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 The primary intent of the present research was to design and execute an 

electrical load forecasting system using machine learning (ML) techniques. 

The implementation of an advanced predictive method, specifically an ML 

algorithm, helped in accurate load forecasting, which is crucial for efficient 

power grid management, and optimizing resource allocation. Electricity load 

fluctuates due to various complex factors, making traditional forecasting 

methods struggle. This is where ML shines. ML algorithms can learn from 

historical data, identifying intricate patterns and relationships that influence 

electricity demand. This allows them to make more accurate predictions than 

static models. In this work, regression learning models in ML are used with 

the MATLAB platform. Three years of real-time data from the Wavi 

substation in India are used. Considering day, date, hour of day, max and min 

temperature of the day, and voltage and current are taken as input parameters 

to test fourteen different models of assorted regression algorithms. The 

performance of these models is evaluated using commonly used metrics, root 

mean square error (RMSE), mean squared error (MSE), and mean absolute 

error (MAE), along with a few other parameters. The optimized trained model 

is then tested with real data to obtain the forecasted load. The correlation 

between the Actual load and forecasted load is found to be 0.999962. 

Keywords: 

Artificial neural network 

Electrical load forecasting 

Machine learning 

Regression learner 

Root mean square error 

Support vector machine 

Wide neural network 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Sushama D. Wankhade 

Department of Instrumentation Engineering, Bharati Vidyapeeth College of Engineering 

CBD Belapur, Navi Mumbai, Maharashtra 400614, India 

Email: sushamawankhade13@gmail.com 

 

 

1. INTRODUCTION 

Load forecasting is a crucial component of both the planning and operation of power systems. 

Accurate load prediction is crucial for determining the scheduling of power units, planning for capacity, 

improving the network, and managing demand from consumers [1]. Given the challenges associated with 

storing large amounts of electrical energy and the fluctuations in power demand, it is necessary to ensure that 

the power generation system is able to adapt to changes in load in real-time. Load forecasting is crucial in 

power infrastructure planning and grid operation. Precise load forecasting helps reduce the discrepancy 

between electricity supply and demand, thereby enhancing the stability of power systems. 

The precision of the forecasting models is crucial in managing the emerging energy generation and 

consumption. Artificial intelligence (AI)-based methods are being researched and used in a wide range of 

applications around the world because they are better at handling complex input-output relationships. Machine 

learning (ML) is revolutionizing electrical load forecasting, paving the way for a more efficient, reliable, and 

sustainable future for the power grid [2], [3]. Traditionally, predicting electricity demand relied on statistical 
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models and historical trends. However, the rise of ML has revolutionized the field, offering more accurate and 

flexible forecasting. 

Here's how ML is changing the game: 

- Capturing complexity: Electricity demand is influenced by a myriad of factors, like weather, time of day, 

holidays, and even social events. ML algorithms can unravel these complex relationships and create models 

that adapt to dynamic conditions [3]. 

- Increased accuracy: ML models have the ability to acquire knowledge from extensive datasets, which 

encompass historical load patterns, weather forecasts, and real-time grid information. This leads to more 

precise predictions, reducing the risk of energy shortages or overproduction [4]. 

- Enhanced scalability: ML models can handle large datasets efficiently, making them ideal for forecasting 

at different levels, from individual buildings to entire power grids. This flexibility empowers tailored 

solutions for diverse scenarios [4]. 

- Proactive planning: Accurate forecasts enable efficient resource allocation, optimizing power generation 

and distribution. This translates to cost savings, reduced emissions, and improved grid reliability. 

- Improved grid management: Predicting peak demand allows utilities to optimize generation and 

distribution, reducing costs and enhancing reliability. 

- Renewable energy integration: ML can help integrate the variable output of renewable sources like solar 

and wind into the grid, maximizing their contribution. 

- Demand-side management: Predicting peak demand allows utilities to optimize generation and distribution, 

reducing costs and enhancing reliability. By understanding future load, utilities can incentivize consumers 

to shift consumption patterns, smoothing demand peaks and reducing stress on the grid. 

