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 This paper explores optimizing and sizing stand-alone solar power systems 

using an intelligent maximum power point tracking (MPPT) method, 

enhanced by artificial neural networks (ANN). The study focuses on both 

system sizing and energy optimization, integrating genetic algorithms (GA) 

with deep learning (DL) to optimize the architecture of the ANN for 

improved performance in predicting solar energy output. The hybrid method, 

deep learning genetic algorithms (DLGA), efficiently reduces computational 

complexity and enhances flexibility through parameter tuning, significantly 

improving the performance of multi-layer perceptron networks. 

Additionally, a precise sizing methodology based on solar irradiance data 

was implemented to ensure the system is neither oversized nor undersized. 

The system's performance was tested and validated using 

MATLAB/Simulink simulations, which demonstrated superior predictive 

accuracy, faster convergence, and optimized energy capture. This combined 

approach of intelligent MPPT and accurate sizing presents a highly effective 

solution for improving the efficiency and reliability of stand-alone solar 

energy systems under varying environmental conditions. 
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1. INTRODUCTION 

The shift to sustainable energy solutions increasingly highlights stand-alone photovoltaic (PV) 

systems as promising alternatives to traditional power sources. These systems generate electricity from 

sunlight, an inexhaustible source that emits no greenhouse gases, making them crucial to renewable energy 

transitions, especially in remote areas outside conventional grid reach. For self-sufficiency, efficient battery 

storage and accurate sizing of components, like solar panels and batteries, are vital for continuous, cost-

effective power supply [1]–[3]. 

Sizing optimization determines the best PV configuration to meet energy needs without waste [4]. 

Various methods are used for this purpose, each with specific advantages and limitations [5]. One common 

approach, the 'monthly average solar radiation' method, leverages historical solar data to balance energy 

generation and storage effectively in regions with stable weather [6]. Yet, it may be less accurate in areas 

with high solar variability [7]. The 'peak sun hours' method simplifies sizing by using peak sunlight hours, 

but its simplicity can reduce accuracy [8]. More advanced methods, like 'hybrid simulation-optimization,' 

combine simulation with optimization algorithms to adapt to specific conditions, though they require high 

computational resources [9], [10]. AI-based approaches, including machine learning and neural networks, are 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Appl Power Eng ISSN: 2252-8792  

 

Optimization and dimensioning of stand-alone systems: enhancing MPPT efficiency … (Moufida Saadi) 

309 

emerging for PV sizing, yielding accurate predictions when quality data is available [11], [12]. Optimization 

strategies further enhance PV system performance, including strategic panel placement, effective battery 

management, and maximum power point tracking (MPPT) for optimal energy conversion under changing 

environmental conditions [13]–[15]. MPPT significantly boosts energy yields in regions with variable 

weather, while advanced techniques like artificial neural networks (ANN) and deep learning genetic 

algorithms (DLGA) refine optimization, improving energy management accuracy and adaptability in diverse 

environments [16]–[19]. 

The structure of the paper is methodically organized to facilitate understanding the process of 

precise sizing and optimization of stand-alone PV systems. Section 2 discusses the modeling and sizing 

methodologies for these systems. Section 3 reviews recent advancements in intelligent MPPT techniques. 

Section 4 focuses on the application of ANN and DLGA in optimizing MPPT, while section 5 presents and 

analyzes the research findings. Finally, section 6 summarizes the study's key insights and conclusions, 

highlighting the potential for future research and development. 
 
 

2. MODELING AND SIZING STAND-ALONE SYSTEM 

The components of a typical isolated system powered by solar energy, supplemented with battery 

storage, are modeled mathematically. This system is represented as a stand-alone configuration in Figure 1. 

To achieve energy self-sufficiency, the final system configuration consists of the following elements: 

- A 1.2 kW solar power unit, comprising 16 PV panels, connected to a DC-DC converter and interfaced 

with the direct current (DC) bus.  

