii) random pulse width modulation, iv) space vector modulation, and v) delta modulation.

The organization of the paper is as follows: Section 1 discusses the significance of renewable energy
sources, with a particular focus on photovoltaic systems and the role of inverters. Section 2 discusses the
design of the proposed high-frequency inverter system and its components, including the control circuit and
power module. Section 3 details the characterization of the LC filter and the control methodology. Section 4
covers the simulation and experimental results, comparing the theoretical model with practical
implementation. Finally, section 5 summarizes the study and proposes directions for future research.

Voltage

Modified
Sinewave

Sinewave

Figure 1. Various waveforms of an inverter
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2. PROPOSED SYSTEM DESIGN AND CHARACTERIZATION

Figure 2 shows the schematic block diagram of the proposed system. It is made up of a control
circuit based on a microcontroller that generates SPWM pulses. The inverter circuit will then supply the
output. Finally, the sinusoidal signal was created by using an LC filter to reduce harmonics.

Photovoltaic panel Power converter Filter Transformer  Resistive load
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Figure 2. Schematic diagram of the entire circuit model

2.1. Power circuit module

The half-bridge configuration, fundamental to the implementation of the inverter, consists of two
switches, S1 and S2 [16]. These switches within the same arm are designed to function in a complementary
manner. This indicates that, as shown in Figure 3, one switch conducts electricity while the other
concurrently blocks it. This configuration generates an output voltage waveform, as illustrated in Figure 4,
which represents the inverter's output voltage.

Table 1 shows the switch combinations that are allowed for the inverter's half-bridge circuit. It also
lists the switch combinations that are not allowed because they could cause a short circuit in the power
supply. Table 1 has more information.
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Figure 3. The half-bridge topology circuit Figure 4. The voltage across the load

Table 1. Table of switch status [17]
S S, Output voltage amplitude Vsy
Off Off Voltage value of Vs, =0

Off On Voltage value of Vs, =V,
On Off Voltage value of Vs, =+Vi,
On  On  Theload is shorted

2.2. LC filter

To minimize THD, the filter design involves calculating the resonance frequency f, for each
switching frequency. A standard method is used to determine the inductance L and capacitance C values, as
defined by (1).

ﬂ _ Srvax ¥ Frpin 1 (1)

2 2nVLC
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Where f, . =10 f and f;.,, .. = 0,5 f5, . The output voltage frequency, denoted by fr,, is 50 Hz and f;,, is
the frequency of switching [18].

2.3. Control circuit module

Fully controllable semiconductor switches with the ability to turn on and off, such as BJT,
MOSFET, or IGBT, must be selected in order to finish the project. The microcontroller utilized is an AT-
Mega328, an 8-bit member of the AVR family [19]. The on and off states of the semiconductor switches T1
and T2 will be controlled by the microcontroller, which will be programmed to produce complementary
PWM signals named HO and LO [20].

2.4. Gate driver

The IR2110 is a high-speed, high-voltage MOSFET driver that features separate and complementary
output channels referenced to both the high-side (HO) and low-side (LO) of the circuit [21]. This
complementary configuration prevents cross-conduction between switching devices and enables reliable and
efficient control of power transistors, which explains the wide adoption of the IR2110 in power electronics
applications. The device can operate with high-side voltages up to 500 V, low-side voltages up to 20 V, and
supports logic inputs from 3.3 V to 15 V. Its output stages provide peak source and sink currents of up to 2 A,
while propagation delays are matched to approximately 200 ns, ensuring accurate and stable transistor
switching. Consequently, the IR2110 is particularly suitable for applications such as sinusoidal pulse width
modulation (SPWM) generation, where speed, robustness, and numerical specifications guarantee precise and
safe transistor operation.

3. THE PWM MODE FOR THE AVR PHASE AND FREQUENCY CORRECT

Digital pulse width modulation (DPWM) is an inverter control technique that employs a
microcontroller to generate command signals. This approach enables precise adjustment of the switching
frequency and pulse widths, thereby enhancing the quality of the generated power and effectively reducing
harmonic distortions. It is particularly suitable for applications requiring fine regulation of voltage and
frequency, such as solar inverters and power converters. The microcontroller implements a phase- and
frequency-correct PWM mode based on a dual-slope counter. In this mode, the counter increments from a
minimum value (BOTTOM) to a maximum value (TOP), and then decrements from TOP back to BOTTOM.
The PWM waveform is generated by toggling the output compare channels OCnA and OCnB according to
the values stored in the output compare registers (OCRnA and OCRnB). Each time the counter reaches the
value defined in one of the OCR registers, the corresponding output channel changes its state (HIGH or
LOW). In the inverted mode, the signal behaves oppositely, with the output compare channels switching with
reversed polarity relative to the standard mode. The timing of the signal can be precisely controlled by
adjusting the values in the compare registers, which determine the exact moments at which the channels
toggle. Figure 5 illustrates this process, showing how the output channels OCnA and OCnB change
states when the counter value matches the values in the compare registers, for both non-inverted and
inverted modes.