A diverse set of ML tools is at play, like regression models, which include models like random forests 

and support vector machines (SVM). These models capture non-linear relationships between multiple input 

features (weather, time of day) and the electricity load. Deep learning techniques like long short-term memory 

(LSTM) networks excel at handling temporal data, effectively capturing day-to-day and seasonal patterns in 

electricity consumption. Hybrid approaches, combining different ML algorithms can leverage their strengths, 

boosting overall forecasting accuracy. 

Regression refers to a set of statistical methods used to analyze the relationship between a dependent 

variable and one or more independent variables. A regression model can determine if there is a relationship 

between changes in the dependent variable and changes in one or more of the explanatory variables. Regression 

methods are commonly employed in electrical load forecasting to predict future electricity usage  

accurately [5]. Various studies have highlighted the effectiveness of regression models in this domain. For 

instance, a study utilized linear regression equations to forecast electricity loads, achieving an average 

forecasting error of 3.86% for active power and 3.77% for apparent power [6]. Additionally, another research 

paper evaluated 24 regression model-based algorithms for half-hourly load forecasting, with Gaussian process 

regression models demonstrating the best performance [7]. Furthermore, a meta-regression analysis identified 

the LSTM approach and neural networks combined with other methods as effective forecasting techniques, 

emphasizing the importance of model selection in load forecasting [8]. These findings underscore the 

significance of regression methods in accurately predicting electrical loads, aiding in efficient energy 

management and resource allocation. Utilized artificial intelligence, neural network, ARIMA models, Bayesian 

models, and regression models for forecasting and proposed a solution to the problem of selecting three 

parameters for the support vector regression (SVR) model using a chaotic algorithm to enhance global 

optimization and prevent falling into local optimization [9], [10]. Gaussian process regression method is 

recommended for load prediction [11]. 

This paper focuses on regression learners for electrical load prediction using ML, utilizing real time 

hourly data from January 2019 and July, 2022 from the 33/11 kV substation at Wavi, India for analysis to 

compare 14 regression models like linear regression, SVM, and neural networks. The main contributions of 

the paper include: i) propose load forecasting approach for Wavi substation and ii) demonstrate probabilistic 

forecasting models. Regression models' performance is evaluated using root mean square error (RMSE), mean 

squared error (MSE), and mean absolute error (MAE) metrics. A conclusion is drawn by identifying intricate 

patterns and relationships affecting electricity demand for accurate predictions. The optimized model shows a 

high correlation between actual and forecasted load. 
 

 

2. METHODOLOGY 

The experimentation is done with regression learners using ML on MATLAB platform. Regression 

learner is a MATLAB tool that can be used to train different regression models with supervised ML. Initially, 

the real-time data is acquired from the substation, and, arranged on a daily basis for twenty-four hours. The 

features selected for data arrangement are date, day of the week, hour of the week, and maximum and minimum 
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temperature. Data is then tested for different models. In this experiment total of fourteen models are tested. 

After validating the scheme and parameter optimization of hyperparameters model performance is assessed 

again. In all fourteen models from five regression families Table 1 are tested here and the results obtained are 

tabulated as shown in Table 2. The optimized model is then tested for forecasting of the load. The different 

models used for regression are discussed below. The complete process flow of the work is as  

shown in Figure 1. 
 

 

 
 

Figure 1. Process flowchart for forecasting 
 

 

Table 1. Regression models used in the work 
Family of regression models Selected regression model 

Linear regression Linear regression model 

Regression trees Medium tree 
Coarse tree 

Fine tree 

Support vector machines Linear SVM 
Quadratic SVM  

Cubic SVM 

Medium Gaussian SVM 
Coarse Gaussian SVM 

Ensemble of trees Boosted trees 

Bagged trees 
Neural networks Narrow neural network 

Medium neural network 

Wide neural network 

 
 

2.1.  Linear regression model 

A linear regression model is a statistical model that elucidates the connection between a dependent 

variable and one or more independent variables. The dependent variable is alternatively referred to as the 

response variable. A linear model example is a verbal scenario that can be modelled using a linear equation or 

vice versa [12], [13]. Linear regression is employed to precisely ascertain the nature and magnitude of the 

relationship between a dependent variable and a set of independent variables. It facilitates the generation of 

models for the purpose of making predictions [14]. 