- Two batteries, each with a capacity of 100 Ah and a voltage of 12 V, integrated into the system via  

a bidirectional DC-DC converter. Both batteries share the same connection point and are connected to  

the DC bus through both alternating current (AC)/DC and DC-DC converters. 
 

 

 
 

Figure 1. System components and description 
 
 

In this section, we delve into a detailed exploration of a power system, focusing on the intricacies of 

modeling its various components. The equilibrium of power within the DC bus can be formulated as (1). 
 

𝑃𝐿(𝑡) = 𝜂𝐷𝐴(𝜂𝐷𝐴𝑃𝑃𝑉(𝑡) ± 𝜂𝐷𝐷𝑃𝑏(𝑡)) (1) 
 

In this equation, 𝑃𝑃𝑉(𝑡) and 𝑃𝑏(𝑡)  represent the power outputs from the PV array and the battery bank, 

respectively. The constants 𝜂𝐷𝐷, 𝜂𝐷𝐴 denote the efficiencies of the DC/DC and DC/AC power converters. For 

the purpose of this analysis, these efficiencies are assumed to be constant, with 𝜂𝐷𝐷 = 0.95 and 𝜂𝐷𝐴 = 0.9. 

The sign convention for Pb(t) designates it as negative when the battery is charging and positive when 

discharging. However, it is essential to note that power balance is constrained by certain physical and 

operational limitations. 
 

0 ≤ 𝑃𝑃𝑉(𝑡) ≤ 𝑃𝑃𝑉
𝑎𝑣(t) 

 

𝑃𝑏
𝑚𝑖𝑛 ≤ 𝑃𝑏(𝑡) ≤ 𝑃𝑏

𝑚𝑎𝑥 (2) 
 

Where 𝑃𝑃𝑉
𝑎𝑣  represents the available power generation from the PV array  𝑃𝑏

𝑚𝑖𝑛 and  𝑃𝑏
𝑚𝑎𝑥  refer to the 

minimum and maximum battery bank power, respectively [20]. 
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2.1.  Photovoltaic array 

The power transmission to the generator shaft in a PV system refers to the conversion of incident 

solar radiation into electrical power. This conversion process is accomplished through the operation of the 

PV panels [21]. The power transmitted to the generator shaft, represented by (3), is a function of the available 

solar radiation, 𝑛𝑝𝑣 the efficiency of the PV panels, 𝐴𝑝𝑣 surface area of the PV panels, 𝐵𝑝𝑣 the temperature 

coefficient for the PV panels. This equation quantifies the power output of the PV system, providing valuable 

insights into its capacity to generate electrical energy from sunlight. 

 

𝑃𝑝𝑣(𝑡) = 𝐴𝑝𝑣. 𝐺(𝑡). 𝑛𝑝𝑣 . (1 + 𝐵𝑝𝑣 . (𝑇(𝑡) − 𝑇𝑟𝑒𝑓)) (3) 

 

Where 𝑇𝑟𝑒𝑓  reference temperature is temperature as a function of time and 𝐺 is the solar radiation as a 

function of time. The average power of 𝑃𝑝𝑣 over the specified time period 𝜏 can be calculated using (4). 

 

𝑃𝑝𝑣
𝑎𝑣 =

1

𝜏
∫ 𝐴𝑝𝑣

𝜏

0
. 𝐺(𝑡). 𝜂𝑝𝑣 . (1 + 𝛽𝑝𝑣 . (𝑇(𝑡) − 𝑇𝑟𝑒𝑓)) . 𝑑𝑡 (4) 

 

2.2.  Storage of energy 

Lead-acid batteries used in PV-wind systems function under defined conditions. In the typical 

operational state, it is difficult to anticipate whether energy will be drawn from or supplied to the battery [22]. 

Each battery within the energy storage system is depicted as an equivalent circuit, comprising a voltage 

source (representing open circuit voltage, 𝑉𝑜𝑐) in series with an internal resistance (R_int) [23]. As a result, 

the terminal voltage of the battery is established by (5). 

