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 The distribution system is seeing a dramatic shift as a result of the increasing 

use of distributed generators (DGs) and plug-in electric vehicles (PEVs), or 

plug-in hybrid electric cars. The research endeavors to optimize the 

allocation of photovoltaic (PV) based DGs within radial distribution systems 

(RDS) while accommodating the load demand stemming from PEVs. A 

weighted-sum based multiobjective (WMO) technique is employed in this 

study to optimize three fundamental technical metrics of the distribution 

network: achieving the best possible voltage stability index (VSI) while 

reducing real power loss and total voltage variation to a minimum. Initially, 

the study investigates the impact of both conventional and PEVs load 

demand, considering PEVs load demand on distribution system performance 

under three charging scenarios: a situation involving peak charging, scenario 

involving off-peak charging, and scene of random charging. Subsequently, 

PV units are strategically planned, taking into account the PEVs demand 

within the distribution system utilizing an innovative weighted 

multiobjective electric eel foraging optimization (WMOEEFO) algorithm, its 

effectuality is validated with weighted multiobjective differential 

evolutionary (WMODE) and weighted multiobjective grey wolf 

optimization (WMOGWO) algorithms on standard test system IEEE 33-bus. 
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1. INTRODUCTION  

The demand for electricity is significant and is on the rise across the world. According to recent 

reports [1], traditional energy sources still maintain a dominant share of 62% in the global energy mix. 

However, the finite nature of fossil fuel resources coupled with their detrimental environmental impacts, such 

as pollution and climate-altering emissions leading to ecological imbalance, render them increasingly 

untenable as primary energy sources. As a result, the rapid incorporation of renewable energy sources (RESs) 

into distribution networks has intensified the need of decarbonizing the electrical energy industry. Solar 

photovoltaic (PV) units and wind turbines are the most well-known and fully functional examples of RESs 

among the many technologies [2] that may generate electricity from low-carbon sources. Among these 

renewable energy sources, solar-powered RESs have exploded in popularity during the last 18 years, 

outpacing all others. A notable jump of 24% in the global energy mix was seen in 2022 alone for solar-based 

energy systems. 

Extensive literature documents the potential benefits of optimally allocating (sizing and siting) 

distributed generators (DGs) within the distribution system [3], including minimizing of energy loss [4], 

enhancement of the voltage profile [5], maximization of load ability [6], and augmentation of the voltage 
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stability limit [7]. However, the optimal allocation of DGs presents a large-scale, nonlinear, and multi-

objective optimization problem, often posing significant challenges in finding near-optimal solutions [8]. 

Consequently, nature-inspired metaheuristic algorithms have gained prominence as effective approaches for 

addressing this intricate optimization problem [9]. Electric vehicles (EVs) are becoming more common and 

are expected to play a big part in reducing carbon emissions from road travel, in addition to PV system 

integration [10]. Nonetheless, the inclusion of plug-in electric vehicle (PEV) charging loads remains largely 

unaddressed in the literature concerning DG allocation [11]. Various studies have incorporated different PEV 

charging profiles to evaluate the impact of PEV loads [12]. In [13], the application of a novel lightning search 

calculation is proposed to address the DG assignment issue. Nevertheless, the study [14] overlooks a crucial 

objective, namely, the voltage stability index (VSI), during DG allocation and confines its investigation to 

dispatchable DGs exclusively. In contrast, Sankar and Chatterjee [15] determine the placement and 

dimensions of DGs by use of the gorilla troops optimization technique. 

The literature review underscores the necessity of considering plug-in electric vehicles (PEVs) 

charging demand when allocating PV units within the context of contemporary research. In this vein, we 

employ the weighted multiobjective electric eel foraging optimization (EEFO) algorithm to solve the PV unit 

allocation problem. The EEFO algorithm as detailed by [16], emulates the foraging behavior of electric eels 

and has been rigorously tested and compared with various renowned algorithms. This study contributes to the 

existing state-of-the-art in the following aspects: 

- Incorporating PEVs charging demand in the allocation of PV units. Considering the stochastic modeling 

of the uncertain nature of PV generation. 

- Comprehensive assessment of PEVs demand comprising off-peak charging scenario (OPCS), peak 

charging scenario (PCS), and stochastic charging scenario (SCS) scenarios on the distribution network. 

