
International Journal of Applied Power Engineering (IJAPE) 

Vol. 14, No. 3, September 2025, pp. 600~612 

ISSN: 2252-8792, DOI: 10.11591/ijape.v14.i3.pp600-612      600  

 

Journal homepage: http://ijape.iaescore.com/ 

Battery cycle life and throughput optimization in wireless 

communication system with energy harvesting capability 
 

 

Omar Enassiri, Youssef Rochdi, Ouadoudi Zytoune 
ENSA, Ibn Tofail University, Kenitra, Morocco 

 

 

Article Info  ABSTRACT  

Article history: 

Received May 3, 2024 

Revised Mar 18, 2025 

Accepted Jun 23, 2025 

 

 This research paper proposes a novel approach to address the energy 

challenges faced by internet of things (IoT) devices. The wireless 

communication system involves a transmitter equipped with energy 

harvesting module that charges both a rechargeable battery and a capacitor 

through an energy storage management system (ESMS). This ESMS is 

based on a reinforcement learning algorithm to dynamically switch between 

the battery and the capacitor, ensuring efficient power utilization. This 

reinforcement learning algorithm enables the device to learn and adapt its 

energy consumption patterns based on environmental conditions and usage, 

optimizing energy usage over time. Additionally, the system employs a 

rainflow counting method to estimate the state-of-health (SoH) of the 

battery, ensuring its longevity and overall system performance. By 

combining these approaches, the proposed system aims to significantly 

improve the energy efficiency and lifespan of IoT devices, as well as the 

amount of data sent for different temperature ranges, ultimately enhancing 

their cost-effectiveness and performance. 
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1. INTRODUCTION  

One of the main challenges in the internet of things (IoT) area lies in the need for energy wherever 

devices are installed, across all fields of application [1], [2]. This challenge is particularly pronounced for 

sensor nodes placed in inaccessible areas, such as biomedical sensors implanted in the human body, where 

battery replacement is exceedingly difficult. In such cases, battery life is crucial to ensure continuous power 

for these devices, exemplified by pacemakers and implantable defibrillators. To address this issue, significant 

attention has been given to renewable energies to extend the lifespan of batteries powering these devices. In 

this context, energy harvesting emerges as a highly promising solution, particularly for devices with lower 

energy consumption [3]. Combined with a hybrid storage system composed of batteries and capacitors, these 

systems are capable of powering wireless sensor networks (WSNs). Various topologies and configurations 

combining batteries and capacitors are discussed in [4], [5]. The key aspect involves the management of the 

storage system of the harvested energy based on the requirements and conditions of the IoT devices. 

Therefore, effective energy storage management systems (ESMS) must be employed [6], [7].  

Since IoT devices require continuous power and most of them are battery-powered, they are facing 

finite battery life and high energy consumption, especially in inaccessible or hazardous locations. Energy 

harvesting technology addresses this by converting energy from sources like solar, thermal, wind, 

mechanical, pyroelectric, and RF into usable electrical energy, enhancing the efficiency, durability, and 
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lifetime of IoT devices [8]. Several studies have addressed the problem of energy management in the IoT. In 

[9], the authors have proposed to minimize the volume of data that may be transmitted through the IoT 

environment and schedule the work of critical energy IoT nodes for better energy efficiency. Also, a fault 

tolerance scenario is applied to address the energy problems faced by IoT nodes. In [10], the authors 

proposed a reinforcement learning method to deal with the battery leakage for wireless communication 

systems. The research paper [11] addressed a set of algorithms that study energy management in the field of 

IoT. It listed the advantages and limitations of each one and raised a set of questions regarding the quality of 

services in the IoT and how to extend its lifespan from an energy perspective. Finally, it concluded by 

creating a comparative table between these algorithms. Another study relied on predicting the battery life of 

IoT devices using the random forest regression algorithm is proposed in [12]. The model is tested using the 

'Beach Water Quality – Automated Sensors' dataset, which comes from sensors in an IoT network in 