 

𝑉𝑏𝑎𝑡𝑡 = 𝑉𝑜𝑐 − 𝑅𝑖𝑛𝑡𝐼𝑏𝑎𝑡  (5) 

 

In this model, both 𝑉𝑜𝑐  and 𝑅𝑖𝑛𝑡 are dependent on the battery's state of charge (𝑆𝑂𝐶𝑏), which 

indicates the remaining capacity available for discharge. This correlation is represented as data vectors, with 

their values determined through interpolation within the respective vector based on the current 𝑆𝑂𝐶𝑏. This 

accommodates the nonlinear interdependencies between 𝑉𝑜𝑐  and 𝑅𝑖𝑛𝑡. The state of charge 𝑆𝑂𝐶𝑏 can be 

expressed as (6). 

 

𝑆𝑂𝐶𝑏 =
𝐶𝑏

∗,𝑚𝑎𝑥
−𝐶𝑏

∗,𝑢

𝐶𝑏
∗,𝑚𝑎𝑥 100        [%]  (6) 

 

Where 𝐶𝑏
∗,𝑢

 represents the number of ampere-hours already utilized and 𝐶𝑏
∗,𝑚𝑎𝑥

 signifies the maximum 

capacity, measured in ampere-hours. This can be computed as (7). 

 

𝐶𝑏
∗,𝑢 = ∫

𝐼𝑏𝜂𝑐

3600

𝑡

0
𝑑𝑡   [𝐴ℎ] (7) 

 

Where 𝜂𝑐 denotes the charge/discharge battery Coulombic efficiency, which is 0.975 in this case. 𝐼𝑏  signifies 

the battery current in amperes, with 𝐼𝑏  > 0 indicating discharge and 𝐼𝑏  < 0 indicating charging. The initial 

𝑆𝑂𝐶𝑏 is determined by a nonzero initial value of 𝐶𝑏
∗,𝑢

. To ensure optimal performance and battery longevity, 

𝑆𝑂𝐶𝑏 must be maintained within specific limits, defined as 𝑆𝑂𝐶𝑏𝑚𝑖𝑛  ≤ 𝑆𝑂𝐶𝑏 ≤ 𝑆𝑂𝐶𝑏𝑚𝑎𝑥. 

The battery current is subject to constraints, and these limits are contingent on 𝑉𝑜𝑐  and 𝑅𝑖𝑛𝑡, as 

described by (8). 

 

𝐼𝑏
𝑙𝑖𝑚 = {

(𝑉𝑜𝑐−𝑉𝑏
𝑚𝑎𝑥)

𝑅𝑖𝑛𝑡
   𝑑𝑢𝑟𝑖𝑛𝑔 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒

(𝑉𝑜𝑐−𝑉𝑏
𝑚𝑖𝑛)

𝑅𝑖𝑛𝑡
   𝑑𝑢𝑟𝑖𝑛𝑔 𝑜𝑓 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

  (8) 

 

𝑉𝑏
𝑚𝑖𝑛 and 𝑉𝑏

𝑚𝑎𝑥 represent the minimum and maximum permissible battery bank voltages, respectively. 

Furthermore, 𝐼𝑏
𝑙𝑖𝑚 is indirectly influenced by 𝑆𝑂𝐶𝑏 through the previously mentioned nonlinear relationships. 

Additionally, a mechanism is in place to limit the battery bank current, ensuring zero current when 𝑆𝑂𝐶𝑏 

reaches its maximum or minimum value [24]. 
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3. SIZING STAND-ALONE SYSTEM BASED ON MONTHLY AVERAGE METHOD 

The effective and dependable functioning of a stand-alone photovoltaic/battery system relies heavily 

on accurate sizing. Sizing this system utilizing monthly average data entails establishing the suitable 

capacities for the PV panels and energy storage elements, which are crucial in proficiently fulfilling the load 

demands (refer to Table 1). The general load, PV, and energy produced are given by (9) and (10). 

