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 Power generation sector has become more prevalent in the use of renewable 

energy sources resulting in more complex and non-linear network. 

Microgrids are becoming the best alternative solution in remote areas where 

the distribution network is infeasible. However, the intermittent nature of 

distributed renewable energy resources can result in a generation and 

demand mismatch instigating frequency variation which is a crucial concern. 

Thus, modern power system requires increasing intelligence and flexibility 

to cope up with the generation-load mismatch. Efficient control techniques 

are of vital importance in maintaining the frequency near the nominal value, 

and the selection of the controller is crucial in maintaining the reliable, 

effective, and steady functioning of the power system. The present study 

demonstrates frequency control in islanded microgrid with disruptions in 

load demand using the model predictive control by efficiently managing the 

energy storage with integration of large-scale renewable energy sources. The 

effectiveness and superiority of the proposed model predictive controller 

(MPC) is presented by comparing its performance with proportional integral 

controller and proportional integral tuned with adaptive neuro fuzzy 

inference system (ANFIS) through simulations in MATLAB environment. 
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1. INTRODUCTION 

A microgrid is a small energy zone that can function in both islanded and grid-connected mode 

while integrating various distributed energy resources [1]. Distributed resources include controllable sources 

such as diesel generators, fuel cells, and batteries, as well as renewable sources like solar and wind energy 

systems. The microgrid encounters frequency and power fluctuations as a result of the variable and uncertain 

nature of renewable sources, as well as generation and load demand mismatch [2]. If a microgrid is 

connected to the grid, the associated electrical power system can provide loads. Otherwise, distributed 

generation must operate in an isolated mode while dealing with fluctuations in load and variable renewable 

energy sources, necessitating strict microgrid management to ensure frequency and voltage stability and 

maintain high-quality power delivery to clients. However, developing a dynamic power balance between 

generation and demand is challenging, as electrical power has become a deregulated entity. Consequently, 

the analysis and development of improved frequency controller units have become crucial in addressing the 

issue of power generation and consumption mismatches, which can lead to frequency fluctuations and 

negatively impact the efficiency and reliability of microgrid power flow [3]. 

From the perspective of primary regulation, frequency droop characteristics are commonly 

employed to manage system frequency [4]-[8]. However, in contrast to a vast interconnected system, the 

https://creativecommons.org/licenses/by-sa/4.0/
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system inertia of an isolated microgrid is significantly lower. Consequently, because of growing penetration 

of renewable energy resources, power generation may experience rapid fluctuations. However, energy 

storage systems are a likely solution that can counteract the adverse effects of reduced inertia. The reserve 

power in the energy storage devices helps to increase the microgrid inertia leading to greater load frequency 

stability [9]-[12]. Thus, to reasonably control greater surge currents, a high-power density storage device 

such as flywheel energy storage super capacitor energy storage can be used with battery energy storage 

devices. Moreover, the electrical vehicle when integrates as vehicle-to-grid (V2G), balances the energy flows 

[13] and provides frequency support to the grid [14]. In these circumstances, the standard control techniques 

may not be sufficiently cope as with the quick swings in output power from renewable energy sources, 

resulting in significant and frequent deviations from the nominal operating frequency point. Standard 

proportional-integral (PI) controllers are simple, user-friendly, and cost-effective. Nonetheless, their main 

drawbacks are poor dynamic response, limited accuracy, and extended settling time. Therefore, it is crucial to 

investigate and develop the improved frequency controller units in such situations. 

The choice of an effective controller is a critical factor in analyzing the load frequency control of 

large power system networks, especially with the integration of renewable and energy storage devices. 

Intelligent controllers utilizing optimization techniques such as metaheuristic approaches like particle swarm 

optimization (PSO) [15], [16], teaching learning [17], fuzzy logic controllers [18]-[20] metaheuristic 

approaches like grasshopper optimization were proposed for frequency control [21]. The frequency deviation 

of a standalone microgrid was mitigated with a deep learning-based method employing thermostatically 

controlled load management [22]. 