 

2.2.  SVM regression 

SVM regression, also known as SVR, is an ML algorithm utilized for regression analysis. Unlike 

traditional linear regression methods, this approach seeks to identify a hyperplane that optimally aligns with 

the data points in a continuous space, rather than fitting a line to the data points. SVMs can use different kernel 

functions to transform the data into a higher-dimensional space, allowing for non-linear decision  

boundaries [15]. The accuracy of the test results with the SVM method is better than the linear regression 



Int J Appl Power Eng ISSN: 2252-8792  

 

Powering the future of electrical load forecasting using a regression learner … (Sushama D. Wankhade) 

267 

method. The Kernel trick is the primary component of SVM that is renowned for its significance. A Kernel is 

a method for calculating the dot product of two vectors, x, and y, in a feature space that is often of very high 

dimensionality. This is why Kernel functions are occasionally referred to as "generalized dot products". The 

SVM method can perform a Kernel trick that can overcome the non-linear distribution of data [15], [16]. 
 

 

Table 2. Performance evaluation of different models 
Sr.no. Model name RMSE R-squared MSE MAE 

1 Linear 0.075141 0.99 0.0056462 0.050381 

2 Fine tree 0.073444 0.99 0.0053941 0.033671 

3 Medium tree 0.076972 0.99 0.0059247 0.035531 
4 Coarse tree 0.080925 0.99 0.0065489 0.039339 

5 Linear SVM 0.075689 0.99 0.0057289 0.053784 

6 Quadratic SVM  0.036556 1.00 0.0013363 0.030937 
7 Cubic SVM 0.043361 1.00 0.0018802 0.035833 

8 Medium Gaussian SVM 0.049747 0.99 0.0024747 0.035148 

9 Coarse Gaussian SVM 0.032607 1.00 0.0010632 0.023245 

10 Boosted trees 0.09199 0.98 0.0084621 0.070687 

11 Bagged trees 0.095252 0.98 0.009073 0.050177 

12 Narrow neural network 0.021983 1.00 0.00048326 0.0054259 
13 Medium neural network 0.017198 1.00 0.00029578 0.003339 

14 Wide neural network 0.012576 1.00 0.00015816 0.0027143 

 
 

2.3.  Ensemble of trees 

- Bagged tree model 

We can create a random forest by combining multiple decision trees via a technique called bagging. 

In this method multiple decision trees are trained on different subsets of training data, randomly sampled with 

replacement. Each tree undergoes independent training, and the final prediction is derived by averaging the 

predictions of all the trees [17]. A primary constraint of bagging trees is that it employs the complete feature 

space during the process of creating splits in the trees. If certain variables within the feature space are indicating 

specific predictions, there is a possibility of having a cluster of correlated trees, which ultimately leads to an 

increase in bias and a decrease in variance. 

- Boosted tree model 

The primary benefit of bagged trees lies in their reliance on multiple decision trees instead of a single 

one, enabling the utilization of the collective knowledge from numerous models. Decreases variability by 

taking the average of predictions made by models trained on distinct subsets of data. Efficient for models 

exhibiting significant variability. Boosting, mitigates bias by iteratively training models that specifically target 

the errors made by previous models. Suitable for models exhibiting significant bias [18], [19]. 

 

2.4.  Neural networks 

The network learns from input-output data pairs, adjusting its weights and biases to approximate the 

underlying relationship between the input variables and the target variable [20]. This enables neural networks 

to perform regression tasks, making them valuable in various predictive and forecasting applications wide 

neural networks are characterized by having a smaller number of hidden layers (typically 1-2), but a larger 

number of neurons per layer [21], [22]. Neural networks are an exciting and promising type of ML algorithm 

that can help us better understand and predict complex patterns and relationships. As the network receives more 

data, it adjusts its weights and biases to approximate the underlying association between the target variable and 

the input variables [23]. Neural networks can handle large datasets efficiently, making them suitable for 

applications with extensive historical load data [24]. This scalability ensures that models can be trained on 

comprehensive datasets, potentially leading to more accurate forecasts. This makes neural networks useful in 

various predictive and forecasting applications, as they can perform regression tasks. Wide neural networks 

have a smaller number of hidden layers (typically 1-2), but a larger number of neurons per layer [25], [26].  

