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 The article suggests employing second-order sliding mode control (SOSMC) 

to manage photovoltaic systems (PVS) connected to the electrical grid. 

These systems face complexities due to non-linearities, variability, 

uncertainties, disturbances, and climate changes. The proposed control 

strategy utilizes two converters: one at the photovoltaic generator (PVG) 

side for maximum power point tracking (MPPT) to optimize energy 

generation and another at the grid connection point to regulate power 

injection into the grid and maintain the DC bus voltage (Vdc) while 

achieving unit power factor (UPF). Both converters are equipped with 

SOSMC controllers, enabling independent adjustment of active (P) and 

reactive (Q) power. This approach aims to enhance the energy efficiency and 

robustness of PVS under varying climatic conditions. The performance of 

the system is evaluated under standard and variable irradiation conditions 

using the MATLAB/Simulink environment. Simulation results indicate that 

SOSMC significantly improves system performance and efficiency 

compared to conventional vector control (CVC). Notably, it reduces active 

power overshoot by 100%, decreases Vdc response time, and lowers total 

harmonic distortion (THD) of the current to 1.19%, demonstrating its 

effectiveness across different irradiation levels. 

Keywords: 

Current vector control 

DC–DC boost converter 

Electrical grid  

Maximum power point tracking 

Photovoltaic system 

Second order sliding mode 

control 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Noureddine Ech-cherki 

Laboratory: Electronics, Instrumentation and Energy (LEIE), Faculty of Science 

Chouaib Doukkali University 

El Jadida, Morocco 

Email: cherki.ucd@gmail.com 

 

 

1. INTRODUCTION 

In recent years, the advancement in renewable and green energy utilization has emerged as a key 

solution to environmental pollution caused by fossil fuels and the decline in energy production [1]. 

Renewable energy-based power generation systems are now crucial in global energy production. Among the 

available renewable sources, photovoltaic (PV) energy stands out as the most favorable option due to its 

widespread availability, environmental benefits, and cost-free nature [2]. Compared to other energy sources, 

PV systems are highly regarded for their durability and efficiency, establishing PV as a rapidly growing 

energy source worldwide. PV systems are expected to grow by 15% between 2020 and 2040 and have the 

potential to generate 9000 TWh, representing 26% of projected global demand [3]. This trend requires most 

photovoltaic power generation plants to make substantial changes to their operational and control structures. 

Consequently, many researchers have proposed various control configurations to improve the desired 

operational characteristics [4]. In the literature, most articles on grid-connected PV systems concentrate on 

inverter control. These methods typically employ proportional-integral (PI) controllers to regulate the Vdc and 
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the current supplied to the grid, ensuring maximum active power transfer (P). For maximum power point 

tracking (MPPT) control, the perturb and observe (P&O) technique is commonly used due to its simplicity 

and satisfactory results [5]. However, it is important to note that this technique exhibits fluctuations around 

the operating point and can lose this point during rapid changes in irradiation, so for high-quality energy 

transfer, an alternative method for MPPT is required [6]. One method that fulfills this requirement is sliding 

mode control (SMC), particularly high-order sliding mode control (HOSMC). SMC is valued for its 

robustness against climatic fluctuations. HOSMC is introduced to overcome the challenges associated with 

first-order SMC, especially the significant issue of chattering around the sliding surface (σ) [7]. The 

development of grid-connected PV systems has led many researchers to study their robustness and stability. 

For instance, Debdouche et al. [8] propose a control strategy for grid-connected inverters that combines 

model predictive control with integral sliding mode control. Ali et al. [9] show that combining fuzzy logic 

control (FLC) with particle swarm optimization (PSO) algorithms enhances MPPT compared to P&O 

methods. While this technique offers robust performance in minimizing response time, it is complex to 

implement. Another MPPT method, introduced in [10], employs neuro-fuzzy logic (NFL) to improve output 

power and response time under varying climatic conditions. Zheng et al. [11] describe an MPPT strategy 

using a first-order plus integral plus derivative (FOPID) controller to eliminate disturbances affecting output 

voltage, demonstrating enhanced performance and dynamic response compared to traditional methods. In 

[12], an adaptive perturbing fuzzy Takagi-Sugeno sliding mode control (Fuzzy T-S SMC) approach is 

developed for accurate MPPT tracking and reducing oscillations around the MPP. Shahdadi et al. [13] 

present SMC control for a SEPIC boost converter, achieving precise MPP tracking and increased system 

robustness. Guo et al. [14] suggest using a second-order sliding mode control (SOSMC) configuration for a 