Distributing PV units while keeping in mind a number of important objectives such as power loss, voltage 

deviation, and stability index. 

- Introducing a novel application of the weighted multiobjective electric eel foraging optimization 

(WMOEEFO) algorithm to address the complex PV allocation problem and comparing WMOEEFO with 

the weighted multiobjective grey wolf optimization (WMOGWO) [17] and weighted multiobjective 

differential evolutionary (WMODE) [18]. 

- Simulating numerous study scenarios to assess the impact of the number of PV units installed, and 

considering test cases to quantitatively evaluate the objectives in each scenario. 

The following is an overview of the paper: i) Section 2 describes the PV modeling; ii) The multiobjective 

problem formulation is made in section 3; iii) In section 4, the EEFO algorithm is described in great length; 

iv) Section 5 delves the results and discussions; and v) In section 6 the final conclusion is summarized. 

 

 

2. SOLAR PV UNCERTAINTY MODELLING 

A beta probability density function (PDF) was utilized to depict the arbitrary behaving of sun-based 

illumination [19]. Within a designated time frame t, the beta PDF 𝑓(𝑧) supported by historical data used for 

assessing the probability of solar irradiation is expressed as (1) [20]. 

 

𝑓(𝑧) = {
𝛤(𝑥+𝑦)

𝛤(𝑥)𝛤(𝑦)
𝑧(𝑎−1) , 0 ≤ 𝑧 ≤ 1, 𝑥 ≥ 0, 𝑦 ≥ 0

      0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 

Where 𝑧 signifies the solar irradiance, 𝑥 and 𝑦 define the parameters that delineate the configuration of the 

PDF. Potential values of the solar irradiance state (z) at any given hour may be expressed as (2) [21]. 

 

𝑃𝑧(𝐻) = ∫ 𝑓(𝑧). 𝑑𝑧
𝑧2

𝑧1
 (2) 

 

PV module output power may be expressed as (3). 

 

𝑃𝑝𝑣0(𝑧) = 𝑁𝑚 ∗ 𝐹𝐹𝑚 ∗ 𝑉𝑚 ∗ 𝐼𝑚 (3) 

 

Where 𝐹𝐹𝑀 is the fill factor of PV module, 𝑁𝑀 is no of modules, 𝑉𝑀 is the voltage of the PV module, and 𝐼𝑀 

is the current of the PV module. Under varying solar irradiance conditions, the specific performance 

characteristics of PV panels output power are calculated as (4) [22]. 

 

𝑃𝑝𝑣(𝑡) = 𝑃𝑧(𝐻) ∗ 𝑃𝑝𝑣0(𝑧) (4) 
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3. MULTIOBJECTIVE FUNCTION FORMULATION 

In this investigation, three pivotal boundaries of the distribution system have been meticulously 

examined to formulate the objective function. These parameters encompass energy loss (𝐸𝑙𝑜𝑠𝑠), total voltage 

deviation (TVD), and VSI. The objective function (OF) is calculated as (5) [15]. 
 

𝑂𝐹 = 𝛾1 ∗
(𝑓1)𝐷𝐺

(𝑓1)𝑊𝑖𝑡ℎ𝑜𝑢𝑡  𝐷𝐺
+ 𝛾2 ∗

(𝑓2)𝐷𝐺

(𝑓2)𝑊𝑖𝑡ℎ𝑜𝑢𝑡  𝐷𝐺
+ 𝛾3 ∗

1
(𝑓3)𝐷𝐺

(𝑓3)𝑊𝑖𝑡ℎ𝑜𝑢𝑡  𝐷𝐺

 (5) 

 

Where 𝛾1, 𝛾2, and 𝛾3 denote the preference weights given to the objectives following ∑ 𝛾𝑖
3
𝑖=1 = 1 and 𝛾𝑖 for a 

given objective is decided based on the preference given to that objective and 𝛾𝑖 ∈ [0,1]. (𝑓)𝐷𝐺 and 

(𝑓)𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝐷𝐺 denote the value of the parameter before and after the installation of the DG. Here 𝑂𝐹 is the 

overall objective function to be minimized. In this work, 𝛾1, 𝛾2, and 𝛾3 are assigned to 0.4, 0.3, and 0.3, 

respectively. The individual objectives are calculated as given in (6)-(9). 
 

