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 The total harmonic distortion (THD) of grid current and leakage current are 

significant for transformerless inverters, as they impact power quality, 

efficiency, and compliance with grid codes. Monitoring and minimizing 

these currents ensure safe and reliable grid integration of photovoltaic (PV) 

systems while reducing electromagnetic interference. Therefore, in this 

paper, the analysis THD of grid current and leakage current is described. 

The bipolar pulse width modulation (BPWM) technology provides a stable 

common-mode voltage (200 V), fewer leakage currents (< 30 mA), and 

better system efficiency, compared to the unipolar pulse width modulation 

(UPWM) technique. To ensure the inverter complies with the IEC 61000-3-2 

class C (THDi < 5%), the current control strategy should be considered 

during the design of the transformerless inverter. Therefore, this paper 

presents an implementation and evaluation of the bipolar hysteresis current 

control (BHCC) technique. In comparison to the BPWM technique, the 

BHCC technique delivers lower leakage current (0.007274 A), reduced grid 

current harmonic distortion (1.81%), and increased efficiency. 
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1. INTRODUCTION 

There is no denying that the usage of photovoltaic (PV) systems in business and residential settings 

helps to minimize the usage of fossil fuels. PV systems connected to the grid are frequently connected 

through a transformer. Although a transformer provides galvanic isolation between the DC and AC parts, its 

disadvantages include decreased efficiency, increased bulk, and weight [1], [2]. Thus, many researchers have 

recently introduced the PV grid transformerless inverter technology [3], [4]. When the transformer is 

removed, a galvanic connection is made between the PV module and the electrical grid, and the common 

mode (CM) leakage current is generated [5]. In [6], the maximum common mode leakage current allowed by 

the VDE 0126-1-1 standard is 300 mA (ICM < 300 mArms). High common mode leakage current in 

transformerless inverter grid-connected systems can lead to electrical safety hazards, electromagnetic 

interference, and ground loop issues. It may cause device malfunctions, equipment damage, and pose  

risks to personnel. Effective mitigation strategies are necessary to ensure safe and reliable operation  

of the system [7]. 

To mitigate high common mode leakage current in transformerless inverter grid-connected systems, 

several strategies can be employed. The first one uses bipolar sinusoidal pulse width modulation (SPWM) 

modulation, which prevents changes in the common mode voltage and consequently lowers leakage current [8], 

https://creativecommons.org/licenses/by-sa/4.0/
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[9]. The second strategy is to disconnect PV modules from the grid when the common mode voltage fluctuates. 

Therefore in [2], [10], [11] the various topologies for single-phase transformerless inverters, including HERIC, 

H5, HBZVR-D, and H6 are introduced. Each topology employs different circuit arrangements and control 

strategies to minimize common mode leakage current and ensure safe and efficient grid-connected operation. 

The third strategy is proposed the filter design. The grid connection through a modified LCL filter is a 

promising alternative for the reduction of the common mode leakage current [12], [13]. 

A low total harmonic distortion (THD) current in transformerless inverters is crucial for ensuring the 

stable and efficient operation of electrical systems. By regulating the output current, it ensures optimal power 

delivery to the grid while minimizing harmonic distortion and reducing electromagnetic interference. This 

enables reliable grid-connected applications with improved power quality and performance. Certainly, some 

common techniques are used for current control in transformerless inverters such as hysteresis current 

control, predictive control, and proportional integral derivative (PID) control. Predictive control in 

transformerless inverters anticipates future system behavior to adjust switching signals, ensuring precise 

current regulation, and minimizing distortion [14]. Hysteresis control compares actual current with 

predefined thresholds, swiftly switching to maintain regulation within a set band [15], [16]. PID control 

adjusts inverter output based on error, incorporating proportional, integral, and derivative terms for precise 

regulation [17]. Hysteresis control in transformerless inverters offers rapid response and simplicity, swiftly 

adjusting switching signals based on current deviations within a preset band. Unlike predictive and PID 

control. It requires minimal computational resources and is less sensitive to parameter variations, making it 

suitable for real-time applications with stringent response requirements. 

