
International Journal of Applied Power Engineering (IJAPE) 

Vol. 14, No. 2, June 2025, pp. 291~299 

ISSN: 2252-8792, DOI: 10.11591/ijape.v14.i2.pp291-299      291  

 

Journal homepage: http://ijape.iaescore.com/ 

State-augmented adaptive sliding-mode observer for estimation 

of state of charge and measurement fault in  

lithium-ion batteries 
 

 

Thuy Nguyen Vinh1, Chi Nguyen Van1, Vy Nguyen Van2 
1Faculty of Electrical and Electronics Engineering, Thai Nguyen University of Technology, Thai Nguyen, Vietnam 

2Faculty of Electrical Engineering, Thai Nguyen University of Economics and Technology (TUTECH), Thai Nguyen, Vietnam 

 

 

Article Info  ABSTRACT  

Article history: 

Received May 16, 2023 

Revised Oct 26, 2024 

Accepted Nov 28, 2024 

 

 Estimating the state of charge (SoC) in lithium-ion batteries (LiB) 

encounters challenges due to model uncertainties and sensor measurement 

errors. To solve this issue, this study introduces an estimator based on an 

innovative adaptive augmented sliding mode approach. This approach 

incorporates measurement faults as additional state variables to minimize the 

impacts of uncertainties effectively. Furthermore, based on the sliding mode 

framework, the design of this estimator addresses resistance to model 

uncertainties. However, sliding estimators commonly face the chattering 

issue. To counteract this, the paper suggests employing adaptive dynamics to 

determine the estimator's gain. This adaptive approach allows the gain 

calculation to minimize estimation errors across all time steps, effectively 

reducing chattering and enhancing estimation accuracy. The performance of 

the proposed method is validated through simulations using two practical 

data sets. Results demonstrate superior accuracy compared to conventional 

sliding methods, with improvements in SoC and terminal voltage estimation. 
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1. INTRODUCTION  

The growing interest in renewable energy systems has led to a surge in research around energy 

storage solutions. Among these, batteries are crucial components that are used in almost all energy storage 

systems. The emergence of lithium-ion batteries (LiB) has revolutionized energy storage. LiBs offer several 

advantages, including higher charge density, compact size, reduced weight, and stable output voltage. As a 

result, their use has increased in various applications, including renewable energy systems (RES) and electric 

vehicles (EVs) [1], [2]. However, the utilization and supervision of LiBs present significant challenges, the 

primary challenges include accurately estimating parameters like state of charge (SoC), internal resistances, 

and detecting faults during current and terminal voltage measurements [3]-[5].  

Researchers have proposed diverse methods for estimating battery parameters and detecting 

measurement faults, categorized as signal-based, model-based, or electrochemical concepts. Among these, 

model-based approaches are widely adopted for their effectiveness in both parameter estimation and fault 

detection [6]. However, the successful implementation of model-based methods hinges on selecting an 

appropriate model for LiBs. Various modeling approaches exist, with electrical methods being one prominent 

option. In this approach, a circuit model is formulated for the battery, from which a state space model is 

derived. Subsequently, utilizing this state space model, researchers develop tailored estimators to determine 
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battery parameters [7], [8]. There are various types of estimators, with Kalman filters constituting the first 

category. These filters operate on recursive mathematical relationships, offering solutions for both linear and 

nonlinear dynamics affected by measurement and process noise. For linear dynamics, conventional filter 

types suffice, while non-linear dynamics necessitate specialized variants like the extended Kalman filter. 

However, the extended Kalman filter suffers from linearization errors, diminishing estimation accuracy. To 

mitigate this, researchers turn to alternatives like the unscented Kalman filter, which requires more 

computational power, it avoids linearization. Despite its complexity, unscented Kalman filters have superior 

accuracy compared to their extended counterpart. Establishing process and measurement noise covariance 

matrices poses a significant challenge in Kalman filter design, often addressed through adaptive approaches 

[9], [10]. Researchers employ techniques such as fuzzy systems or neural networks to adaptively determine 

covariance matrices, enhancing estimation accuracy. Nonetheless, a crucial drawback of Kalman filters lies 

in their dependence on accurate battery models. Errors in model identification engender uncertainty, 

undermining the filter's precision [11]-[13]. 

To address model uncertainties, researchers employ robust estimation techniques for estimating the 

battery's SoC. These methods incorporate a range of uncertainty into their models and adapt the estimator 

accordingly [14]. Sliding estimators are prominent among these robust techniques [15]. However, they often 

encounter chattering issues during estimation. To minimize this, some researchers employ adaptive variations 

that adjust battery parameter estimation [16], [17]. This adaptation can involve making the estimator gain 

adaptive through techniques like fuzzy systems or neural networks [18], [19], or by introducing specialized 

dynamics to minimize chattering. Another robust estimator, the H-infinity estimator, tackles model 

uncertainty by accounting for it in its design, providing accurate estimates even in uncertain conditions. 