Chicago, USA. The model incorporates various pre-processing techniques and achieves a predictive accuracy 

of 97% in predicting the battery life of IoT devices. In [13], a platform is introduced that combines sensing 

processing, and wireless communication features for low-power IoT based systems. It includes an energy 

management integrated circuit (IC) designed for highly efficient energy harvesting, making it ideal for low-

power and compact energy sources. This platform accommodates various power supply options and 

integrates a hybrid energy storage system. An energy management strategy utilizing a reinforcement learning 

algorithm is outlined in [14]. This ESMS fulfills several stringent criteria, including low power consumption, 

high reliability, self-sufficiency in power supply, and data backup to handle unexpected failures. Energy is 

collected via solar panels and stored in supercapacitors. The developed system was applied to a physical 

ESMS device and tested in real-world conditions to gather practical data. A study explores multiple 

approaches to optimize energy systems and improve battery performance and lifespan is presented in [15]. It 

examines the power requirements for telecom site backups and evaluates the impacts of various parameters 

on battery life, proposing methods to optimize battery charging management for enhanced longevity and 

performance. In [16], an advanced forecasting model, such as long short-term memory (LSTM) and back 

propagation neural network (BPNN), are utilized to predict solar plant power output, demonstrating results 

closely aligned with actual power production. Dhaked and Birla [17] implemented a solar-thermal dish-

Stirling system with battery storage in an islanded microgrid, integrating a control scheme to manage power. 

The system achieves 30% efficiency, reliably supplying energy in steady-state conditions, while the battery 

effectively supports the load during transient periods. 

To address these issues, this paper proposes an energy harvesting system that explores the 

combination of capacitors and batteries to store energy and power sensor nodes. The rainflow algorithm is 

used to estimate battery life, while the reinforcement learning algorithm determines the optimal state of a 

wireless sensor node based on available energy, battery status, and information capacity during the 

designated transmission period. This approach helps adapt the model to a dynamic working environment and 

extend the battery lifespan. 

The organization of this paper is as follows: The methods section provides a detailed description of 

the procedures followed in this work, including the justification for the chosen algorithm. This is followed by 

results and discussion section, where our findings and interpretations of the results are presented. Finally, the 

paper concludes with the conclusion section. 

 

 

2. METHODS 

A significant challenge within these ESMS is battery degradation due to deep discharge and high 

current demand [9]. High charge/discharge rates are influenced by the types and characteristics of batteries 

and capacitors [11], [12]. In this study, our focus is on wireless nodes of an IoT based system, assuming their 

transmitters are equipped with an energy recovery system. The collected energy can be stored either in the 

battery or in the capacitor via a pre-installed (see Figure 1). Communications occur within limited time 

intervals, with transmitters conducting transmissions over equal time durations, called time-slot and denoted 

as 𝑇𝑠. It is assumed that data packets arrive periodically and are transmitted in the subsequent time-slot 𝑇𝑠.  
A generated data packet is transmitted in the following time slot unless deemed unnecessary (e.g., for control 

applications). The transmission channel remains constant during each transmission period. Each node 

transmitter is equipped with an energy harvesting storage system and harvested energy is stored in either the 

battery or the capacitor and can be directly used for the next period, by a power management system based on 

the energy levels stored in both devices (battery/capacitor). The ESMS selects the appropriate storage unit, 

either the battery or the capacitor, depending on the remaining quantity of energy in each unit. Currently, 

most of the sensor nodes that are powered by harvested energy require a power management system (PMS) 

to adapt the stored energy to the related electronic circuits during various operations (such as processing and 

transmitting captured data). Indeed, the electrical energy provided by the energy harvester often exhibits 

unstable voltage, current, and power levels that are not directly suitable for supplying the electronic system. 
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Moreover, due to the intermittent nature of scavenged energy sources, the power management circuit must 

detect the harvested power level and potentially switch to an idle state when the quantity of power is 

insufficient (i.e., when the power consumed by the management circuit exceeds the scavenged power). 