 

𝐸𝑙𝑜𝑎𝑑 = 𝐸𝑃𝑉𝑆𝑃𝑉 (9) 

 

 𝐸𝑃𝑉 = 𝑆𝑃𝑉𝐸𝑖𝑟𝑟 𝜂𝑃𝑉    (10) 

 

With: 

 

𝜂𝑃𝑉 = 𝜂𝑃𝑉−𝑆𝑇𝐶[1 − 𝛽𝑜𝑐(𝑇𝑗 − 𝑇𝑗−𝑆𝑇𝐶)] (11) 

 

Through rigorous computations of monthly energy yield for each generator and corresponding load 

demand, distinct surface areas for photovoltaic panels are discerned. These quantifications are deduced using 

the formulations presented for PV, as elucidated in [25]. 

 

𝑆𝑃𝑉 = max (
𝐸𝐿𝑜𝑎𝑑,𝑚

𝐸𝑃𝑉,𝑚
) (12) 

 

The Montney energies produced by PV are given in (13). 

 

{
𝐸𝑃𝑉,𝑚 = (∑ 𝐸𝑃𝑉

12
𝑚=1 )/12

𝐸𝐿𝑜𝑎𝑑,𝑚 = (∑ 𝐸𝐿𝑜𝑎𝑑
12
𝑚=1 )/12

 (13) 

 

Here, Elmean represents the energy required to meet the load demand. It is calculated as the average energy 

needed to satisfy the system's load demand under various configurations of wind turbines and photovoltaic 

panels. 𝐾𝑝𝑒𝑟𝑐  represents the proportion of the load supplied by the PV source. Consequently, we derive the 

following result, as expressed in (14). 

 

𝑆𝑃𝑉 = 𝐾𝑝𝑒𝑟𝑐 (
𝐸𝐿𝑜𝑎𝑑,𝑎𝑣𝑒𝑟

𝐸𝑃𝑉,𝑎𝑣𝑒
) (14) 

 

The subsequent equations establish the quantities of PV panels required, as expressed in (15). 

 

𝑆𝑃𝑉,𝑓𝑖𝑛𝑎𝑙 = 𝑁𝑃𝑉𝑆𝑃𝑉,𝑢𝑛𝑖𝑡 (15) 

 

The mean energy consumption is expressed as (16). 

 

𝐸𝑙𝑎𝑜𝑑−𝑎𝑣𝑒 = 𝐸𝑃𝑉,𝑎𝑣𝑒𝑆𝑃𝑉,𝑢𝑛𝑖𝑡   (16) 

 

 

Table 1. The setup and parameters of the PV and wind energy systems 
Month 𝐸𝑖𝑟𝑟  (KWh/m) T (°C) 𝑁𝑃𝑉 𝐸𝑃𝑉 (KWh/m2) 𝐸𝑙𝑜𝑎𝑑 (KWh) 

January 85.5 10.1 0.1410 7.78 333.6 

February 98.6 11.5 0.1419 9.03 339 
March 143.6 16.1 0.1446 13.41 347 

April 174.2 19.8 0.1468 16.51 347.04 

May 201.5 24.5 0.1497 19.48 336.72 
June 207.3 28.7 0.1486 19.89 332.88 

July 218.2 32.3 0.1539 21.74 347.04 

August 197.1 31.6 0.1512 19.59 345.84 
September 156.4 27.1 0.1512 15.27 336.48 

October 127.9 22.7 0.1485 12.26 323.52 

November 95 15.5 0.1443 8.85 343.44 
December 79.6 11.1 0.1416 7.28 329.52 

𝐸𝑃𝑉, ave = 13.42 

𝐸𝑙𝑜𝑎𝑑, ave = 338.5 
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The sizing parameters for the hybrid system are determined based on the previously outlined 

relationships. Table 2 provides a breakdown of the monthly energy production from the solar system. It can 

be noted that the average photovoltaic energy output is approximately 13.42 kWh/m2. Given that the average 

load energy demand is 338.5 kWh, and considering that the system in question is a stand-alone PV system, 

only the configuration of 40 panels comes closest to meeting the required load energy of 523.47 kWh. 