It has been suggested that linear quadratic regulators are the optimal controllers [23], [24]. However, 

their implementation requires knowledge of all system states throughout operation, which can be challenging 

in complex power networks due to the large number of variables that influence performance. Observer-based 

control is becoming more widely acknowledged as a remedy for this problem. An observer estimates the 

system's variables, and a well-liked state estimation algorithm, like the Kalman filter, can be used to estimate 

these variables efficiently [25]. Model predictive control (MPC) is a technique of optimal control that seeks 

to minimize an objective function for a constrained dynamical system over a finite, receding horizon. It is 

rapidly becoming a viable alternative for managing voltage regulation, frequency control, power flow, and 

optimizing economic operations. The impact of predictive control for two area system for a standalone 

microgrid is presented [26]. MPC is the intelligent controller suitable for the rapid response, robustness 

against load variations, and uncertainty in parameters [27]-[30]. 

The primary aim of this study is to examine the frequency response of a microgrid when subjected 

to sudden load perturbations. The key contribution of this study lies in: 

- Analysing the impact of energy storage devices on frequency regulation support in a microgrid, taking 

into account the stochastic behaviour of renewable energy sources. 

- Developing a frequency control system for damping frequency oscillations in low voltage microgrids 

using a MPC technique, while simultaneously estimating the states of parameters with a Kalman filter 

approach. The results of this study have been validated against traditional controllers. 

The remaining of this paper is organized as follows: section 1 represent introduction, section 2 presents 

modelling of microgrid, section 3 represents the controller design, section 4 shows the results and further 

leads to discussion, and finally the conclusion. 

 

 

2. MODEL DESCRIPTION 

The test system of the microgrid in the islanded mode considered in this study is presented in  

Figure 1. Numerous components of microgrid model such as diesel engine, battery energy storage, flywheel 

energy storage system, solar, and wind turbines are considered for this study [31]. The incremental power 

frequency dynamics of the microgrid which serves an area with change in load demand represented as ∆PL. 

The surplus power ∆Pm-∆PL is accounted for, by increasing the rate of rise of kinetic energy and increased 

load consumption which is expressed by (1) respectively. 

 

∆𝑃𝑚 − ∆𝑃𝐿 =
2𝐻𝑃

𝑓𝑜
 

𝑑 ∆𝑓

𝑑𝑡
+ 𝐷 ∆𝑓 (1) 

 

Where ∆Pm is the change in microgrid power which consist of sum of the powers of all the distributed 

energy sources and storage device connected to system; D is the damping constant which represents the ratio 

of percentage change in the load to that of percentage change in the frequency in per unit MW/Hz; and H 

represent the inertia constant of the rotating masses. The various distributed energy resources connected to 

the microgrid are represented by their respective transfer function [32], [33] as indicated in Figure 2. 
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Figure 1. Microgrid structure 
 

 

 
 

Figure 2. Block diagram of microgrid 
 
 

3. METHODS FOR FREQUENCY CONTROL 

The purpose of load frequency control is to maintain the frequency within acceptable limits while 

subjecting disturbance in load. The conventional techniques like droop control, tie line control is ineffective. 

An efficient controller is crucial for successful frequency regulation as its primary function is to reduce the 

error signal so that the frequency deviation becomes close to zero and the frequency of the system returns 

close to the nominal value in the specified time which is possible with the intelligent controllers such as MPC 

and proportional integral tuned with adaptive neuro fuzzy inference system (ANFIS). 

 

3.1.  PI controller 

The PI controller is a proportional integrals control in which the control signal is proportional to 

both the error signal and the integral. The mathematical representation for the proportional-integral controller 

is as (2). 
 

𝑢(𝑡) = 𝑘𝑝 + 𝑘𝑖 ∫ 𝑒(𝑡)𝑑𝑡  (2) 
 

The response of the PI is better as compared to the proportional and integral control used separately. 

Although its response is sluggish but it can be enhanced if it is tuned with neural networks, fuzzy networks, 

and even linearizing the model based on the trial and error method, Zeigler -Nicholas method, and particle 

swarm-based approach [32]. 

 

3.2.  PI tuned with ANFIS 

ANFIS offers the ability to combine the merits of neural network and fuzzy inference systems into a 

single framework. Adaptive neuro fuzzy inference system is based on the set of fuzzy if and then rule that 

modifies its structure in response to information or data presented during the learning phase, whether internal 

or external. The ANFIS was fed with the desired or target response. The discrepancy between the preferred 

response and the system output results in an error. The system is then updated with this error, and the 

parameters are logically changed until the system performance is deemed acceptable, this process is repeated. 