 

2.1.  Energy harvesting 

The renewable energy can be harvested from various external sources [18]. These sources are 

classified according to harvest-store-use and harvest-use [19]. The harvested energy is denoted as 𝐸𝐻. Since 

the presence of these energy sources is discontinuous in nature, electronic systems powered by energy 

harvesting must include a PMS and a storage device to store the scavenged energy. So, a conversion of the 

recovered energy is necessary to make it compatible and ready for use. Indeed, the usage of a transducer is 

essential to adapt the obtained energy to the usual storage device; the different transducers are mentioned in 

[20], [21]. The schematic of a typical mobile sensor system powered by energy harvesting is presented in 

Figure 2. The energy source is scavenged by the energy harvesting transducer and converted to electrical 

energy, even though it cannot be used in the actual form to power the electronic system. 

 

 

 
 

Figure 1. Storage and management system of energy harvesting 

 

 

.  

 

Figure 2. Energy harvesting management 

 

 

2.2.  Battery features analysis 

In the field of the wireless sensor network, the battery is the cornerstone for continuity of service of 

connected objects in daily life, which makes the most critical components of any IoT deployment is the 

choice of batteries. That is why choosing the right battery for the smart device is a challenging task because it 

depends on several parameters [22]. Also, battery performance gets reduced by two sides, physical and 

chemical. Generally, the end of life for batteries is defined as 80% of the nominal capacity(i.e., the battery is 

considered as dead when it loses 80% of the nominal capacity). In general, the capacity of batteries fades 

mainly with the following stress factors [23], as the temperature, number of cycles of charge and discharge, 

the state of charge (SoC) swing, the C-rate, the waiting periods, and the SoC in waiting periods. The batteries 

are characterized by several parameters such as voltage and capacity. The voltage mainly depends on the SoC 
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and the temperature of the battery, while the capacity represents the amount of charge delivered by the 

battery at the rated voltage. This relationship is explained in (1). 

 

𝐶 = 𝐼𝑘 . 𝑡 (1) 

 

Where k is the Peukert exponent (typically k ϵ {1.0, 1.3} as stated in [24], 𝐶 is the capacity, 𝐼 is the discharge 

current, and 𝑡 is the time at the minimum discharge. The battery SoC is defined as the percentage of the 

battery capacity available for discharge. It can be expressed as (2). 

 

𝑆𝑂𝐶 =
𝐸𝑏𝑎𝑡

𝑉0𝐶𝑏𝑎𝑡
 (2) 

 

The capacity 𝐶𝑏𝑎𝑡 is measured in ampere-hours (Ah), 𝑉0 is the battery voltage, and 𝐸𝑏𝑎𝑡  is energy of 

battery. Another parameter that is also important is the depth of discharge (DoD). It is defined as the 

percentage of the battery capacity that has been discharged. 

 

𝐷𝑂𝐷 =
𝐶𝑏𝑎𝑡.𝑉−𝐸𝑏𝑎𝑡

𝐶𝑏𝑎𝑡.𝑉
 (3) 

 

The SoC and DoD significantly affect battery life, along with other factors like operating time and 

temperature. SoC and DoD are the primary factors determining calendar and cycle aging of batteries. 

Calendar aging relates to capacity reduction over time, while cycle aging is linked to the frequency and depth 

of charge-discharge cycles [25]. Both types of aging are interrelated and crucial for understanding battery 

deterioration. In [26], [27], the authors give the batteries lose capacity over time and use. The capacity fade 

for calendar and cycle aging, respectively, is given as (4) and (5). 

 

𝐶𝑓.𝑐𝑎𝑙(𝑡, 𝑇) = 𝛼𝑡 × 𝑒𝛽𝑡×𝑇 × 𝑡𝑛 (4) 

 

𝐶𝑓.𝑐𝑦𝑐(𝑁𝐶, 𝑇) = 𝛼𝑁𝐶 × 𝑒𝛽𝑁𝐶×𝑇 × 𝑁𝐶𝑛 (5) 

 

The equations parameters are defined as follow: 𝑡 is the time in month, 𝑇 is the temperature in 

Kelvin, and 𝑁𝐶 is the number of cycles. The rest of parameters are coefficients for a lithium iron phosphate 

(LFP or LiFePO4) battery are as: αt = 3.087.10−7, αNC = 6.87.10−5, βt = 0.05146, βNC = 0.027, and n =
0.5. Recall that the main objective here is to estimate the lifetime of a battery by a suitable method. The 

rainflow-counting (RFC) algorithm is a useful method the estimate the battery cycles number [28]. RFC 

processes each SoC curve to return the experienced number of cycles at different DoD. Combining rainflow 

with the rule of Palmgren Miner [29], [30], the battery degradation during a given time period is expressed  

as (6). 