𝑓1 = 𝐸𝑙𝑜𝑠𝑠 = ∑ ∑ 𝐼𝑡,𝑗
2 𝑅𝑗

𝑛𝑏𝑢𝑠−1
𝑗=1

24
𝑡=1  (6) 

 

𝑓2 = 𝑇𝑉𝐷 = ∑ ∑ (|1 − 𝑉𝑡,𝑚|)
2𝑛𝑏𝑢𝑠

𝑚=1
24
𝑡=1  (7) 

 

𝑓3 = 𝑉𝑆𝐼 =  ∑ min  (𝑆𝐼𝑡,𝑛)   𝑛 = 2…… 𝑛 𝑏𝑢𝑠24
𝑡=1  (8) 

 

𝑆𝐼𝑡,𝑛 = |𝑉𝑡,𝑚|
4
− 4[𝑃𝑡,𝑛𝑋𝑚𝑛 − 𝑄𝑡,𝑛𝑅𝑚𝑛]

2
−  4[𝑃𝑡,𝑛𝑅𝑚𝑛 + 𝑄𝑡,𝑛𝑋𝑚𝑛]|𝑉𝑡,𝑚|

2
 (9) 

 

Where 𝐼𝑡,𝑗, 𝑅𝑗, and 𝑛𝑏𝑢𝑠 respectively indicate the 𝑗th branch current, resistance of the branch 𝑗, and the total 

buses in the network. For a given bus 𝑚, 𝑉𝑡,𝑚, 𝑃𝑡,𝑛, 𝑋𝑚𝑛, 𝑄𝑡,𝑛, and 𝑅𝑚𝑛 represent the bus voltage, injected 

real power, the reactance of the line between m and n buses, the injected reactive power injected,  

and the resistance of the line between m and n buses. The objective function framed in (5) is bound to the 

below constraints: 
 

|𝑉𝑚𝑖𝑛| ≤ |𝑉𝑡,𝑚| ≤ |𝑉𝑚𝑎𝑥| (10) 
 

𝑃𝑡,𝑠𝑠 + 𝑃𝑡,𝐷𝐺 = 𝑃𝑡,𝐷 + 𝑃𝑡,𝑙𝑜𝑠𝑠 + 𝑃𝑡,𝑃𝐸𝑉  (11) 
 

𝑃 𝑚𝑖𝑛,𝐷𝐺  ≤  𝑃𝐷𝐺 ≤ 𝑃𝐷𝐺𝑚𝑎𝑥,𝐷𝐺 (12) 
 

Where 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 respectively define the minimum and maximum values of the bus voltage. 𝑃𝑡,𝑠𝑠, 𝑃𝑡,𝐷𝐺, 

𝑃𝑡,𝐷, 𝑃𝑡,𝑙𝑜𝑠𝑠, and 𝑃𝑡,𝑃𝐸𝑉 respectively denote substation power, power injected by the DG, power demand of the 

network, power losses in the network, and demand due to PEVs. 𝑃𝑚𝑖𝑛,𝐷𝐺  and 𝑃𝑚𝑎𝑥,𝐷𝐺 indicate the minimum 

and maximum sizes of the DG rating.  
 

 

4. ELECTRIC EEL FORAGING OPTIMIZATION ALGORITHM 

A metaheuristic approach based on natural processes, the EEFO [16] takes its cues from the foraging 

tactics used by electric eels. The algorithm aims to emulate the complex foraging behaviors displayed by 

electric eels within their ecological environment. Notably, electric eels demonstrate four key foraging 

behaviors: interaction, idling, resettlement, and hunting. In Figure 1, we can see the whole process flowchart. 
 

4.1.  Interaction 

This behavior, also termed churning, occurs among eels as they engage in hunting fish. Throughout 

this activity, eels exchange information by maneuvering randomly in various directions. In the framework of 

EEFO, each eel represents a potential solution, with the most optimal solution identified thus far serving as 

the target prey. The interacting phase can be modeled as (13) [16]. 
 

