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 This project investigates the burgeoning potential of gearless wind turbine 

systems as a pivotal clean energy resource. Unlike conventional gearbox-

based turbines, which grapple with issues like frequent breakdowns, intricate 

repairs, and prolonged downtimes, gearless systems present a suite of 

advantages. Chief among these is heightened reliability, diminished 

maintenance costs, and augmented efficiency. By circumventing the need for 

a gearbox, gearless turbines shed weight, bolster reliability, and demand less 

upkeep. The incorporation of permanent magnet generators further elevates 

their efficiency and renders them well-suited for offshore deployment. The 

emergence of gearless wind turbines heralds a promising frontier for 

effectively and efficiently harnessing wind power. Their streamlined design 

and robust performance potential position them as a transformative force in 

the renewable energy landscape, poised to catalyze substantial advancements 

towards sustainable energy goals. As research delves deeper into their 

capabilities and optimization, gearless turbines are poised to emerge as a 

cornerstone technology in the global pursuit of clean energy solutions. 
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1. INTRODUCTION 

In recent years, the global capacity of installed wind turbines has expanded rapidly, reaching around 

300 GW by 2013 [1]. This significant increase underscores the wind turbine industry's progress, establishing 

wind energy as a competitive and mainstream renewable resource with a favorable cost per kWh compared to 

traditional fossil fuels. These advancements are largely attributed to innovations in electrical generators and 

power electronics. 

One major challenge with energy of renewables in its intermittent availability power generation is 

not always constant. To address this, various integration techniques have been developed, including the use 

of power electronic inverters. These inverters help manage both active as well as sustained grid voltage 

during faults and voltage sags, control frequency, and manage reactive power [2]-[4]. Several control 

schemes for wind turbines, whether they are linked to the grid or run autonomously, have been studied [5], [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In order to optimize wind power extraction, machine-side controllers often utilize field-oriented or vector 

control approaches, such as fuzzy logic, adaptive controllers, and hill-climbing control [7]. On the other 

hand, grid-side controllers are made to guarantee that the grid receives both active and reactive electricity in 

an efficient manner [8], [9]. By converting the three-phase system into a two-phase reference frame, 

theoretical frameworks like Akagi's instantaneous power (PQ) theory make the extraction of active and 

reactive power easier [10]. As an alternative, reference-frame conversions are avoided when analyzing 

current and voltage in their three-phase form using the conservative power theory (CPT) [11], [12]. 

The control framework for three-phase, four-wire systems is presented in this paper with the goal of 

improving the grid-side converter's performance in a wind turbine configuration [13]. The proposed method 

employs CPT to generate current references for targeted disturbance compensation, effectively handling both 

single-phase and three-phase loads, including balanced and unbalanced configurations. It also covers the use 

of four-leg converters or traditional three-leg converters with "split-capacitor" configurations to build three-

phase, four-wire inverters [14]-[16]. Four-leg converters use an extra switch leg for improved controllability, 

whereas three-leg converters link the AC neutral wire straight to the DC bus's middle [17]-[19]. The CPT 

framework aids in identifying and quantifying resistive, reactive, unbalanced, and nonlinear load 

characteristics under varying supply voltage conditions in a four-wire system. This paper builds on previous 

work presented at the 2015 IAS annual meeting [20]. 
 
 

2. METHOD 

2.1.  Gearless wind turbine with PMSG 

In this project, a dynamo motor serves as the key component of the wind turbine system, converting 

wind energy into electrical power. The process begins with the wind turbine strategically placed to capture 

maximum wind flow [21], [22]. As the wind turns the rotor of the dynamo motor, it generates alternating 

current (AC) electricity. This AC power is then routed through a voltage divider circuit, converting it into 

direct current (DC) suitable for battery storage. The stored DC power in the battery acts as a reliable energy 

reservoir, ensuring uninterrupted power availability even during periods of low wind. When electricity is 

required, the DC power is transformed back into AC using an inverter module, facilitating compatibility with 

standard appliances and devices [23]. The system's functionality is further enhanced by integrating Arduino 

technology, allowing real-time monitoring of wind speed and battery voltage. This data provides valuable 

insights into energy generation and storage, enabling optimization of system performance for maximum 

efficiency and longevity [24]. Through the seamless integration of dynamo motor-based wind turbines,  

DC-to-AC conversion, battery storage, and Arduino monitoring, this project presents a comprehensive 

approach to harnessing wind energy for sustainable power generation [25]. Figure 1 depicts a full-scale 

power converter and a variable-speed wind turbine. Figure 2 illustrates the gearless wind turbine's active and 

reactive power control methods using a permanent magnet synchronous generator (PMSG). 
 