 

𝐷(%) = ∑
𝑁𝑐𝑦𝑐(𝐷𝑜𝐷)

𝑁𝑚𝑎𝑥(𝐷𝑜𝐷)

𝐷𝑜𝐷=100∑
𝐷𝑜𝐷=1  (6) 

 

Where D is the total damage that is when 𝐷 = 1, the battery must be replaced. 𝑁𝑐𝑦𝑐 is the number of cycles 

returned by the rainflow algorithm for each amplitude, the DoD, while the Nmax is the number of cycles the 

battery can endure for each given DoD. According to the curves that gives the number of cycles versus the 

DoD provided by the datasheet of manufacturer for the battery VL30P cells type from SAFT batteries 

considered in this paper and based on [31], the number of cycles (Nmax is reached if the capacity degradation 

attains 30%) can be approximated as (7). 

 

𝑁𝑚𝑎𝑥(DoD) = 3. 107 × 𝐷𝑜𝐷(%)−1.825 (7) 

 

The number of cycles can be calculated using the curve provided by the manufacturer of the VL30P battery, 

as shown in (8). 

 

𝑁𝐶(80%) =
𝐷(%)×10000

100%
 (8) 

 

By estimating the remained capacity of the battery at a percentage RC%, it will be possible to determine the 

end of life of the battery (EOL) in years as explained in (9). 
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1 − 𝑅𝐶 = 𝛼𝑡 × 𝑒𝛽𝑡.𝑇 × (
𝑦𝐸𝑂𝐿

12
)
𝑛

+ [𝛼𝑁𝐶 × 𝑒𝛽𝑁𝐶.𝑇 × 𝑁𝐶𝑛] × 𝑦𝐸𝑂𝐿 (9) 

 

The solution of (9) can expect the lifetime of the battery in years. The battery lifetime is calculated based on 

the steps illustrated in Algorithm 1. 

 

Algorithm 1. Battery lifetime estimation process 

Input: 

- SOC vector (time series of state of charge) 

Initialization: 

- Set remaining capacity: RC ← 70% 

- Estimate Ncycl (DOD) using rainflow counting (RFC) applied to SOC 

Computation steps: 

- Use equation (6) to compute the degradation percentage (D%) 

- Replace D% into equation (8) to calculate the number of cycles (NC) 

- Solve equation (9) to determine the battery lifetime 

 

2.3.  Capacitor features 

Capacitors are highly versatile energy storage devices with applications in electric vehicles, energy 

harvesting, and grid stabilization, offering advantages like high power density, long lifecycle, and wide 

operating temperature range. Their key characteristics include nominal capacitance, working voltage, 

tolerance, leakage current, working temperature, polarization, and equivalent series resistance [32]. 

Capacitors have the potential to replace batteries due to their superior power density, which shortens charging 

times and longer life cycle [33]. They are forgiving when overused and environmentally friendly, making 

them ideal for IoT applications. Capacitors can serve as intermediate storage devices, providing power during 

battery changes or offline periods, and as uninterruptible power supplies (UPS) in emergencies. Additionally, 

hybrid applications combining capacitors with batteries can optimize energy usage and increase battery 

lifespan. The equivalent circuit of capacitor is shown in Figure 3. 

 

 

 
 

Figure 3. Equivalent circuit of capacitor 

 

 

The lifespan of a capacitor is influenced by factors such as operating voltage and temperature [34], 

with leakage resistance 𝑅𝑙𝑒𝑎𝑘 , equivalent series resistance 𝑅𝐸𝑆𝑅, and equivalent series inductances 𝐿𝐸𝑆𝐿  

playing key roles. The dielectric in a real capacitor must have a high limited resistance to minimize current 

flow between the plates when voltage is applied. Leakage resistance typically ranges from 1 MΩ to 100 MΩ 

and can impact capacitor performance. Experimental tests and manufacturer data are essential for estimating 

capacitor lifespan. The Arrhenius equation is a key reference for predicting capacitor lifespan [35], with 

aging being influenced by operating conditions and temperature. 