Accordingly, the strategy impact on common mode leakage current and current control technique 

for regulating output current was found in the literature. Therefore, this paper presents a methodology for 

designing a transformerless H-bridge inverter with a bipolar PWM technique. In section 3, the performance 

between bipolar pulse width modulation (BPWM) and unipolar pulse width modulation (UPWM), bipolar 

pulse width modulation without hysteresis current control (BPWM), and bipolar hysteresis current control 

(BHCC) in terms of THD load current, THD leakage current and power conversion efficiency are presented. 

To validate the theoretical approach, simulation data for a 1 kW model are presented. 

 

 

2. SINGLE PHASE TRANSFORMERLESS INVERTER  

Figure 1 shows the configuration of a single-phase transformerless inverter, which includes a PV 

model, an H-bridge inverter, and an AC LCL filter. The mechanical structure of the PV modules and their 

installation is defined as parasitic capacitance (CPV). The parasitic capacitance (CPV) due to grounded 

support PV modules frame is modeled in Figure 1 where 𝑖 is actual current and 𝑖∗ is the reference current. 

Parasitic capacitance creates a pathway for common mode leakage currents, potentially causing safety 

concerns and affecting transformerless inverter performance. The maximum leakage current allowed by the 

VDE 0126-1-1 standard is 300 mA (ICM < 300 mArms) [18]. The surface of the PV array and the grounded 

frame affect the parasitic capacitance value, in [19], the parasitic capacitance changes between 50 nF and  

150 nF per kW of installed PV panels. 

 

 

 
 

Figure 1. Leakage current path of single-phase transformerless inverter 
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The path of the generated leakage current is also affected by the value of parasitic capacitance 

(CPV) is estimated by (1). 
 

𝐼𝐶𝑀 = CPV
𝑑𝑉𝐶𝑀

dt
 (1) 

 

The conduction path of the leakage current in typical transformerless inverters is illustrated.  

in Figure 1 is caused by the instantaneous common-mode voltage (VCM). The VCM can be found.  

using (2) [20], [21] on the voltage potential respectively at points A and B to the neutral point. 
 

𝑉𝐶𝑀 =
VAO+VBO

2
 (2) 

 

2.1.  Design parameters 

A nominal output voltage (VO) of 230 Vrms is required from the inverter due to grid-connected 

applications. The (3) is thus used to calculate the required input voltage (VPV) value. 
 

𝑉𝑂 =  (𝑚𝑎)(𝑉𝑃𝑉) (3) 
 

Since ma is 0.8. 
 

(230 𝑉𝑟𝑚𝑠)(√2)  =  (0.8)(𝑉𝐷𝐶)  

𝑉𝐷𝐶 =  406 𝑉 ≈  400 𝑉  
 

H-bridge circuit employs insulated-gate bipolar transistors (IGBT) in parallel with diode switches. The LCL 

filter in transformerless inverters is significant for mitigating leakage current by providing effective filtering 

of common mode voltage [22]. The value of LCL is calculated using the (4) and (5) [23]. 
 

L =
1

8

VDC

∆ripple,maxfsw
 (4) 

 

C = (
10

2πfsw
)

2

(
1

L
) (5) 

 

2.2.  Bipolar PWM and unipolar PWM technique 

The bipolar and unipolar PWM techniques are applied in the H-bridge and the common mode 

voltage is analyzed. The bipolar PWM output voltage and common mode voltage are shown in Table 1.  

It concludes that bipolar switching generates two output voltage levels with a steady common mode  

voltage [24]. Maintaining a constant common mode voltage is essential for minimizing leakage current in 

transformerless inverters [25], [26]. 

The unipolar PWM output voltage and common mode voltage are shown in Table 2. The three output 

voltage levels and fluctuating common mode voltage levels resulting from the unipolar PWM technique are 

identified. Bipolar and unipolar PWM techniques reveal distinct impacts on leakage current in PV 

transformerless inverter systems. Unipolar PWM, with three-level output voltage (VDC, 0 V, -VDC), may lead 

to higher leakage currents due to its wider voltage swings. Conversely, bipolar PWM, with two-level output 

voltage (VDC, -VDC), tends to exhibit lower leakage currents, enhancing system efficiency, and reliability. 

Through detailed analysis, this paper optimizes modulation techniques to mitigate leakage currents and improve 

the overall performance of the proposed transformerless inverter for PV grid-connected applications. 
 