Battery capacity is calculated using the annual monthly average method with the day of autonomy, 

as expressed in (17). 

 

𝐶𝑏𝑎𝑡𝑡 =
𝑑𝑎𝑢𝑡.𝐸𝑙𝑜𝑎𝑑,𝑚

𝑈𝑏𝑎𝑡𝑡.𝑃𝐷𝑃.𝜂𝑏𝑎𝑡𝑡.𝑁𝑚
 (17) 

 

Where 𝐸𝑙𝑜𝑎𝑑 ,𝑚 monthly load consumed (kWh/d) and 𝑁𝑚 the number of days of the month that presents the 

maximum load (31 days), PDP stands for percentage depth of discharge 𝜂𝑏𝑎𝑡𝑡 . The efficiency of the battery. 

The number of batteries used is calculated by (18). 

 

𝑁𝑏𝑎𝑡𝑡 = 𝐸𝑁𝑇[
𝐶𝑏𝑎𝑡𝑡

𝐶𝑏𝑎𝑡𝑡−𝑢
] (18) 

 

Where 𝐶𝑏𝑎𝑡𝑡−𝑢 represents the selected battery capacity. To summarize, the total maximum power output of 

the photovoltaic panels is determined as Ppv = 40 × 80 = 3,600 kW. Moreover, the system utilizes 3 batteries 

with specifications of (12 V, 100 Ah). 

 

 

Table 2. The number of wind turbines and panels was determined through 
𝐾𝑝𝑒𝑟𝑐 𝑆𝑃𝑉 (m2) 𝑁𝑃𝑉 𝑆𝑃𝑉, final (m2) Elmean (Kwh) 

0 0 0 0 0 
0.1 4.28 7 4.522 60.68 
0.2 7.5 12 7.752 104.03 
0.3 7.76 12 7.752 104.03 
0.4 8.40 13 8.39 112.59 
0.5 8.64 13 8.398 112.70 
0.6 10.04 16 10.336 198.70 
0.7 11.17 17 10.98 147.35 
0.8 14.12 23 14.858 199.28 
0.9 19.83 31 20.02 268.66 
1 26.38 40 26.48 345.36 

 

 

4. APPLICATION OF HYBRID INTELLIGENT MPPT (DLGA) 

The application of ANN in maximum power point (MPP) Tracking is particularly essential due to 

solar energy's inherently variable nature, which is affected by a range of environmental conditions, including 

the intensity of sunlight, temperature, and shadow impacts. ANN functions similarly to the human brain by 

learning and retaining information and insights through a network of interconnected links known as weights. 

For precise identification of the MPP, these weights associated with the neurons must be meticulously 

calculated via an extensive training process. Once this training is complete, the ANN can serve as an 

estimator for the MPP, providing the reference value (maximum power voltage (VMP) or maximum power 

current (IMP)) to the MPPT controller [26]. 

The training of an ANN involves a systematic adjustment of weights and biases, often utilizing the 

sigmoid activation function. Initially, weights and biases are randomly assigned to set the starting point for 

the learning process. During forward propagation, inputs pass through the network, with each neuron 

calculating a weighted sum and adding a bias, subsequently passed through an activation function like a 

sigmoid. The sigmoid function, mapping values between 0 and 1, is favored for its ability to convert numbers 

into probabilities and handle non-linear data relationships. Following this, the backpropagation phase begins, 

where the network's output error is calculated and propagated backward, adjusting weights and biases. This 

adjustment is based on the error's partial derivatives concerning each weight and bias, guided by a learning 