 

𝑡𝑖 = 𝐵 × 𝑒
𝐸𝐴
𝐾×𝑇𝑖 (10) 

 

Where 𝑇𝑖  is the absolute temperature in (Kelven), 𝑡𝑖 is the reaction time for 𝑇𝑖  in (ℎ), 𝐵 is the parameter to be 

determined (ℎ), and 𝐸𝐴 is the energy activation in 𝑒𝑉. Whereas 𝐸𝐴 is given by (11). 

 

𝐸𝐴 =
𝐾×ln⁡(

𝑡1
𝑡2
)

1

𝑇1
−

1

𝑇2

 (11) 
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The values of 𝐸𝐴 is cited in [36], while 𝐾: empirical safety factor, defined as: If ⁡𝑇0 ⁡= 105⁡℃ then 

for 𝐼 > 𝐼0⁡, 𝐾 = 4, and if 𝑇0 ⁡= 105⁡℃, then for 𝐼⁡ < ⁡ 𝐼0, 𝐾 = 2, also if 𝑇0 = 85⁡℃ then 𝐾 = 2. In industry, 

the life of electrolytic capacitor is given in (12). 

 

𝐿 = 𝐿0 × 2
𝑇0−𝑇𝑜𝑝

10  (12) 

 

Where 𝐿 is the life of the capacitor at the operating temperature 𝑇𝑜𝑝 and 𝐿𝑜 is the life at the rated temperature 

𝑇𝑜. This means that for every 10⁡℃ increase in operating temperature, the life of the electrolytic capacitor 

reduces by half [37]. The prediction of capacitor aging is often based on experimental extracts based on 

failure physics. According to Arrhenius' law, the lifespan of a capacitor is influenced by the ambient 

temperature, the current passing through it, and the applied electrical voltage. Capacitor manufacturers  

offer, in their catalogues, a formula to estimate the lifespan of capacitors (𝐿) according to the various 

constraints [38]. 

 

𝐿 = 𝐿0 × 𝐾𝑇 × 𝐾𝐼 × 𝐾𝑉 (13) 

 

With 𝐿0 is the particular life (hours) in extreme operating conditions (maximum allowable temperature). 

While the other coefficients are 𝐾𝑇 is the temperature factor and ⁡KT = 2
T0−Tc
10  with 𝑇0 is upper category 

temperature. The 𝑇𝑐 is the ambient temperature in the application. 𝐾𝐼  is the ripple current factor 𝐾𝑖 = 𝐾𝐴
∆𝑇0
10  

with 𝐴 = 1 − (
𝐼𝑟

𝐼0
)2 and 𝐼𝑟 =

𝐼𝑟𝑖

1.4
, where 𝐼𝑟𝑖 and 𝐼𝑟  are respectively the ripple current in applications and the 

frequency-normalized ripple current, 𝐼0 is the nominal ripple current at upper category temperature, and ∆T0 

is core temperature increase of electrolytic capacitors. 𝐾𝑉 is the voltage factor is expressed by 𝐾𝑣 = (
𝑉0

𝑉𝑥
)𝑛, 

where V0 and Vx are respectively the rated voltage and actual operating voltage. On the other hand, the 

exponent n can vary between 1 and 6, although for most datasheets cited in [38], [39]. The exponent is given 

by the following condition 0.5 ≤
𝑉0

𝑉𝑥
≤ 0.8 → 𝑛 = 3⁡𝑎𝑛𝑑⁡0.8 ≤

𝑉0

𝑉𝑥
≤ 1 → 𝑛 = 5 cited in [40]. 

 

2.4.  Energy storage management system 

The proposed system aims to find optimal actions that lead to optimize data transmission and the 

battery lifetime as well. At each time slot denoted as n, the system decides about the storage destination 

(battery or capacitor), the transmission (transmit or not), and the source of energy if it decides to transmit. 