[
 
 
 
 
 { 

𝑣𝑖(𝑡 + 1) = 𝑥𝑗(𝑡) + 𝐶 × (𝑥̅(𝑡) − 𝑥𝑖(𝑡)) 𝑞1 > 0.5

𝑣𝑖(𝑡 + 1) = 𝑥𝑗(𝑡) + 𝐶 × (𝑥𝑟(𝑡) − 𝑥𝑖(𝑡)) 𝑞1 ≤ 0.5  
} 𝑓𝑖𝑡 (𝑥𝑗(𝑡)) < 𝑓𝑖𝑡(𝑥𝑖(𝑡))

{
𝑣𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶 × (𝑥̅(𝑡) − 𝑥𝑗(𝑡)) 𝑞2  > 0.5 

𝑣𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶 × (𝑥𝑟(𝑡) − 𝑥𝑗(𝑡)) 𝑞2 ≤ 0.5
} 𝑓𝑖𝑡 (𝑥𝑗(𝑡)) ≥ 𝑓𝑖𝑡(𝑥𝑖(𝑡))

]
 
 
 
 
 

 (13) 
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Where 𝑞1 and 𝑞2 represent random numbers between (0, 1), 𝑓𝑖𝑡 (𝑥𝑗(𝑡)), 𝑥𝑗(𝑡), and 𝑛 respectively represent 

candidate fitness, eel position, population size, and a random number between (0, 1). 
 

4.2.  Idling 

Idling characterizes the behavior of an eel as it rests within an idling zone distinct from the 

interaction zone. The idling zone is defined in EEFO by projecting an arbitrary eel position dimension onto 

the search region's diagonal and then normalizing it within the range of 0 to 1, which enhances exploring 

capabilities. The eels will modify their position for idling, which is modeled as (14) [16]. 
 

𝑣𝑖(𝑡 + 1) = 𝑅𝑖(𝑡 + 1) +  𝑛 × (𝑅𝑖(𝑡 +  1)𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑) × 𝑥𝑖(𝑡)); 𝑛~𝑁(0.1) (14) 
 
 

 
 

Figure 1. EEFO algorithm flowchart 
 

 

4.3.  Hunting 

During prey hunting, electric eels create an electric communication circle around the target. They 

encircle the prey and communicate with each other through organ electric discharges, thereby forming an 

electric circle that delineates the hunting zone. This hunting behavior in electric eels entails a curling 

movement, which is represented as (15) [16], where 𝜂 denote curling parameter. 
 

𝑣𝑖 (𝑡 + 1) = 𝐻𝑝𝑟𝑒𝑦(𝑡 + 1) + 𝜂 × (𝐻𝑝𝑟𝑒𝑦(𝑡 + 1) −  𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑) × 𝑥𝑖(𝑡)) (15) 
 

4.4.  Resettlement 

Resettlement is a migratory behavior observed in electric eels, wherein they transition from the 

idling zone to the hunting zone. The (16) delineate the resettlement trait in EEFO [13]. 
 

𝑣𝑖(𝑡 + 1) =  −𝑟1 × 𝑅𝑖(𝑡 + 1) + 𝑟2 × 𝐻𝑟(𝑡 + 1) − 𝐿 × (𝐻𝑟(𝑡 + 1) − 𝑥𝑖(𝑡)) (16) 
 

Where 𝐻𝑟  denotes any position within the hunting zone, 𝑟1 and 𝑟2 represent randomly selected values within 

the interval (0.1). 

 start
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5. RESULTS AND DISCUSSION 

Using the IEEE 33-bus radial distribution systems (RDS), a standard test system, this research 

validates the appropriate deployment of PV units in a distribution system that supports PEVs. Reference [23] 

is used to get data of bus and line information for the 33-bus test system. Figure 2 shows a 33-bus RDS with 

a base voltage of 12.66 KV and a base of 100 MVA; the peak values of real power demand of 3.715 MW, 

and reactive power demand are 2.300 MVAR. The test systems' hourly power needs for each bus are derived 

from the normal daily load pattern [24] shown in Figure 3. A PV unit with a maximum capacity of 3200 kW 

and a minimum capacity of 100 kW is considered [25]. A total of 100 iterations were taken into account for 

all algorithms in this research, with a population size of 200. The parameter-free optimization methods 

WMOGWO and WMOEEFO are used in WMODE with mutation rates and crossover rates set at 0.7. The 

optimal values are selected after each algorithm undergoes 30 separate runs. The MATLAB simulations were 

performed on a computer with 8 GB of RAM and an Intel(R) Core (TM) i5-7200U 2.50 GHz CPU. This 

research analyses the distribution system's performance in each of the following scenarios: 

- Scenario 0: without PV units and without PEVs load demand, only conventional load demand in RDS. 