A wide neural network model for regression typically involves a neural network architecture with a large 

number of neurons in its layers. The model can be described mathematically as follows: 

 

For input layer 

Let the input features be x=[x1, x2, …, xn] 

Suppose there are L hidden layers, each with a large number of neurons. 

The output layer produces the prediction 𝑦̂ 

Then in forward propagation, for first hidden layer l=1 

z(1) =W(1) x + b(1)  

a(1) = σ(z(1)) 
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For subsequent hidden layers (l=2, 3, …, L) 

z(l)= W(l)a(l−1)+b(l) 

For the output layer  

𝑦̂=W(L+1)a(L)+b(L+1) 

 

Here, W
(l) and b

(l) are the weight matrix and bias vector for the l-th layer, respectively, and σ is the activation 

function. 

 

 

3. MODEL EVALUATION 

In order to assess the suitability of a model, it is essential to have a performance metric that measures 

how well it fits the data. It is crucial to ascertain the adequacy of a regression model, which involves assessing 

whether the model accurately predicts the target variables within an acceptable level of accuracy. These metrics 

can be used for evaluation to measure the accuracy of a regression model. The following metrics are generally 

employed for model performance evaluation. 

- RMSE 

This is a frequently employed metric for evaluating the accuracy of predictions by measuring the 

Euclidean distance between predicted values and true values. It is frequently employed in supervised learning 

applications due to its reliance on accurate measurements for each predicted data point. RMSE can be 

represented as (1). 

 

𝑅𝑀𝑆𝐸 = √∑ ‖𝑦(𝑖)−𝑦(𝑖)̂‖
2𝑁

𝑖=1

𝑁
 (1) 

 

Where N represents the size of the dataset, 𝑦(𝑖) is the i-th measurement, and 𝑦(𝑖)̂  is its correlative prediction. 

Having a single numerical metric to assess a model's performance is highly advantageous in ML, whether it is 

for training, cross-validation, or post-deployment monitoring. RMSE is a highly prevalent metric for this 

purpose. This scoring rule is both comprehensible and consistent with prevalent statistical assumptions. 

- R2 

The coefficient of determination, also known as R2, is a metric used to examine the accuracy of a 

regression model. It measures the dispersion of the data points around the regression line that has been fitted. 

Higher R-squared values indicate a smaller discrepancy between the observed data and the fitted values for the 

same data set. It also depicts the proportion of the variability in the dependent variable that can be accounted 

for by a linear model. The (2) defines R2. 

 

𝑅2 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 (2) 

 

The output of this method varies between 0 and 1, with a value of 1 indicating a perfect fit of the regression 

line to the data. A value of 0.7 indicates that 70% of the data points are within the range of the regression line.  

- MAE 

In the domain of ML, absolute error denotes the magnitude of the disparity between the forecasted 

value of an observation and its actual value. The mean absolute error quantifies the average size of errors in a 

collection of forecasts, irrespective of their direction. It quantifies precision for variables that have a continuous 

range of values. Typically, a lower MAE specifies better predictive performance of the model. Nonetheless, 

the correlation between MAE values and the efficacy of a model is contingent upon the characteristics of the 

data. It is calculated using (3). 

 

𝑀𝐴𝐸 =
∑ |𝑌𝑡−𝑌𝑡̂|𝑛

𝑡=1

𝑛
 (3) 

 

Where, 𝑌𝑡 is the actual value and 𝑌𝑡̂ is the predicted value and n is the number of measurement point. 

- MSE 

MSE is the mean of the squared differences between the actual values and the predicted values 

obtained from the regression model. We are endeavoring to ascertain the disparity between the real value and 

the projected value, and then compute its square. The formula for the same is provided as (4). 

 

𝐸 =
1

2𝑛
∗  ∑ (𝑌𝑝𝑟𝑒𝑑 − 𝑌)

2𝑛
𝑖=1  (4) 
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Here, 𝐸 represents the model's error. The variable 𝑌𝑝𝑟𝑒𝑑  represents the model's output for the given data, while 

Y represents the expected output. 𝑛 denotes the quantity of data rows that we feed into the model. The purpose 

of squaring the error is to eliminate any negative values. MSE applies a higher penalty to the error compared 

to the MAE by squaring it. 