Figure 4 illustrates the topology of the proposed system.  

The set of actions is as follows: i) 𝑋𝑛⁡
0 ∈ {0,1} is the indicator of the storage in the battery for 𝑋𝑛

0 = 1, 

in the capacitor for 𝑋𝑛⁡
0  = 0 at the moment n; ii) The power source indicator is 𝑋𝑛⁡

1 ∈ {0,1} where 𝑋𝑛⁡
1  = 1 

indicates power from the battery and 𝑋𝑛⁡
1  = 0 indicates power from the capacitor; and iii) The data 

transmission indicator is 𝑋𝑛⁡
2 ∈ {0,1} indicates the packet is dropped if 𝑋𝑛⁡

2  = 0 or is transmitted if 𝑋𝑛⁡
2  = 1. 

Powering the system with a battery combined with a capacitor directly influences the battery’s lifespan, 

potentially reducing the number of cycles and increasing the quantity of data that can be transmitted. This 

optimization is illustrated in Figure 5. 

 

 

 
 

Figure 4. Synoptic energy model 
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(a) 

 

(b) 

 
 

Figure 5. Comparison of a system with battery only vs. battery + capacitor: (a) data transmission comparison 

and (b) data sent comparison 

 

 

In the following, energy optimization is addressed through the integration of reinforcement learning. 

The approach begins with the establishment of a system optimization framework, which serves as a 

foundation for intelligent control. Reinforcement learning is then leveraged to enhance the system’s 

performance and adaptability. 

 

2.4.1. Optimization and formulation system 

The main goal is to increase the battery lifetime. It also aims to transmit the whole data without loss 

during the required time, as illustrated in (14). 

 

max
{𝑋𝑖} ∞

𝑖=0
⁡
lim
𝑁→∞

∑ 𝛾𝑛𝑋𝑛
𝑁
𝑛=0 𝐷𝑛 (14) 

 

Where 0 ≤ γ < 1 is the probability factor of the transmitter to accomplish its operation in the specified time 

slot. In real time the system checks the battery state Bn, the capacitor Cn, the size of data Dn, and the channel 

state. The system will estimate the amount of the required energy to transmit the incoming data, in order to 

select the used equipment to power the transmitter, this energy noted 𝐸𝑛
𝑇 must meet the following conditions: 

 

𝑋𝑛
0. 𝐸𝑛

𝑇 ≤ 𝐵𝑛𝑋𝑛
1 + 𝐶𝑛(1 − 𝑋𝑛

1) (15) 

 

0 ≤ 𝐵𝑛 ≤ 𝐵𝑚𝑎𝑥 (16) 

 

0 ≤ 𝐶𝑛 ≤ 𝐶𝑚𝑎𝑥 (17) 

 

During each phase, the transmitter needs En
T amount of power to transmit data from Bn or Cn (in the 

battery or the capacitor). In the next epoch, the devices receive Bn+1 or Cn+1 amount of energy. Thus, this 

energy at each epoch can be updated (18) and (19). 

 

𝐵𝑛+1 = 𝑚𝑖𝑛{𝐵𝑛 − 𝑋𝑛
1𝑋𝑛

2𝐸𝑛
𝑇 + 𝑋𝑛

0𝐸𝑛
𝐻 , 𝐵𝑛

𝑚𝑎𝑥} (18) 

 

𝐶𝑛+1 = 𝑚𝑖𝑛{𝐶𝑛 − (1 − 𝑋𝑛
1)𝑋𝑛

2𝐸𝑛
𝑇 + (1 − 𝑋𝑛

0)𝐸𝑛
𝐻; 𝐶𝑛

𝑚𝑎𝑥} (19) 

 

The problem defined above is NP-hard since variables⁡Xn
0 , Xn

1 , and Xn
2  are binary. Because the referenced 

problem has affine objective and constrained functions, it is considered as mixed integer linear program 

(MILP). Branch and Bound is a commonly used algorithm to solve this kind of problems [41]. However, to 

use this algorithm, all the future data, channel state and energy arrivals must be known in advance. In the 

literature lot of works were proposed to solve MILP based on machine learning and reinforcement learning is 

a powerful solution to deal with such this style of problem [42]. 