PV system with a single power converter, aiming to generate sinusoidal current for the grid and reduce 

harmonics, thus improving robustness against solar irradiance fluctuations. Beniss et al. [15] discuss 

fractional order SMC (FOSMC) to optimize power delivery and regulate DC voltage in permanent magnet 

synchronous generators (PMSG), showing fast response under variable wind conditions. Nonlinear integral 

backstepping (NIB) for PV systems, as presented in [16], proved efficient, though complexity issues can lead 

to higher energy costs. An intelligent MPPT approach combining neural networks and fuzzy logic (NN-FL) 

for PV control is detailed in [17], offering increased robustness and rapid dynamic response compared to 

conventional methods. Roy et al. [18] introduce an SMC controller using a two-power-law control method 

for PV systems and battery-powered DC microgrids, although chattering remains a major drawback. Various 

improvement methods, including the terminal SMC (TSMC) technique cited in [19], continuous nonlinear 

predictive control with integral SMC (ISMC) described in [20], and fuzzy SMC (FSMC) presented in [21], 

explore different strategies to enhance performance. While these strategies provide numerous benefits, they 

also come with drawbacks, such as power fluctuations and high levels of THD, which negatively impact 

overall power quality. Table 1 summarizes the advantages and disadvantages of some of these strategies. 

In this context, the SOSTM and MPPT-SOSMC controllers are the major contributions of this 

paper. The results are compared with the conventional technique regarding dynamic response, overshoot and 

THD under two different irradiation profiles. Simulation results demonstrate its effectiveness compared to 

conventional control methods. Therefore, the principal contributions of this work are as follows: 

- The SOSMC method reduces the chattering effects of traditional SMC; 

- The MPPT-SOSMC method replaces the P&O to improve MPPT; 

- The developed SOSMC method reduces the THD of the current injected to the grid; and 

- Reduce P and Q overshoots and steady-state errors. 

The structure of this article is: the first section presents the introduction to this work. The second 

section describes the photovoltaic generator (PVG) model, the DC-DC, DC-AC converter and its SOSMC 

control. The third section details the simulation results and analysis of the proposed SOSMC method, 

including a comparison with the conventional vector control (CVC) technique, while the fourth section 

presents a general conclusion of this study. 

 

 

Table 1. Comparison of some strategies used in PV system control 
Strategy Name Advantage Disadvantage 

FLC and PSO [9] Robust for minimizing response time Complex hardware and programming required 

NFL [10] Rapid convergence Oscillation near the operating point 
FOPID [11] Rapid dynamic response Large overrun 

SMC [13] Simple and inexpensive Chattering 

NIB [16] Good performance Higher construction costs 
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2. PROPOSED SYSTEM  
Figure 1 illustrates a diagram of a PV system connected to a grid through two power converters. The 

first converter, operating as a DC-DC converter in boost mode, is designed to regulate power on the PVG 

side. The second converter, functioning as a DC-AC inverter, is primarily responsible for maintaining a 

constant Vdc and ensuring a unity power factor (UPF). 

 

2.1.  Modeling of the PV generator 

The PVG is composed of PV cells arranged in a series-parallel configuration to produce electricity 

directly from sunlight. Figure 1 shows the circuit diagram of a single-diode PV cell. Figure 2 shows the effect 

of temperature and irradiance on the PVG parameters (P-V). The PVG is modeled using (1) [21]. 

 

𝑖pv= iph- i0 [Exp (
𝑞

A.k.T
(𝑉pv+ipv.R𝑠)) -1]  - (

𝑉pv+ipv.R𝑠

𝑅sh
) (1) 

 

The photocurrent iph, influenced by the irradiance and cell temperature, is given by (2). 

 

𝑖ph= [𝑖sc+K𝑖 . (T-T𝑟)]. (
𝐺

𝐺𝑟
) (2) 

 

Where: 𝑖sc is short-circuit current, q is the electric charge, 𝐾 is the Boltzmann constant, K𝑖  is the current 

temperature coefficient, 𝐴 is the cell's ideality factor, 𝐺 is the irradiance, 𝐺𝑟  is the reference irradiance, 𝑇 is 

the temperature, T𝑟  is temperature reference, 𝑉𝑜𝑐  is the voltage in an open circuit, 𝐸𝑔 is the band gap energy, 

𝑅𝑠 and 𝑅𝑠ℎ are the series and shunt resistors, and 𝑁𝑠 is the number of series cells. 