 

 

4. RESULTS AND DISCUSSION 

ML models are adaptive and continuously evolve by assimilating new sample data and experiences. 

Therefore, the models are capable of discerning the patterns within the data. Initially, fourteen models from 

five different families were trained. 

 

4.1.  Response plots 

Response plots for the selected fourteen models are plotted. Figure 2 shows the response plots of 

thirteen different models during the training of each model. It’s a dot graph between the response and record 

number. Where the response is plotted against the record numbers i.e. 21891 row entries. This includes the 

date, day hour of day voltage and current at that hour and maximum and minimum temperature at that hour. 

Blue dots represent actual response whereas yellow dots represent predicted response. Referring 

Figures 2(a)-2(n) we can see the responses overlapping and some of the responses are singular. This is visible 

in almost all the models in more or less quantity. In bagged tree and boosted tree model the overlapping is less, 

so different colored dots are remarkably distinguishable. In other models like linear, fine tree, medium tree and 

coarse tree models also some points are not overlapping, but the percentage is lesser that the bagged and 

boosted tree model. There is greater superimposition of points in neural network models. Wide neural network 

shows highest superimposition as compared to narrow and medium neural networks. 

 

 

 
(a) 

 
(b) 
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(e) 
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(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l)  

 

  

 

 (m) (n)  

 

Figure 2. Response plots of various models: (a) linear, (b) fine tree, (c) medium tree, (d) coarse tree, (e) linear 

SVM, (f) quadratic SVM, (g) cubic SVM, (h) medium Gaussian SVM, (i) coarse Gaussian SVM, (j) boosted 

trees, (k) bagged trees, (l) narrow neural network, (m) medium neural network, and (n) wide neural network 
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4.2.  Prediction versus actual plot 

Figures 3(a)-3(n) display the predicted values against the actual values to assess the performance of 

the model. The objective of this plot is to assess the predictive accuracy of the regression model across various 

response values. Typically, a well-constructed model exhibits data points that are distributed in a roughly 

symmetrical manner around the diagonal line. In an ideal regression model, the predicted response matches the 

true response, resulting in all data points aligning perfectly along a diagonal line. The error of the prediction 

for any point is determined by the vertical distance from the line to that point. An effective model exhibits 

minimal errors, resulting in predictions that are widely dispersed. Referring the Figures 3(a)-3(n), we can see 

that quadratic SVM shows the best desired spreading of the points. Whereas bagged tree model shows wider 

spread of the points along the diagonal. 

 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

 

  

 

 (m) (n)  

 

Figure 3. Predictions by various models narrow neural network: (a) linear, (b) fine tree, (c) medium tree, 

(d) coarse tree, (e) linear SVM, (f) quadratic SVM, (g) cubic SVM, (h) medium Gaussian SVM, 

(i) coarse Gaussian SVM, (j) boosted trees, (k) bagged trees, (l) narrow neural network, 

(m) medium neural network, and (n) wide neural network 
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4.3.  Residual plots 

Figures 4(a)-4(n) display residual plots for various models. A residual is a quantitative indicator of 

the vertical distance between a data point and the regression line. Essentially, it refers to the discrepancy 

between a projected value and the verified real value. Typically, a reliable model exhibits residuals that are 

distributed in a roughly symmetrical manner around zero. These plots indicate if the model has fully captured 

the predictive information of the data, resulting in the residuals being affected. A perfect residual plot should 

exhibit a concentrated cluster of data points in close proximity to the origin while displaying a sparse 

distribution of points further away from the origin. Additionally, the plot should demonstrate symmetry with 

respect to the origin. Every regression model inherently possesses a certain degree of error due to the 

impossibility of achieving 100% accurate predictions. Therefore, a regression model can be defined as: 

Response = Deterministic + Stochastic. 