 

Table 1. Bipolar PWM mode 
S1 S2 S3 S4 VO VAO VBO VCM 

On On Off Off +𝑉𝐷𝐶 VDC 0 𝑉𝐷𝐶

2
 

Off Off On On −𝑉𝐷𝐶 0 VDC 𝑉𝐷𝐶

2
 

 

 

Table 2. Unipolar PWM mode 
S1 S2 S3 S4 VO VAO VBO VCM 

On Off On Off 0 𝑉𝐷𝐶 VDC VDC 

On On Off Off +𝑉𝐷𝐶 VDC 0 
𝑉𝐷𝐶

2
 

Off On Off On 0 0 0 0 

Off Off On On −𝑉𝐷𝐶 0 VDC 
𝑉𝐷𝐶

2
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2.3.  Bipolar hysteresis current control technique 

Bipolar hysteresis PWM in transformerless inverters offers enhanced performance by reducing 

harmonic distortion and electromagnetic interference. Its bidirectional control improves efficiency and power 

quality, making it suitable for various grid-connected applications with stringent performance requirements. 

Bipolar hysteresis current control as shown in Figure 2 regulates the inverter current output by comparing the 

actual current (i) with upper (n) and lower (m) thresholds. When the current exceeds the thresholds, the 

inverter switches direction, maintaining the current within the hysteresis band [27]. 

Hysteresis bipolar current control in transformerless inverters ensures precise regulation by swiftly 

adjusting switching signals within a preset band. This approach effectively reduces total harmonic distortion 

(THD) of the current output, enhancing power quality and efficiency in grid-connected applications. The 

THD of current is calculated by (6) [28]. 
 

𝑇𝐻𝐷(𝑚), % =
√∑ 𝐼𝑛

2∞
𝑛≠1

𝐼1
× 100 (6) 

 
 

 
 

Figure 2. Bipolar hysteresis current control 
 

 

3. SIMULATION RESULTS AND DISCUSSION  

The circuit of single-phase transformerless inverter with bipolar SPWM, unipolar PWM, and bipolar 

hysteresis current control are simulated using MATLAB/Simulink tool. The simulation parameter of the 

proposed single-phase transformerless inverter is illustrated in Table 3. Unipolar PWM offers half of the 

bipolar PWM switching frequency while maintaining the value of the inductor, L. The parasitic capacitance 

value, denoted as CPV, is specified at 150 nF. 
 
 

Table 3. Single-phase transformerless inverter parameters 
No. Parameters Values 

1. Switching frequency 8 kHz (BPWM) and 4 kHz (UPWM) 
2. Inductance L1 and L2 19.79 mH 

3. Capacitance 2 µF 

4. Parasitic capacitance 150 nF 
5. Output power 1 kW 

 

 

Figures 3 and 4 demonstrate the output voltage (𝑉𝐴𝐵) of an inverter when bipolar and unipolar PWM 

are utilized. The unipolar PWM generates three-level output voltages while bipolar PWM produces two-level 

output voltage. As highlighted in 2.2, the observation of common mode leakage current (ICM) is investigated 

further in this section. In Figures 5 and 6, the common mode voltage (𝑉𝐶𝑀) is constant when using the 

bipolar PWM technique rather than the unipolar PWM technique. 

Figure 7 illustrates how stabilizing the common mode voltage (𝑉𝐶𝑀) mitigates oscillations that 

could lead to higher leakage current. Variations in common-mode voltage, as seen in Figure 8, can cause 

higher common-mode leakage currents. Figures 9 and 10 show the total harmonic distortion (THD) 

simulation results of output current and leakage current for bipolar (BPWM) and unipolar PWM (UPWM) 

switching techniques. As shown in Figure 10, the higher output current total harmonic distortion (THD) 

which is 29.58% and is corresponds with a higher common-mode leakage current. 
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Figure 3. Output voltage (𝑉𝐴𝐵) of BPWM 
 

 

 
 

Figure 4. Output voltage (𝑉𝐴𝐵) of UPWM 
 

 

 
 

Figure 5. Common mode voltage (𝑉𝐶𝑀) of BPWM 
 
 

 
 

Figure 6. Common mode voltage (𝑉𝐶𝑀) of UPWM 
 



                ISSN: 2252-8792 

Int J Appl Power Eng, Vol. 14, No. 1, March 2025: 1-10 

6 

 
 

Figure 7. Leakage current with BPWM technique 

 