 

 

 
 

Figure 1. Topology of PVS connected to grid  

 

 

  
(a) (b) 

 

Figure 2. P-V characteristics of PVG according to (a) irradiation and (b) temperature 
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2.2.  SOSMC controller design 

In the SMC technique, the system trajectories are guided towards a specific surface known as the 

sliding surface (σ), where desirable characteristics are achieved. The controller ensures that the system 

remains on this surface at all times [22], [23]. However, this method can lead to persistent oscillations in the 

steady state, which is undesirable. In contrast, the SOSMC method is regarded as one of the most effective 

strategies for reducing chattering effects and enhancing the performance of the PV system [24]. The surface σ 

is expressed as (3). 

 

σ = xref- x (3) 

 

Where x is the parameter to be regulated and xref its reference. The SOSMC controller (𝑢𝑐) comprises two 

components: the equivalent control component (ueq) and the SOSMC algorithm term (uSO) [24]. 

 

𝑢𝑐  =  ueq+ uSO (4) 

 

The term ueq is determined by (5). 

 
dσ

dt
 =  0 (5) 

 

The uSO term ensures that the PV system remains on the σ despite parameter variations and irradiation 

changes. The expression for uSO is given by (6). 

 

𝑢SO =  u1+ u2 (6) 

 

Where: 

 

{
𝑢1 = β

1
|𝜎|0.5. sign(𝜎)

𝑢2 = β
2 ∫ sign(𝜎).dt

 (7) 

 

Where β1 and β2 are the SOSMC gains. 

 

2.3.  Modeling and control design of the boost converter 

The boost converter is used to adjust the voltage between the PVG and the inverter. The proposed 

control objectives are to maintain MPP and increase output voltage [25]. The diagram of the boost converter 

used is shown in Figure 1. The characteristic equations of the boost converter are given by (8). 

 

{

dipv

dt
 = 

1

𝐿
. [𝑉pv- (1- α).Vdc]

dVdc

dt
= 

1

𝐶0
. [(1- α).i𝐿 −

𝑉dc

𝑅
]
 (8) 

 

Where α is the duty cycle α.  

Based on the P-V and I-V profiles of the PVG presented in Figure 2, it can be deduced that when 

operating at MPP: 

 
dPpv

dVpv
=

𝑑(𝑉pv.ipv)

dVpv
 =  ipv +  Vpv ⋅

dipv

dVpv
= 0 (9) 

 

the surface σ is determined according to (10) to reach the MPP [26]. 

 

σ = 
dPpv

dVpv
 (10) 

 

The equivalent control term 𝑢eq of the SOSMC controller is determined by (10). 

 

𝑢eq =  1 - 
𝑉pv

𝑉dc
 (11) 

 

From the (4), (6), (7), and (11), the final expression for the proposed control signal is given by (12). 
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𝑢𝐶  = 1 - 
𝑉pv

𝑉dc
 + 𝛽1 × |𝜎|0.5× sign(𝜎) + 𝛽2 × ∫ sign(𝜎)×dt (12) 

 

2.4.  Modeling and control design on the grid side with SOSMC 

The inverter's role is to maintain a constant Vdc and regulate the P and Q injected into the grid to 

ensure a UPF. In this study, a two-loop control scheme is used: the internal loops regulate the quadrature (iq) 

and direct (id) currents, while the external loop controls Vdc and generates the reference current (id-ref). The 

circuit diagram of the inverter connected to the grid is shown in Figure 1. The Park transformation is applied 

to convert the inverter's three-phase coordinates into two synchronous d-q rotational coordinates [27]. 

 

{

di𝑑

dt
 = 

1

𝐿𝑓
⋅ (𝑉𝑑 - R𝑓 .i𝑑  - e𝑑)+ L𝑓ωi𝑞

di𝑞

dt
 = 

1

𝐿𝑓
⋅ (𝑉𝑞 - R𝑓 .i𝑞- e𝑞)- L𝑓ωi𝑑

 (13) 

 

When the tension vector is aligned on the d-axis, the P and Q are given with: 

 

{
P = 

3

2
.V.i𝑑

Q = 
3

2
.V.i𝑞

 (14) 

 

P and Q can therefore be controlled by regulating iq and id. Thus, the iq reference (iq_ref) is kept at zero to 

achieve UPF, while id reference (id_ref) is determined by the Vdc controller. The objective of SOSMC inverter 

control is to eliminate the chattering phenomenon by adding an integral term to the current error. The σ can 

be described as (15) [15]. 