TQTn“ TNTa_mop  TCNTa-BOTTOM  TCNTn-OCRa
TOP
OCRoA or OCReB
o
P B0TTOM
SET CLR SET NON-Inverting Mode
&
— »
OCnA
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OCaB I i
CIR SET|  CIR
Inverting Mode
t
|-
Ll

Figure 5. Diagram of the PFCPWM mode
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This mode ensures a high degree of accuracy in the generated PWM signal, making it ideal for
applications such as motor control, signal modulation, and other systems requiring precise frequency and
duty cycle control. The following formula can be used to calculate the ICR1 (TOP) register's value in order to
produce a 10 kHz PWM signal using a timer with a 16 MHz clock and a pre-scaler (N) of 1:

TOP(ICR1) = —Jclock . T6MHZ____ g ©)

2XNX fpwm 2Xx1x 10Khz

where fiioc @ timer clock frequency (16 MHz), N: prescaler value, and f,,, : desired PWM frequency

(10 kHz). Since each pulse is produced at a carrier frequency of 10 kHz every 100 microseconds, the pulse
width needs to be modified at 100-microsecond intervals. The pulse width values for n, which range from 0
to 99, were computed using a spreadsheet.

Num = 800 X sin (2 X 180 x n/200) 3)

Normalizing the SPWM value to that is the next step, so:
SPWM [0] = 0 x 800 =Num [0] =0,
SPWM [1]=0.03125 x 800 = Num [1] = 25,
SPWM [2] = 0.0625 x 800 = Num [2] = 50.

The difference in values between OCR1A and OCRI1B creates two PWM signals with different
pulse widths. By selecting the inverse mode for OCR1B, the two signals become complementary, with a dead
time inserted between their transitions. This dead time ensures that neither signal is active simultaneously,
preventing short circuits and protecting the circuit. The operation is illustrated in Figure 6.

After being modified by the modulation index value and the additional dead time, the value in table
[Num)] is read and input into the OCR1X register in the ISR. The dead time pulse width of 500 nanoseconds
(t_ d=8x62.5nS =500 nS) is represented by the value of Ax = 8. At the moment, the modulation index is
fixed at a value of 0.7.
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Figure 6. Dead time observation timing diagram

4. THE SIMULATION AND EXPERIMENTAL RESULTS
4.1. Deadtime-developed bipolar PWM waveforms

Figure 7 illustrates how a control model with dead time is used in the MATLAB/Simulink
simulation of a single-phase half-bridge inverter using two MOSFETs. With a dead time of 500 ns, this
model produces two complementary signals [22]. According to the IEC standard, the goal is to visualize the
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output signals and lower the THD to less than 5% [23]. The single-phase bipolar half-bridge inverter model is
shown in Figure 8, where a PWM signal is produced by comparing a triangular carrier wave and a sinusoidal
modulation signal. Table 2 summarizes the key system parameters, including input voltage, switching
frequency, dead time, modulation index, and LC filter values used in this study.
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Figure 7. MATLAB Simulink simulation model of a control circuit with dead time
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Figure 8. The simulation model for a single-phase bipolar half-bridge inverter

Table 2. Parameters for the system and control

Parameter Symbol  Value
Voltage of DC Input Vin 10V
Switching frequency fsw 10 kHz
Dead time ty 500 ns
Modulation index m 0.7
Filter inductance L 10 mH
Filter capacitance C 330 uF
Load resistance Ry 10Q
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To successfully avoid the shoot-through issue in semiconductor devices, like power metal-oxide-
semiconductor field-effect transistors (MOSFETs), utilized in the motor's phase leg, a dead-time zone must
be implemented [24]; however, the nonlinearity associated with the dead-time effect can cause distortions in
voltage and current waveforms and generate high-order harmonics, significantly degrading motor
performance, particularly at low speeds and under light-load conditions [25].