Nonetheless, these estimators suffer from heavy computational requirements and complex practical 

implementations [20], [21]. 

In recent years, alongside model-based approaches, learning-based methods have gained significant 

traction for estimating battery parameters. Notably, techniques such as machine learning, deep learning, and 

reinforcement learning have emerged as prominent choices in this domain. The primary advantage of these 

methods lies in their independence from battery modeling, enabling parameter estimation without explicit 

model knowledge. Nevertheless, a major challenge with these approaches is the necessity for a 

comprehensive and dependable dataset for learning [22], [23]. Additionally, alternative methods like signal-

based approaches utilizing ultrasonic sensors have been proposed for parameter estimation. However, these 

methods are hindered by the requirement for a fully equipped laboratory setup. Furthermore, techniques such 

as ampere-hours or impedance measurements offer simplicity and sensitivity to laboratory conditions, albeit 

at the cost of lower accuracy [24]. 

Addressing measurement faults alongside battery parameter estimation is crucial, particularly in 

high-current applications. Currently, limited methods are available for detecting and estimating measurement 

errors in batteries. Furthermore, the uncertainty inherent in battery models can significantly impact parameter 

estimation accuracy. This article proposes an extension method for sliding estimators to tackle these 

challenges. This approach treats measurement faults as an additional state variable, estimating them 

alongside SoC using an adaptive sliding estimator. As a result, both SoC and sensor faults can be accurately 

and easily estimated. The estimator employs a specially designed dynamic process to adaptively extract filter 

gain, reducing chattering during estimation. The remaining part of this paper is structured as follows:  

Section 2 mentions the state space model of LiB. Section 3 introduces the proposed state-augmented adaptive 

sliding-mode observer for estimation of soc and measurement fault. Section 4 shows the estimation results of 

SoC and measurement fault using practical data. Finally, section 5 contains some conclusions.  

 

 

2. STATE SPACE MODEL OF LIB 

Several approaches to modeling LiBs have been proposed. These include electrochemical models, 

equivalent circuit models, and experimental models. Among these, the equivalent circuit models have 

garnered significant attention from engineers and designers due to their ability to strike a balance between 

precision and simplicity, making them particularly appealing for design purposes. To describe more 

accurately the dynamics of LiB, in this research, the second order of LiB is used [25], [26]. 

As depicted in Figure 1, this paper employs a second-order equivalent circuit model to characterize 

the LiB. The circuit model encompasses various components: resistor 𝑅0 representing the internal resistance 

of the battery, two resistor/capacitor loops 𝑅1, 𝐶1, and 𝑅2, 𝐶2 to emulate the battery's transient behavior over 

both long and short terms, SoC dependent voltage source 𝑂𝐶𝑉(𝜍) to incorporate the nonlinear relationship 

between open circuit voltage and SoC of the battery, resistor 𝑅𝑏 to illustrate self-discharge, and  

capacitor 𝐶𝑏 to signify the total battery capacity. By utilizing Kirchhoff's laws, the terminal voltage can be 

expressed by (1). 
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𝑉𝑏 = 𝑂𝐶𝑉(𝜍) − 𝑉1 − 𝑉2 − 𝐼𝑏𝑅0 (1) 

 

In which, 𝜍 is the SoC of LiB; 𝑉1 and 𝑉2 are the voltages across the two resistor/capacitor loops respectively.  

The dynamical equations of the SoC,  𝑉1, and 𝑉2 by (2), (3), and (4), respectively. 

 
𝑑𝜍

𝑑𝑡
= −

𝜍

𝑅𝑏𝐶𝑏
−

𝐼𝑏

𝐶𝑏
 (2) 

 
𝑑𝑉1

𝑑𝑡
= −

𝑉1

𝑅1𝐶1
+

𝐼𝑏

𝐶1
 (3) 

 
𝑑𝑉2

𝑑𝑡
= −

𝑉2

𝑅2𝐶2
+

𝐼𝑏

𝐶2
 (4) 

 

By considering 
𝑑𝐼𝑏

𝑑𝑡
= 0 and using (1) and (2), the dynamical equation of the terminal voltage 𝑉𝑏 is formulated 

as (5). 

 
𝑑𝑉𝑏

𝑑𝑡
=

𝜕𝑂𝐶𝑉(𝜍)

𝜕𝜍
 
𝑑𝜍

𝑑𝑡
 −

𝑑𝑉1

𝑑𝑡
−

𝑑𝑉2

𝑑𝑡
 (5) 

 

The state vector is considered as 𝑧 = [𝜍, 𝑉1, 𝑉2, 𝑉𝑏]
𝑇 ,  𝐼𝑏  is the input 𝑢 and 𝑉𝑏 is the output 𝑦 of the 

battery model. The state space model of the battery by using (2), (3), (4), and (5), can be written as (6). 