 

𝜎dq = idq-ref - idq (15) 

 

ueq is determined from the (5), (13), and (15) as (16). 

 

{
𝑢d-eq= 

did-ref

dt
+ R.i𝑑- Lωi𝑞+ e𝑑

𝑢q-eq= R.i𝑞+ Lωi𝑑+ e𝑞

 (16) 

 

The final expressions of the proposed commands are given as (17). 

 

{
𝑢𝑑= 

did-ref

dt
+ R×i𝑑- Lωi𝑞+ e𝑑  - λ1 × |𝜎𝑑|0.5× sign(𝜎𝑑) - λ2 × ∫ sign(𝜎𝑑)×dt

𝑢𝑞= R×i𝑞+ Lωi𝑑+ e𝑞 −  λ3 × |𝜎𝑞|
0.5

× sign(𝜎𝑞) - λ4 × ∫ sign(𝜎𝑞)×dt
 (17) 

 

 

3. THE RESULTS AND DISCUSSION 

In this study, the PVG used provides a maximum power of 160 kW at G=1000 W/m2. A 

comparative analysis between SOSMC and conventional CVC is conducted to demonstrate the effectiveness 

of the proposed technique. The irradiation profile utilized is depicted in Figures 3(a) and 3(b). The simulation 

results are presented in Figures 3 through 7. Table 2 gives the PVS parameters. 

Figure 4 illustrates the P and Q injected into the grid using both the SOSMC control and CVC 

method for step (Figure 4(a)) and real (Figure 4(b)) irradiation changes. It is evident that P quickly converges 

to its MPP with high precision during irradiation variations. At G=1000 W/m2, P reaches its maximum value 

of 160 kW supplied by the PVG, with the overshoot reduced to zero, while Q remains at zero. Figure 5 shows 

the dynamics of Vdc, demonstrating that it closely follows its reference value in a very short time, with 

minimal steady-state error for the SOSMC controller. Figure 6 presents the current injected into the grid 

during the first phase, which has a sinusoidal waveform at 50 Hz, indicating a low rate of current harmonics. 

This figure also shows that the grid voltages and currents are in phase, confirming the absence of reactive 

power injection and ensuring a UPF. Figure 7 displays the THD of the first-phase current connected to the 

grid for both CVC (Figure 7(a)) and SOSMC (Figure 7(b)) controllers. The THD for SOSMC is reduced to 

1.19%, compared to 2.28% for CVC, indicating that the CVC technique is more affected by irradiation 

variations. The developed method significantly reduces ripple, demonstrating its robustness under fluctuating 

climatic conditions. 
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Table 2. The PVS parameters 
Parameter Symbol Value 

Capacitor for DC bus (μF) CO 2000 
Input capacitor (μF) Cin 1000 

Inductance of the boost (mH) L 3.5 

Switching frequency (kHz) Fs 5 
Inverter inductance (mH) Lf 3 

Inverter switching rate (kHz) Fsh 5 

DC bus voltage reference (V) Vdc_ref 700 

 

 

  
(a) (b) 

 

Figure 3. Irradiation variations in W/m2: (a) stepped profile and (b) real profile 

 

 

  
(a) (b) 

 

Figure 4. Active and reactive power for (a) step irradiation and (b) reel irradiation 

 

 

 
 

Figure 5. Vdc responses with SOSMC and CVC 
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Figure 6. Current injected into grid for the first phase 
 

 

  
(a) (b) 

 

Figure 7. THD of the current with (a) CVC and (b) SOSMC  
 

 

4. CONCLUSION 

This article introduces a novel SOSMC controller for regulating a PV system in two distinct stages. 

Initially, on the direct current side, the controller focuses on maximizing the power generated by the PVG. 

Subsequently, on the alternating current side, the goal is to transfer this power to the grid with a unity power 

factor. The SOSMC-based strategy is designed to enhance PV system performance compared to traditional 

SMC by minimizing ripples in active and reactive power. Comparative results between the SOSMC and 

conventional CVC show a 100% reduction in active power overshoot during sudden irradiance changes, with 

minimized response time. Additionally, the THD of the current is reduced to 1.19% with SOSMC, compared 

to 2.28% with CVC. Thus, the SOSMC strategy demonstrates significant promise for improving the energy 

efficiency of grid-connected photovoltaic systems. 
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