The ANFIS can be trained using different optimization methods [33]-[35]. 
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3.3.  Proposed model predictive controller 

The model predictive controller is a multivariable control system that simultaneously regulates the 

output by considering all interactions between system variables while simultaneously grappling with system 

constraints. This type of controller is particularly useful in situations in which a high level of precision and 

adaptability is required. By considering the relationships between all relevant variables, the model predictive 

controller is able to make more informed decisions and achieve more accurate results which are generally 

difficult to control using conventional techniques. There are several variations of the MPC technique, with 

the main difference being how the objective function can be formulated or how system model is obtained. 

Nevertheless, all these strategies utilize system model for generating a control signal to minimize the 

objective function [36], [37]. The structure of model predictive control is shown in Figure 3. 
 

 

 
 

Figure 3. Model predictive control 
 

 

The states of the system had been estimated based on the observer-based control approach Kalman 

filter. The Kalman filter is an iterative process for estimating the state of the system when inputs are 

uncertain and its quickly estimates the true values. It is a recursive method that uses system prior state 

measurements and control inputs to estimate the present system state [38]. The state space representation and 

objective function which is combination of the linear quadratic and the Kalman filtering approach is 

represented by (3)-(6). 
 

𝑥̇ = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡) + 𝐷𝑤 (3) 
 

Where w represents the difference between the change in power due to energy storage devices and load 

demand and u(t) represents the input control signal. A is state matrix, C is control output vector, and B and D 

are coefficient matrix. 
 

𝑦(𝑡) = ∆𝑓 = 𝐶 𝑥(𝑡) (4) 
 

𝐽(𝑁1, 𝑁2, 𝑁𝑐) = ∑ [𝑁2
𝑗=𝑁1 ∆𝑤(𝑡 + 𝑗, 𝑡)] 2  

+𝛼1 ∑ ∆𝑢1(𝑡 + 𝑗 − 1)2 + 𝛼2 ∑ ∆𝑢2(𝑡 + 𝑗 − 1)2  𝑁𝑢
𝑗=0

𝑁𝑢
𝑗=0  (5) 

 

𝛼1 and 𝛼2 are the weighing factor; N1 and N2 are the minimum and maximum costing horizon; Nc 

represents the control horizon; ∆𝑢1 and ∆𝑢2  are the control signals to the DG and fuel cell, respectively; 

and w(t+j) represents the reference over the future horizon N. 

Control signal constraints for the output are added to the objective function. These constraints are 

represented by (7) to (9). 
 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡 + 𝑗) ≤ 𝑢𝑚𝑎𝑥 (6) 
 

𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑡 + 𝑗) ≤ 𝑦𝑚𝑎𝑥  (7) 
 

Where: 

𝑢(𝑡) = 𝑢(𝑡 − 1) + ∆𝑢(𝑡)  

𝑢(𝑡 + 1) = 𝑢(𝑡 − 1) + ∆𝑢(𝑡) + ∆𝑢(𝑡 + 1) (8) 
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Solution of the objective function (5) gives the optimal result over the horizon N while subjected to the 

constraints specified by (6) and (7). The performance index of the frequency changes which is integral time 

square of the error in the frequency signal can be expressed by (9), which determines the effectiveness of the 

controller. The detailed step by step algorithm of MPC is depicted through Figure 4. 
 

𝑃𝐼 = ∫ |∆𝑓|2𝑇

0
𝑑𝑡 (9) 

 

 

 
 

Figure 4. Flowchart of MPC controller 
 

 

4. RESULTS AND DISCUSSION 

The microgrid depicted in Figure 1 was developed using MATLAB Simulink 2022. The nature of 

the wind and solar energy profiles was assumed to be stochastic, whereas the variation in load demand was 

regarded as a step change with an amplitude of 1 p.u. The parameters of distributed energy resources for the 

microgrid design are depicted in Table 1. Figure 5 illustrates the PV output, wind power fluctuations, and 

load demand disruption. 