rate parameter. This cycle of forward propagation, backpropagation, and weight and bias adjustments repeats 

over multiple iterations, gradually refining the network to minimize prediction errors. The training process 

also includes evaluating and adjusting the model with a validation set to prevent overfitting or underfitting, 

ensuring the ANN effectively generalizes to new data. In ANNs, an increase in the number of hidden layers 

can lead to enhanced tracking efficiency and improved performance in adapting to power fluctuations in the 

array, though it may also result in slower tracking speed  
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The integration GA with DL for the optimization of ANN architectures has been a focus of various 

researchers. This approach aims to enhance the performance of multi-layer perceptron networks. Given the 

computational complexity and extended training duration inherent in DL evolutionary algorithms like GA are 

employed to optimize network performance. GA is particularly noted for its robust optimization capabilities. 

This method effectively reduces computational complexity and increases overall system flexibility through 

parameter tuning, thereby augmenting the performance of DL. In this scheme, DL is utilized to determine the 

optimal duty cycle value, ensuring maximum power extraction. The neural network undergoes training with a 

dataset, which is then optimized using GA for improved efficiency. The steps involved in implementing the 

genetic algorithm are outlined as follows:  

- Step I: Assess the fitness function and pinpoint the design parameters.  

- Step II: Generate a population, representing potential solutions to the problem.  

- Step III: Evaluate this population using an objective function.  

- Step IV: From the population, select two parents based on their fitness levels. Higher fitness increases the 

likelihood of selection.  

- Step V: Create a new population by repeatedly executing selection, crossover, and mutation until the new 

population is complete.  

- Step VI: Form a new generation and return to step III.  

- Step VII: If the end condition (minimization of mean squared error (MSE)) is met, conclude the process 

and identify the best solution as the target (see Figure 2). 
 

 

 
 

Figure 2. Block diagram training MPPT using DLGA 
 
 

Figure 3 illustrates the training dynamics of different ANN architectures: ANN with 10 neurons, 

ANN with 100 neurons, deep learning (DL), and DLGA, represented as Figures 3(a)-3(d), respectively. 

Among these, DLGA (Figure 3(d)) shows the best performance, with rapid convergence and low mean 

squared error (MSE) across training, validation, and test phases, indicating a highly generalizable model. 

Figure 3(a) shows initial improvement but reaches a plateau, while Figure 3(b) exhibits overfitting, as seen in 

the rise of validation error after initial progress. Figure 3(c), like Figure 3(a), fits the data decently but shows 
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a slight divergence between training and validation errors, suggesting possible overfitting. Overall, DLGA 

proves to be the most robust, making it the optimal choice for real-world applications due to its superior 

accuracy and generalization. Table 3 provides a detailed comparison of the architectures based on key 

metrics like epoch range (0 to 1000), training time, overall performance, and gradient behavior. These 

metrics offer insights into the efficiency and effectiveness of each model, with the gradient target set at  

1e-16, reflecting a high precision in the learning process. 
 

 

Table 3. Comparison between performances of different architecture of ANN 
ANN architecture Number of epochs Elapsed time (s) Performance Gradient 

ANN 10N 1000 00 :00 :04 1.44 e-14 9.45 e-14 

ANN 100 N 1000 00 :00 :08 1.33 e-14 7.32 e-11 
DL 1000 00 :00 :15 4.09 e-12 9.68 e-9 

DL GA 14 00:14:37 3.47e-32 5.16 e-17 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

Figure 3. The dynamic training of various ANN architectures: (a) ANN with 10 neurons,  

(b) ANN with 100 neurons, (c) deep learning (DL), and (d) DLGA 
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5. DISCUSSION OF RESULTS 

Set within the specific environmental conditions of Negrine, Wilaya of Tebessa in Algeria, the study 

utilizes historical atmospheric data from 2012, including variables like ambient temperature and solar 

insolation, to accurately size and optimize the system as shown in Figure 4. The system, comprising PV 

panels and battery storage, was simulated in MATLAB/Simulink using localized data and load profiles, 

showcasing the effectiveness of ANN-optimized MPPT in improving power generation to meet varying 

energy demands. The study provides valuable insights into the deployment of efficient solar energy systems 

in arid and semi-arid regions. 