 

 
 

Figure 1. Variable speed wind turbine with full-scale power conversion 
 

 

2.2.  Power control in wind turbine systems: active and reactive 

Doubly-fed induction generator (DFIG) wind turbine system operates at a variable speed, it makes 

use of its ability to regulate both active and reactive power, which lowers the cost of power electronics 

converters and minimizes power losses as compared to fixed-speed wind turbine generators. These cutting-

edge devices produce greater power quality and are more effective at capturing wind energy. Variable-speed 

wind turbines can adjust the turbine's output power, thereby reducing mechanical stress on components such 

as blades and towers. This results in improved power efficiency, extended system lifespan, and better power 

quality, making them a cost-effective option despite their higher initial investment [26], [27]. The integration 

of power electronics converters into wind energy systems enhances their control and grid connectivity. 

Emphasis is placed on power schemes that enable complete control using either partial-scale or full-scale 

power converters, active and reactive power under all operating situations [28]. Figures 3 and 4 illustrate the 

reactive and active power of the module, respectively. For example, a control method for full-scale converter-
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based wind turbines is depicted in Figure 5. Because of the DC-link, this technique has the advantage of 

control decoupling between the wind turbine and the grid. Moreover, the DC-link facilitates the integration of 

energy storage devices, allowing for more intelligent management of active power flow into the grid. 

Additionally, this characteristic strengthens the wind turbine system's capacity to sustain the electrical grid. 

Reactive power is handled by the grid-side converter in this configuration, whereas active power is managed 

by the generator-side converter [29]. A DC chopper is frequently employed to dissipate surplus turbine power 

in reaction to abrupt voltage dips in the grid, preventing DC-link overvoltage during grid breakdowns  

[30]-[32]. Five wind turbines in all, each rated at 2 MW (5 turbines × 2 MW = 10 MW), were used in this 

study, as Figure 6 illustrates. These turbines have a nominal operating power of 10/0.9 = 11.11 MVA.  

A Q-reference input parameter that is proportionate to the nominal power is used to control reactive power. 

Three wind speeds such as five, ten, and fifteen meters per second were examined, and the Q-reference 

values varied from 0.0 to 1.0 p.u. The type-4 wind turbine was chosen due to its adaptable design and mode 

of operation. Table 1 displays data on voltage versus time. 

 

 

 
 

Figure 2. Controlling both active besides reactive power in a gearless wind turbine using PMSG 

 

 

 
 

Figure 3. Reactive power of the module 

 

 

Table 1. Voltage vs time 
S.No Time (in sec) Voltage 

1 0 2900 
2 0.05 2500 

3 0.01 1650 
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Figure 4. Active power of the module 

 

 

 
 

Figure 5. Obtained voltage from the module 

 

 

 
 

Figure 6. Obtained current from the module 

 

 

The main issue with renewable energy is its intermittent availability. Power electronic inverters 

regulate active/reactive power, frequency, and grid voltage during utility integration. Various control 

algorithms have been developed for wind turbine systems, both freestanding and coupled to grid. Grid-side 

controllers transfer active and reactive power to the grid. Electrical power systems use many power theories 

to analyze current and voltage components, including the instantaneous power (PQ) theory for three-phase 

systems. Table 2 shows active and reactive power readings. The proper procedural steps and precautions for 

controlling both active besides reactive power in a gearless wind turbine using PMSG are as follows: 

- Connect the output of the dynamo motor to a voltage divider circuit. 

- Use the voltage divider circuit to convert the generated AC power into DC power. 

- Direct the DC power to a battery for storage. 

- Ensure the battery is connected and properly charged to store the generated DC power. 

- Connect an inverter module to the battery to convert the stored DC power back into AC. 

- Ensure the inverter module is capable of providing the required AC voltage and frequency. 

- Connect the output of the inverter module to various loads, such as bulbs or appliances, for power 

consumption. 

- Utilize appropriate sensors to measure wind speed and voltage levels. 
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- Interface Arduino with the wind turbine system to monitor wind speed and battery voltage. 

- Implement Arduino programming to display real-time data and provide feedback on energy generation 

and storage. 

- Continuously monitor wind turbine performance, battery charge status, and power consumption using 

Arduino. 

- Analyze data to optimize system efficiency and ensure reliable power supply. 

- Adjust system parameters as necessary to maximize energy generation and storage capacity. 