Figure 9 illustrates the dead time required to ensure proper operation of the switches. By introducing
this interval, the SPWM waveform generator produces two complementary signals with dead time, allowing
the switches to be safely turned on or off without causing a short circuit, while Figure 10 shows the resulting
PWM output generated under these conditions, reflecting the influence of the implemented dead time on the
waveform.

The simulation results obtained from MATLAB/Simulink show that the single-phase inverter
produces an output voltage signal resembling that generated by the microcontrollers, with a voltage
amplitude of 10 V and a switching frequency of 10 kHz. Figure 11 presents the voltage waveform at the
inverter output before filtering, highlighting the inherent switching behavior of the PWM control. After
applying the LC filter, the resulting pure sine voltage is shown in Figure 12, which also confirms that the
maximum harmonic distortion of the nominal current remains within the 5% limit. For reference, the THD is
defined as (4) [26].

[sn_,any?
THD; = Y——— x 100

1

“

Where I, represents the current of the hhh-th harmonic and I; is the fundamental current.
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Figure 10. Complementary signal outputs
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Figure 11. Voltage of the inverter's output
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Figure 12. Pure sine voltage after LC filter

Figure 13 presents the output voltage waveform of the inverter before the application of the LC
filter, highlighting the high harmonic content and waveform distortion. The THD significantly decreases after
applying the LC filter, demonstrating its effectiveness in improving output signal quality. The fundamental
voltage increases from 7 V to 9.114 V, while the THD drops from 174.35% to 0.19%, as illustrated in
Figure 14. This reduction in THD indicates a cleaner output waveform, which closely resembles a pure sine
wave, essential for enhancing the performance of power electronic systems. Additionally, a high switching
frequency (fsw) of 10 kHz helps reduce the size of the filter components and enhances the system's
responsiveness and stability. These improvements are crucial for optimizing the efficiency of power
electronic systems, ensuring more efficient operation and better power quality.
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Figure 13. Bipolar inverter frequency analysis (absent a Figure 14. Bipolar inverter frequency analysis
filter circuit) (using a filter circuit)
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4.2. Result and discussion

As the initial step in the process, an ATmega328 board generates the control signals, which are
subsequently injected into the pilot circuit. Figure 15 depicts the experimental prototype used in the study,
while Figure 16 shows the practical circuit assembled on a protoboard and tested without an LC filter,
serving as the preliminary setup for the experiments. A dual-channel digital oscilloscope was employed to
observe the control signals, voltage waveforms, charging voltage, and condenser waveform.

Indeed, given that a switching device possesses a finite switching time, it is imperative to consider a
dead time in the trigger signals generated by the Pulse-Width Modulation (PWM) in order to prevent the
simultaneous triggering of two complementary switches within a single arm. Figure 17 presents the simulated
gate driver signals of the inverter, clearly showing the applied dead time between the complementary pulses.
Consequently, as evident in Figure 18, a 500 ns offset is observed as intended.

A clear correlation between the outcomes of the MATLAB simulation and their actual application
can be seen in the figures that are displayed. The single-phase inverter prototype's measured output voltage
waveform under a resistive load is shown in Figure 19, demonstrating the efficacy of the control strategy that
was used. The output voltage waveform of a single-phase inverter with a resistive load is displayed in
Figure 20. The waveform is a pure sine wave with a frequency of 50 Hz and a very low THD.

Microcontroller
Card
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Figure 17. The IR2110 driver produces complementary signals at a frequency of 10 kHz
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5.  CONCLUSION

The main objective of this study is to use a microcontroller to design a single-phase half-bridge
inverter system. The experimental results are consistent with the outcomes of MATLAB/SIMULINK
simulations. Thanks to the controller board, the inverter system is able to reach an output frequency of 50 Hz
while achieving a THD of the voltage of less than 4%. The control method for the inverter switches is based
on the sinusoidal pulse width modulation technique. However, the use of digital SPWM (DSPWM) via a
microcontroller offers significant advantages over traditional analog SPWM, including greater flexibility,
improved control accuracy, and reduced losses. The control circuit, developed using the AT-MEGA 328
microcontroller, also reduces the inverter's control hardware in terms of size, weight, and cost. Furthermore,
applying a microcontroller allows easy changes to frequency/amplitude modulation ratios, dead time, and
duty cycle through programming, without requiring any hardware modifications. The proposed inverter
system is particularly well-suited for solar panel inverter applications in domestic settings. This version
highlights the benefits of digital SPWM over analog SPWM, emphasizing its flexibility and efficiency
improvements.
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