- Scenario 1: without PV units and with PEVs, load demand and conventional load in RDS. 

- Scenario 2: optimal deployment of one PV unit in RDS hosting PEVs' load demand and conventional load. 

- Scenario 3: optimal deployment of two PV units in RDS hosting PEVs' load demand and conventional load. 

- Scenario 4: optimal deployment of three PV units in RDS hosting PEVs' load demand and conventional load. 

Scenario 0 involves a distribution system subjected to a load flow algorithm without PV units to get 

a high-level picture of the system's technical parameters. In scenario 1, the load flow algorithm is utilized to 

dissect the influence on system technical metrics caused by the addition of PEVs to the traditional load 

demand. For scenarios 2, 3, and 4, the best way to meet the load demand of PEVs is to use one, two, or three 

PV units in an RDS. This will reduce the network 𝐸𝑙𝑜𝑠𝑠, TVD, and improve the system VSI. 
 
 

 
 

 

Figure 2. IEEE 33-bus system single line diagram 

 

Figure 3. Load curve in p.u. 
 

 

The results produced by WMOEEFO for scenarios 2-4, are summarized in Table 1, are as follows.  

A total of 2677 kW of  𝑃𝑙𝑜𝑠𝑠, 1.6931 p.u. of TVD, and 0.757 p.u. of VSI were recorded in scenario 0 load 

flow results. Scenario 1 considers a 33-bus system with a total load of 288 PEVs, PEVs of 9 per bus as 

shown in Figure 2, to concentrate on the interest on the electric circulation framework brought about by 

PEVs. It is assumed that the state of charge (SOC) of PEVs is 50%, and all PEVs use 25 kWh batteries [15]. 

The daily charging of 288 PEVs requires a total of 3600 kW of electrical power, calculated as 288*25*0.5. 

Three different scenarios for charging PEVs are shown in Figure 4: PCS, OPCS, and SCS. This research 

considers that PEVs charge equally under PCS, OPCS, and SCS. Scenarios PCS, OPCS, and SCS are used to 

calculate the electric power needed to charge PEVs in a day. Scenario 2 involves the execution of the load 

flow algorithm. Figure 5 displays the hourly variation of substation power in scenarios 0 and 1, indicating 

that the system's load demand from PEVs causes an increase in substation power. Three technical measures 

have deteriorated subsequently: 𝑃𝑙𝑜𝑠𝑠 of system has deteriorated to 2913 kW, which accounts for an 8.1% 

improvement; TVD has deteriorated to 1.8581 p.u., and VSI has further aggravated to 0.745 p.u. In scenario 2,  

a single 3194 kW PV unit is optimally connected to the 7th bus, reducing the system's 𝑃𝑙𝑜𝑠𝑠 to 2106 kW  

(a 27.70% decrease), improving TVD to 1.0837 p.u., and maximizing VSI to 0.824 p.u. Scenario 3's efficient 

linking of two 932 kW and 1424 kW PV units at the 13th and 30th buses reduces the system's 𝑃𝑙𝑜𝑠𝑠 to 1845 kW, 

which is a 36.36% improvement; it also improves TVD to 1.0481 p.u. and maximizes VSI to 0.831 p.u. As a 

result of connecting three PV units at the 14th, 24th, and 30th buses, with a capacity of 844 kW, 992 kW, and 

1313 kW, respectively, in scenario 4, the system's 𝑃𝑙𝑜𝑠𝑠  is reduced to 1742 kW, accounting for 40.19%, the 
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TVD is enhanced to 1.0437 p.u, and the VSI is maximized to 0.842 p.u. Figure 6 shows the power production 

curves for the hourly PV units produced for scenario 4 of the 33-bus system. 