The DC voltage has a peak value of 2900 volts in 0 seconds, a constant value of 1650 volts in 0.01 

seconds, and is 2500 volts in 0.05 seconds. A wind turbine system's DC voltage varies according on wind 

speed. Wind velocity ranging from 4.0 to 5.0 m/s is required to rotate the blade or turbine. Wind turbine 

blades transform kinetic energy into mechanical energy. The mechanical energy produced depends on the 

pitch curve of the blade. The mechanical energy rotates the shaft. The shaft has two ends: one connected to 

the turbine and the other to the generator shaft. The generator shaft is simply an armature shaft. Rotating the 

shaft causes the linked generator shaft to revolve, producing electricity power. 

 

2.3.  Mathematical analysis 

Reactive power is managed through control strategies that adjust the output to maintain voltage 

stability and support the grid through the Q-reference input parameter, which scales with the nominal power. 

Three different wind speeds such as 5 m/s, 10 m/s, and 15 m/s were used to test the system. The values of  

Q-reference varied between 0.0 and 1.0 p.u. Table 2 shows a distinct trend: reactive power increases from 0.0 

to 11.11 Mvar as the Q-reference climbs from 0.0 to 1.0 p.u. Furthermore, as wind speed increases, so does 

the active power. The observed active power at a 5 m/s wind speed was 0.64 MW. It increased to 5.56 MW at 

10 m/s and 10 MW at 15 m/s for the active power. 

A total of wind turbines used  = 5 Acceptable power of the 

wind turbines generator 

= total rating/0.9 

Each rating = 2 MW = 10/9 => 11.11  

Total rating = 10 MW = 11.11 MVA  

 

 

Table 2. Readings of active as well as reactive power 
q-ref Active power (MW) Reactive power (Mvar) 

5 m/s 10 m/s 15 m/s 5 m/s 10 m/s 15 m/s 
 MW MW MW MW MW MW 

0.0 0.64 5.56 10 0.0 0.0 0.0 

0.1 0.64 5.56 10 1.11 1.11 1.11 

0.2 0.64 5.56 10 2.22 2.22 2.22 
0.3 0.64 5.56 10 3.33 3.33 3.33 

0.4 0.64 5.56 10 4.44 4.44 4.44 

0.5 0.64 5.56 10 5.55 5.55 5.55 
0.6 0.64 5.56 10 6.66 6.66 6.66 

0.7 0.64 5.56 10 7.77 7.77 7.77 

0.8 0.64 5.56 10 8.88 8.88 8.88 
0.9 0.64 5.56 10 9.99 9.99 9.99 

1 0.64 5.56 10 11.11 11.11 11.11 

 

 

3. RESULTS AND DISCUSSION 

Wind turbine designs offer a diverse array of technological options. Among these, some 

manufacturers prefer gearless or direct-drive wind turbines that eliminate the gearbox. This approach reduces 

the number of moving parts, addresses issues related to gear teeth and oil cooling systems, and minimizes 

potential fire hazards and environmental spill risks. This project represents a significant advancement in wind 

energy utilization by integrating dynamo motor-based wind turbines with DC-to-AC conversion, battery 

storage, and Arduino-based monitoring. By optimizing turbine placement for maximum wind capture and 

employing effective conversion and storage techniques, we offer a comprehensive solution for sustainable 

power generation. The integration of these technologies, coupled with real-time monitoring and optimization, 

enhances both the efficiency and longevity of the system. This project not only highlights the viability of 

wind energy as a renewable resource but also emphasizes the importance of innovation and collaboration in 

advancing clean energy solutions. Special thanks are due to my guide and faculty for their invaluable support 

throughout this project. Ongoing research and development in this field will continue to drive progress 

towards a greener and more sustainable future. Figures 3 and 4 illustrate the reactive and active power of the 

module, respectively, while Figures 5 and 6 display the module's output voltage and current. 
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4. CONCLUSION 

There are many different technology solutions available for wind turbine designs. Some 

manufacturers recommend gearless or direct-drive systems. In addition to having fewer moving parts and 

resolving frequent concerns like gear wear, oil cooling issues, potential fire dangers, and environmental 

spills, these direct-drive wind turbines also do away with the gearbox. Research points to the great efficiency 

of gearless wind turbine technology. MATLAB/Simulink has been used to validate a comprehensive 

simulation model of a gearless, variable-speed wind turbine system using a permanent magnet synchronous 

generator (PMSG). This model demonstrates how independent control of both active and reactive power is 

possible over a wide range of wind speeds with a gearless wind turbine system. As a result, the gearless wind 

turbine method seems to be feasible, offering consistent power production in a range of wind speeds. 
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