 

2.4.2. Reinforcement learning 

Reinforcement learning (RL) is proposed as a solution for energy optimization in point-to-point 

wireless communication. The method involves an energy management system that dynamically optimizes 

power flow between batteries and capacitors in IoT communication systems. This approach learns optimal 

decisions over time without prior knowledge of energy demands, using only environmental state observations 

(e.g., battery cycles and lifetime). Basically, RL system is modeled by the interaction between environment 

and the model components as illustrated in Figure 6. 
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Figure 6. Reinforcement learning and interaction model 
 
 

Q-learning is a value based learning algorithm in reinforcement learning. The main objective of 

reinforcement learning is to determine the best Q-value for each state using a learning rate coefficient αn in 

the nth learning iteration and a discount factor 0 ⩽ γ ⩽ 1. This approach ensures that the transmitter has a 

probability of 1 − γ to operate successfully in each time slot Ts. 
 

𝑄𝑛(𝑠𝑗 , 𝑥𝑖) = (1 − 𝛼𝑛)𝑄𝑛−1(𝑠𝑗 , 𝑥𝑖) + 𝛼𝑛 [𝑅𝑥𝑖(𝑠𝑗 , 𝑠𝑘) + 𝛾𝑚𝑎𝑥𝑥𝑗∈𝐴 𝑄𝑛−1 (𝑠𝑘 , 𝑥𝑗)] (20) 

 

The used q-learning notations are: 

- The state set S<Bn, Hn, Cn, Dn>, where Bn represents the battery energy at the moment n, Hn is the state of 

channel, Cn represents the capacitor energy at the moment n, and Dn amount of collected data in the time 

period n.  

- Set of actions A={< Xn
0 , Xn

1 , Xn
2 >}. 

- The reward function is explained by the following function: Rt(Sn, Sn+1) = XnDn. 

Algorithm 2 represents the pseudo-code of the Q-learning algorithm. 
 

Algorithm 2. Q-learning algorithm 

Initialization 

- For each state Si ∈ S and each action xj ∈ A, do: 

Q(Si, xj) ← 0 

- Evaluate the initial state Si ∈ S 

Learning process 

While the maximum number of iterations is not reached, do: 

- Choose an action xj ∈ A using the ε-greedy policy based on the current Q-values. 

- Execute action xj and observe: 

– The immediate reward Rt 

– The next state S′ 

- Update the Q-value using the Q-learning update rule: 

Qt+1(Si, xj) ← Q(Si, xj) + α [Rt + γ maxx,J Qt(S′, x′j) − Q(Si, xj)] 

- Set the current state: Si ← S′ 

End while 
 

The Q-learning algorithm determines the optimal state by estimating the next Q-value, Qn+1 (Si, xi). 

This estimation is achieved by combining the previous estimate, Qn-1 (Si, xi), with the estimated expected 

value of the best action at the subsequent state Sn+1. During each time slot (𝑇𝑆), the algorithm refines its 

estimates according to the following steps: 

- Notices the current state Sn=Sj ϵ S. 

- Selects and executes an action Xn=xi ϵ A. 

- Observes the next state and the corresponding reward, then updates its estimate of Q using (20). 
 

 

3. RESULTS AND DISCUSSION 

The simulation analysis of the proposed method is presented in this section. The parameters used in 

this work are as follows: The system model has a maximum energy capacity of battery that is located in 

Bmax = {20. 2.510−5, 50. 2.510−5,100. 2.510−5}J. The energy level in the battery is Bn = {0, Bmax}. The 

packet sizes are D = {300, 600} bits with transition state probabilities pd (d1, d1) = pd (d2, d2) = 0.99 and 

the channel state Hn = {0.01 0.02}. The energy harvested in time-slotted Ts = 100 s, which is worth is  
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En
T = 0.5×10−5 J. The noise power density is N0 = −167 dBm/Hz, the transmit time is ΔTx = 0.005 s. The 

capacitor capacity ranges from 0 to 240 µF. The Q-learning parameters are: the learning rate fixed at α = 

0.85, the exploration probability is ε = 0.1, and the discount factor γ = 0.99. 