Figure 5 presents the power generated by the PV and wind turbine is depicted alongside the load 

profile. This figure helps visualize how the combined energy production from these renewable sources aligns 

with the demand requirements. By comparing these curves, one can assess whether the generated power 

meets, exceeds, or falls short of the load at various points in time. 
 
 

 
 

Figure 4. Historical data ambient temperature and solar insolation in one year 
 

 

 
 

Figure 5. Power load profile chosen 
 

 

Figure 6 presents a comparative analysis of two MPPT methods: DLGA and perturb and observe 

(P&O), applied to a stand-alone PV system, focusing on DC bus voltage. Over 12 hours, the DLGA 

consistently maintains a higher and more stable voltage than P&O. While P&O shows a step-like increase 

during its initial ramp-up, indicating its iterative approach, DLGA demonstrates a smoother and quicker 

convergence to the maximum power point. This is likely due to DLGA's predictive capabilities, which use 

historical data for more precise control. The zoomed-in view reveals that DLGA has minimal ripple and 

tighter voltage regulation, suggesting better handling of variable environmental conditions, while P&O shows 

more pronounced voltage fluctuations, indicating less stability. DLGA's stability reduces power oscillations, 

enhancing system efficiency and minimizing wear on components. 

Figure 7 compares the performance of four MPPT techniques: DLGA, DL, ANN, and P&O, over 12 

hours in a PV system. DLGA, ANN, and DL demonstrate a swift and stable rise to peak power, with DLGA 

showing superior stability and minimal fluctuations. As solar irradiance changes, DLGA adapts well, 

maintaining near-optimal power around 880 W, while P&O experiences a larger dip to 780 W. During peak 

midday irradiance, DLGA sustains around 1550 W, outperforming P&O, which fluctuates near 1500 W.  

ANN and DL match DLGA at 1350 W but show a less dynamic response to irradiance changes. As sunlight 

wanes, DLGA maintains the highest output (850 W), while P&O declines more erratically, and ANN/DL 

drop more sharply. 
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Figure 8, depicting battery power output, shows that DLGA stabilizes quickly, maintaining 

consistent power with minimal fluctuation, indicating efficient battery management. In contrast, P&O 

exhibits more pronounced fluctuations, suggesting less efficient battery charge regulation. As the system 

transitions to discharging, DLGA handles the shift smoothly, while ANN and DL mirror each other closely in 

performance. Overall, DLGA stands out for its robustness and adaptability, ensuring maximum battery 

efficiency and system energy availability throughout the day. 
 

 

 
 

Figure 6. Profile of voltage DC bus in 12 hours 
 
 

 
 

Figure 7. Profile of a PV power in the 12 hours 
 

 

 
 

Figure 8. Profile of a battery power in the 12 hours 
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6. CONCLUSION 

This study investigated the optimization of a stand-alone solar power system by improving MPPT 

algorithms using ANN and genetic algorithms (GA), specifically the DLGA approach. The results, based on 

simulations using atmospheric data from Negrine, Algeria, showed that the DLGA method outperforms 

traditional techniques like P&O in maintaining higher, more stable voltages, leading to improved energy 

capture. The DLGA also demonstrated superior performance in managing battery charging and discharging 

cycles, enhancing battery efficiency and lifespan. Additionally, the ANN models showed effective power 

management, and mean squared error analysis confirmed excellent generalization capabilities in the ANN 

training process. Overall, this research highlights the potential of intelligent MPPT methods to optimize solar 

energy systems, offering more reliable and efficient solutions for regions with high solar potential. The 

methodologies presented can serve as a benchmark for future renewable energy optimization efforts. 
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