A model or process is considered stochastic when it incorporates randomness, which means that it can 

generate varying outputs when provided with identical inputs. In deterministic models, the results are 

completely determined by the inputs to the model, meaning that if the same inputs are used, the outputs will be 

the same. Here, the regression model is employed to capture the deterministic component of the model. The 

equation model should ideally precisely capture the predictive information. The remaining residuals should be 

entirely stochastic, meaning they are completely random and unpredictable. In our results, the cubic SVM 

model shows a good residual plot. The performance of all the models trained are evaluated considering different 

parameters like RMSE, R2, MSE, MAE, prediction speed (observation/sec), and training time required in 

seconds, which are tabulated in Table 2. 
 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

 

  

 

 (m) (n)  
 

Figure 4. Residual plots for various models: (a) linear, (b) fine tree, (c) medium tree, (d) coarse tree, 

(e) linear SVM, (f) quadratic SVM, (g) cubic SVM, (h) medium Gaussian SVM, (i) coarse Gaussian SVM, 

(j) boosted trees, (k) bagged trees, (l) narrow neural network, (m) medium neural network, 

and (n) wide neural network 
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Table 2 shows that the wide neural network model has the lowest RMSE value of 0.012576 during 

validation, with the medium neural network model following closely behind. In both scenarios, the R-squared 

value is 1. The narrow neural network model has the lowest MSE value of 0.00015816 and a MAE value of 

0.0027143. Although this model can handle 35000 data points, it takes the longest training time of 1941.4 

seconds. The training time for the coarse tree and medium tree models is significantly short, only 2.158 seconds 

with a minimum leaf size of 36 and 2.2251 seconds with a minimum leaf size of 12. The quadratic SVM model 

demonstrates the top performance among SVM models, with RMSE of 0.036556, MSE of 0.0013363, and 

MAE of 0.030937. The duration of the training process is 41.118 seconds. After analyzing all the models, we 

discovered that wide neural networks produced the most superior results with minimal effort. After calculating 

RMSE and MSE values for all models, we concluded that the wide neural network produced the most optimal 

result with the lowest value. Values for RMSE and MSE. Once the model is selected, it can be tuned for 

optimized parameters. To avoid overfitting, five-fold cross-validation is performed in this work. The tuning 

parameters are number of fully connected layers, and the regularization strength (ʎ) value. The higher value of 

ʎ will result in underfitting of the plot and the lower value shows overfitting of the values. With three fully 

connected layers, the first layer size, is 100 with the second-and-third-layer size 10. With these parameter 

settings, the results obtained are shown in Table 3. 

 

 

Table 3. Performance of WNN after parameter tunning 
Parameter setting RMSE MSE MAE Prediction speed Training time sec 

No. of layers=3, ʎ=0  0.01066 0.00011363 0.003187 30000 2428.6 
No. of layers=3, ʎ=0.1 0.11393 0.012981 0.078003 31000 256.84 

 

 

5. CONCLUSION 

Electricity usage is influenced by a range of factors, including weather, time of day, holidays, and 

social events. ML algorithms can comprehend complex relationships and create adaptable models that respond 

to altering conditions. In this paper, an effective forecasting approach for the 33/11 kV substation at Wavi, 

Nasik, India. 14 regression models are evaluated based on different performance indices initially. Among the 

14 models studied, a wide neural network model is recommended based on RMSE, MSE, and MAE. Many 

researchers have explored various regression models for forecasting. But the performance of neural network 

models in regression remained unexplored many researchers have utilized SVM and GPR techniques.  

The current study evaluates the precision of SVM, decision trees, and neural networks. The results show that 

wide neural networks had the best performance, with a regression error of 0.01066, and an MSE of 0.00011363. 

The study investigates the effectiveness of neural network models using the regression method. This implies 

that wide neural networks have significant promise for precise electrical load forecasting. This implies that 

wide neural networks have significant promise for precise electrical load forecasting. As research advances, 

we expect to see the development of even more sophisticated ML models. Utilizing smart grids and  

renewable energy sources will enhance forecasting accuracy and drive towards a more resilient and eco-

friendly energy future. 

While neural networks offer significant advantages for tasks like electrical load forecasting, they also 

come with several challenges. These challenges can impact their performance, usability, and integration into 

real-world applications. Large and good quality data, high computational cost, are some of the challenges. 

Overcoming challenges like Model complexity, interpretability, and training time requires a combination of 

advanced techniques, robust infrastructure, and interdisciplinary expertise. Continuous research and 

development in neural network methodologies, along with improvements in data management and computational 

resources, are essential to mitigate these challenges and fully harness the potential of neural networks. 
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