Figure 7 depicts the expected transmitted data by the system as a function of the capacitor capacity 

at different temperature values. Despite the temperature parameter directly influencing the degradation of 

battery capacity, however, the proposed method demonstrates that the quantity of transmitted data increases 

with the capacity of the capacitor. Notably, beyond a certain capacity value, the data transmission becomes 

almost linear.  

Figure 8 illustrates the increase in battery capacity as a function of capacitor capacity at different 

temperature values, demonstrating the effectiveness of the proposed model. The battery’s lifetime increases 

linearly before stabilizing with a slight augmentation. This indicates that the method used in this system 

optimizes the battery’s lifespan by comparing it with other solutions involving only the battery, without the 

inclusion of a capacitor or the reinforcement learning algorithm mentioned earlier.  
 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

 

Figure 7. The amount of data transmitted with the proposed method at different temperature values:  

(a) 20 °C, (b) 25 °C, (c) 35 °C, and (d) 45 °C 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

Figure 8. The lifetime of the battery with the proposed method for different temperature values, in function 

the capacity of the capacitor: (a) 20 °C, (b) 25 °C, (c) 35 °C, and (d) 45 °C 

 

 

Our numerical results have illustrated the relevance of the learning theoretic approach for practical 

scenarios. The proposed model leads to an improvement in the quantity of data transmitted without being 

influenced by temperature. This method enhances the effectiveness of the communication system equipped 

by a device of energy harvesting and stores its energy in a battery or a capacitor, alongside a reinforcement 

learning algorithm. This adaptation of transmitted data surpasses the performance of the previous systems. As 

for the battery-capacitor combination for energy storage, this ESMS have expanded the battery lifespan by 

reducing the charge discharge cycles. Unlike the approach presented in [9], which focuses on reducing data 

transmission to enhance energy efficiency, our method increases data transmission through the utilization of 

a hybrid storage system. Additionally, our online optimization model demonstrates superior performance 

compared to offline regression algorithms, particularly in dynamic environments where pre-processing is 

necessary [12]. Offline models often require updates when environmental conditions change, whereas our 

approach adapts to the environment.  

The proposed system effectively meets its objectives by optimizing energy efficiency through two 

key strategies. First, it extends the battery lifespan by implementing advanced energy management 

techniques, which reduce the rate of battery degradation and improve overall longevity. Second, it enhances 

data transmission capabilities by leveraging a hybrid storage system that balances performance and 

efficiency. This dual approach not only ensures that energy consumption is minimized but also that a greater 

volume of data can be transmitted without compromising system performance. As a result, the system 

achieves a robust balance between maintaining high energy efficiency and meeting data transmission needs, 

providing a sustainable solution that adapts to varying operational demands. 

 

 

4. CONCLUSION 

In this paper, an energy harvesting system is proposed to explore the combination of capacitors and 

batteries to store harvested energy and then power a wireless transmitter node. The rainflow algorithm 

estimates battery life, while the Q-learning algorithm determines the optimal strategy, to transmit data or to 

store gathered energy in a node based on the available energy, battery state, and the channel information 

during the designated transmission period. Our results demonstrate the applicability of the approach proposed 

to extend the battery lifespan by implementing advanced energy management techniques, which reduce the 

rate of battery degradation and improve overall longevity and enhances data transmission capabilities by 

leveraging a hybrid storage system that balances performance and efficiency. This dual approach not only 

ensures that energy usage is optimized but also that a greater volume of data can be transmitted without 

compromising system performance. Future studies could follow up on work done with real-world 

deployments to validate the theoretical models and optimization algorithms proposed under different 

environmental and operational conditions. In addition, machine learning models possibly trained on 

operational data could predict energy availability, allowing transmission schedule optimization to become 

more dynamic and potentially improving system performance. Also, examining how energy harvesting and 
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battery management techniques could empower these emerging paradigms, such as massive machine-type 

communication (mMTC), will also create opportunities for scalable and efficient wireless communication 

networks. 
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