 

 
 

Figure 8. Leakage current with UPWM technique 

 
 

 
 

Figure 9. Load current with BPWM technique 
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Figure 10. Load current with UPWM technique 

 
 

Based on the simulation findings, the comparison of leakage current generated, the power 

conversion efficiency, and the value of THD load current in relation to the IEC 61000-3-2 class C standard is 

indicated in Table 4. Bipolar PWM complies with the THD load current standard, which is less than 5%, but 

unipolar PWM does not comply with the standard, which is more than 20%. Additionally, bipolar PWM 

exhibits a 12.8% increase in power conversion efficiency over unipolar PWM. 

This paper examines bipolar PWM and bipolar hysteresis PWM to maximize the proposed inverter 

performance. Figure 11 displays the simulation results of load current for bipolar PWM hysteresis current 

control (BHCC). As demonstrated in Figure 11, the BHCC technique results in a THD current output that 

satisfies the IEC standard (THDi < 5%) and a considerable rise in the output current peak. Furthermore, the 

results demonstrate that the distribution of the load current's spectrum contents is significantly affected by the 

random hysteresis current control based on bipolar hysteresis PWM modulation. 

 

 

 
 

Figure 11. Load current with BHCC 
 

 

The simulation results of leakage current when applying bipolar hysteresis PWM modulation are 

shown in Figure 12. Hysteresis bipolar PWM in transformerless inverters demonstrates improved 

performance in reducing leakage currents and complies with the VDE standard, which is 7.274 mA. Table 5 

presents a comparison of THD load current, amplitude leakage current, and power conversion efficiency 

between bipolar PWM with and without hysteresis current control. In contrast to bipolar PWM without 

hysteresis current control, which is an open loop circuit without a feedback loop, bipolar PWM with 

hysteresis current control is a closed loop circuit with a feedback loop. Therefore, a feedback loop is required 

to enable the output current to meet the desired current.  
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Bipolar hysteresis current control has a 0.33% lower value in terms of amplitude leakage current 

than bipolar PWM without hysteresis. The bipolar PWM without hysteresis has a 2.93% lower amplitude 

load current than bipolar hysteresis current control. Furthermore, the power conversion efficiency of bipolar 

hysteresis current control is 2.7% greater than bipolar PWM without hysteresis control. The analysis 

demonstrates that incorporating hysteresis current control lowers leakage current slightly and improves the 

power conversion efficiency. 
 

 

 
 

Figure 12. Leakage current with BHCC 
 
 

Table 4. Comparison between bipolar PWM switching 

technique and unipolar PWM switching techniques 
Parameter BPWM UPWM 

Amplitude load current (A) 5.861 5.859 
Percentage THDi load (%) 1.61 29.58 

Amplitude leakage current (mA)  7.299 7.298 

Efficiency (%) 77.30 64.50 
 

Table 5. Comparison between bipolar PWM and 

bipolar hysteresis current control 
Parameter BPWM BHCC 

Amplitude load current (A) 5.861 6.038 
Amplitude leakage current (mA) 7.299 7.274 

Efficiency (%) 77.30 80 
 

 
 

4. CONCLUSION 

In conclusion, the comparison between bipolar and unipolar PWM techniques in transformerless 

inverters highlights the crucial role of leakage current, THD load current standards, and power conversion 

efficiency in system performance. Bipolar PWM demonstrates compliance with the THD standard of less 

than 5%, while unipolar PWM falls short, exceeding it by over 20%. The bipolar PWM exhibits a substantial 

increase in power conversion efficiency, outperforming unipolar PWM by 12.8%. Additionally, the analysis 

delves into the impact of hysteresis current control on leakage current and system efficiency. Bipolar 

hysteresis current control showcases a slight reduction in leakage current compared to bipolar PWM without 

hysteresis, enhancing system integrity, and reliability. However, the trade-off between leakage current 

reduction and THD load current must be carefully considered, as bipolar PWM without hysteresis 

demonstrates a lower THD load current by 0.2%. Notably, bipolar hysteresis current control exhibits superior 

power conversion efficiency, surpassing bipolar PWM without hysteresis by 2.7%. Overall, these findings 

contribute to advancing the understanding and optimization of transformerless inverter systems for diverse 

applications in renewable energy and power electronics. 
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