The frequency response of the microgrid was analyzed with and without energy storage devices 

equipped with PI controllers shown in Figure 6(a). The response from the figure indicates that the frequency 

deviation overshoot and undershoot are more pronounced when the battery and flywheel energy storage are 

not considered, and the system's response is slower owing to its longer settling time. However, the results 

show that the incorporation of energy storage devices in microgrid provides the frequency support and 

improves the response. Furthermore, Figure 6(b) presents a comparative analysis of the frequency deviation 

using controller PI, PI adjusted with ANFIS, and model predictive control while incorporating the battery 

energy storage system (BESS) and flywheel energy storage system (FESS) which clearly depicts that the 

model predictive controller outshines the conventional PI controller and PI tuned -ANFIS. In comparison, the 

PI controller without tuning exhibits poor response, as indicated by its larger oscillations in the frequency 

response in Figure 6(b). For PI controller, the transient time is relatively larger which shows its poor response 

as it takes approximately 7.2 seconds to settle down to steady state. 
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Table 1. Data for the distributed energy resources 
Parameter WTG PV FC DG BESS FESS LOAD 

Rated power (kW) 100 30 70 160 45 45 210 

 
 

(a) 

 

(b) 

 

(c) 

 
 

Figure 5. Per unit variation in solar, wind, and load demand: (a) stochastic variation of solar, (b) variation in 

wind output, and (c) step change in load 
 

 

  
(a) (b) 

 

Figure 6. Frequency response: (a) effect of energy storage and (b) performance with different controllers 
 

 

The response of the PI controller is enhanced when it is trained using ANFIS as its steady state error 

reduces and the transient time reduces to about 3 seconds. The parameters selected for the ANFIS-based PI 

are listed in Table 2. The variation in training error with maximum epochs and testing of output versus input 

is represented in Figure 7. 

Although PI tuned with ANFIS represents a smaller transient time but the deviation in frequency is 

not completely eliminated. Moreover, training with neural networks has certain limitations, like choosing 

appropriate membership functions, dimensionality issues, which can sometimes affect the performance. In 

contrast, the MPC results in almost zero frequency deviation and the oscillations in frequency deviation 

response take much less time to settle down to its nominal value after experiencing a step change in load 

demand, it has less transient time less than as compared to other controllers as depicted in Figure 6(b), it 

dampens the oscillations quickly and the frequency settles to nominal value of 50 Hz within acceptable 

timeframe. The comparative results with the existing literature based on methods using sources of energy 

integration and performance index parameters are depicted in Table 3, which shows the effectiveness of the 

proposed work. 
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Table 2. ANFIS parameters 
S.No Parameters 

Membership function Triangular 
Fuzzy rules 10 

Nodes 44 

Training sample 1389 
Maximum epoch 50 

 

 

Table 3. Comparison with the related work 
Reference Configuration Sources of energy Method used Performance index 

[31] AC microgrid Microturbine, PV, FC, BESS, FESS, CHP PSO-fuzzy 0.00015 
[30] Islanded microgrid WT, PV, DG, AE, FC, BESS, FESS PSO-MPC 0.0001274 

[39] AC microgrid DG, FC, BESS, FESS, WT PSO-ABC 0.00011 

[40] Standalone microgrid DG, FESS, BESS, FC GA 0.00018 
[41] Hybrid network DG, WTG QOHSA 0.000153 

Proposed work Islanded microgrid DG, FC, BESS, FESS, PV, WT KF-MPC 0.00012 

 

 

 

Figure 7. ANFIS results: (a) training error and (b) FIS output 

 

 

5. CONCLUSION 

In this study, the dynamic behavior of the microgrid was analyzed with different types of controllers 

while simultaneously considering the variable nature of renewable energy sources and incorporating the 

energy storage devices like battery energy storage and flywheel energy storage. The integration of energy 

storage devices plays a vital role in addressing the low inertia issue resulting from the utilization of 

renewable energy sources. However, selecting an efficient controller is of paramount importance. In this 

regard, the model predictive controller (MPC) offers an optimal solution, and the Kalman filter further 

enhances the performance of the MPC controller by promptly estimating its state vector. The performance of 

the microgrid with the Kalman filter-based MPC outperforms both PI and PI trained with ANFIS. 
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