 

 

Table 1. Summary of outcomes generated by WMOEEFO for scenarios 0-4 of 33-bus system for 24 hours 
S.L. Technical metrics Scenario 0 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

1 PV loc’s/PV sizes (kW) - - 7/3194 13/0932 

30/1424 

14/0844 

24/0992 
30/1313 

2 Substation power (kVA) 78351 81813 53365 60201 53250 

3 Objective function (OF) - - 0.7356 0.6916 0.6733 

4 Real power loss (𝑃𝑙𝑜𝑠𝑠) in kW 2677 2913 2106 1845 1742 

5 Total voltage deviation (TVD) in p.u. 1.6931 1.8581 1.0837 1.0481 1.0437 

6 Voltage stability index (VSI) in p.u. 0.757 0.745 0.824 0.831 0.842 

7 % 𝑃𝑙𝑜𝑠𝑠 reduction - - 27.70 36.36 40.19 

 

 

  
 

Figure 4. Distribution of probabilities for the PEVs in 

PCS, OPCS, and SCS scenarios 

 

Figure 5. Hourly substation power of 33-bus 

system without and with PEVs 

 

 

 
 

Figure 6. PV unit output curves for scenario 4 of the 33-bus system 

 

 

In Figure 7, we can see the 33-bus system average voltage profile for scenarios 0–4. Figure 7 further 

demonstrates that, in scenario 1, the load demand of PEVs worsens the system voltage, while the optimal 

possible deployment of PV units further develops the voltage profile of the system. Figure 8 shows the hourly 

loss of the system for scenarios 0–4. In order to determine the WMOEEFO algorithm's effectiveness using 

the WMODE and WMOGWO algorithms to run in scenarios involving the fourth scenario of the 33-bus test 

system. The summary of outcomes by comparing different methods is illustrated in Table 2. Figure 9 also 

shows how the WMOEEFO, WMODE, and WMOGWO algorithms converge for the test system of scenario 4. 

The WMOEEFO algorithm outperforms WMODE and WMOGWO in achieving optimal results. 
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Figure 7. 33-bus system mean voltage profile for scenarios 0–4 
 

 

 
 

Figure 8. Power loss in the 33-bus system for scenarios 0-4 on an hourly basis 
 
 

 
 

Figure 9. Convergence of WMOEEFO, WMODE, and WMOGWO algorithms for 33-bus system 
 

 

Table 2. Summary of outcomes generated by WMOEEFO, WMOGWO, and WMODE for scenario 4 of  

the 33-bus system 
S.No System Optimization technique PV loc’s/PV sizes (kW) OF value 𝑃𝑙𝑜𝑠𝑠 (kW) TVD (p.u.) VSI (p.u.) 

1 33-bus 
WMOEEFO 14/0844, 24/0992, 30/1313 0.6733 1742 1.0437 0.842 
WMOGWO 10/1074, 25/0649, 30/1209 0.6772 1758 1.0463 0.839 

WMODE 10/1272, 25/0667, 30/1010 0.6799 1788 1.0481 0.834 

 

 

6. CONCLUSION 

This research focused on optimizing the placement of PV units in an RDS that caters to the load 

demand of PEVs. An evaluation of the suggested approach was carried out utilizing the IEEE 33-bus RDS. 

The study aimed at optimizing three key technical metrics of the system: maximizing VSI, minimizing TVD, 

and minimizing 𝑃𝑙𝑜𝑠𝑠. In order to achieve these objectives, a weighted-based multiobjective approach was 
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developed and used the EEFO algorithm to minimize its corresponding function. The study was considered 

into two parts. The first part looked at how PEVs' load demand affected the operation of the distribution 

system. The second part showed how to best allocate PV units in the system to accommodate PEVs' load 

demand. Three different charging scenarios (PCS, OPCS, and SCS) were used to model the electrical power 

requirement of PEVs on an hourly basis. Research showed that the load demand from PEVs degraded the test 

system's performance. Maximal gains in all three technical parameters were achieved by strategically placing 

three PV units in the 33-bus distribution system. Real power loss in 33-bus system was reduced by 

approximately 40-42%. Nevertheless, the minimum voltage of the system did not improve due to the absence 

of PV unit power during peak load times. Further enhancements in loss reduction and minimum voltage were 

observed through dispatchable DGs, suggesting a potential future avenue for this research. Comparing 

optimization algorithms, the WMOEEFO algorithm demonstrated superior performance in achieving the 

optimal solution when contrasted with WMODE and WMOGWO. 
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