 

{
𝑑𝒛

𝑑𝑡
= 𝑓(𝑧, 𝑢) + 𝜌 

𝑦 = 𝐶𝑧 + 𝑛,
   ,   𝐶 = [0 0 0 1] (6) 

 

The terms 𝜌 and 𝑛, with zero mean, represent noises related to process and measurement. The nonlinear 

function vector 𝑓(𝑧, 𝑢) can be expressed as (7). 

 

𝑓(𝑧, 𝑢)  =

[
 
 
 
 
 
 −

𝜍

𝑅𝑏𝐶𝑏
−

𝐼𝑏

𝐶𝑏

−
𝑉1

𝑅1𝐶1
+

𝐼𝑏

𝐶1

−
𝑉2

𝑅2𝐶2
+

𝐼𝑏

𝐶2

𝜕𝑂𝐶𝑉(𝜍)

𝜕𝜍
 
𝑑𝜍

𝑑𝑡
+

𝑉1

𝑅1𝐶1
+

𝑉2

𝑅2𝐶2
− (

𝐶1+𝐶2

𝐶1𝐶2
) 𝐼𝑏]

 
 
 
 
 
 

 (7) 

 

The (7) describes the dynamics of LiB, in which the parameters of this model will be identified from 

experimental data sets, one of the effective parameter identification methods is the authors' method in the 

document [27]. In order to confirm the accuracy of a battery model, it is crucial to simulate it in a software 

environment and compare the terminal voltage with the voltage measured during practical tests. If the 

simulated voltage closely matches the measured voltage within a predefined threshold, it confirms the 

successful identification of the battery. 

 

 

 

 

Figure 1. The second-order equivalent circuit model of LiB 
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3. STATE-AUGMENTED ADAPTIVE SLIDING-MODE OBSERVER FOR ESTIMATION OF 

SOC AND MEASUREMENT FAULT 

To accurately estimate the state variables, such as SoC and measurement sensor fault, it's necessary 

to rewrite the current variables vector as (8) and (9). 
 

𝑧𝑎 = [ 𝜍, 𝑉1, 𝑉2, 𝑉𝑜, 𝜉]𝑇 (8) 
 

𝑓𝑎(𝑧𝑎, 𝑢) =

[
 
 
 
 
 
 
 −

𝜍

𝑅𝑏𝐶𝑏
−

𝐼𝑏

𝐶𝑏

−
𝑉1

𝑅1𝐶1
+

𝐼𝑏

𝐶1

−
𝑉2

𝑅2𝐶2
+

𝐼𝑏

𝐶2

𝜕𝑂𝐶𝑉(𝜍)

𝜕𝜍
 
𝑑𝜍

𝑑𝑡
+

𝑉1

𝑅1𝐶1
+

𝑉2

𝑅2𝐶2
− (

𝐶1+𝐶2

𝐶1𝐶2
) 𝐼𝑏

0 ]
 
 
 
 
 
 
 

 (9) 

 

We will proceed with developing the observer by introducing the spatial model for the newly developed 

state. The state dynamics of the adaptive sliding mode estimator can be expressed in (10). 
 

{
𝑑𝑧̂𝑎

𝑑𝑡
= 𝐴𝑎𝑧̂𝑎 + 𝐵𝑎𝑢 + Γ(𝑒𝜍) + 𝛽𝑎

𝑦̂ = 𝐶𝑎𝑧̂𝑎
 (10) 

 

In (10), the pole-placement method is used to determine the function vector Γ, while vector 𝛽𝑎 represents the 

switching gains of the observer, which is derived through specific dynamics, 𝑒𝜍 = 𝜍 − 𝜍̂ is the SoC estimation 

error, 𝐶𝑎 = [1 0 0 0 0]. The dynamics of the estimation error vector  𝑒 = 𝑧𝑎 − 𝑧̂𝑎  is calculated as (11). 
 

𝑑𝑒

𝑑𝑡
= 𝐴̃𝑎𝑒 + 𝜆𝛥(𝑧) − 𝛽𝑎,    𝐴̃𝑎 = (𝐴𝑎 − Γ𝐶𝑎) (11) 

 

According to the Lyapunov stability theory, matrix 𝐴̃𝑎 must be satisfied (12). 
 

𝐴̃𝑎𝑃 + 𝑃(𝐴̃𝑎)
𝑇

= −𝑄,   𝐶𝑎 = 𝜆𝑇𝑃 (12) 
 

Where 𝑄 is any given positive definite symmetric matrix and 𝑃 is unique solution of the Lyapunov equation 

(12). In order to ensure observer stability, a Lyapunov function based on the error is necessary, it can be 

formulated as (13). 
 

𝑉(𝑒) =
1

2
(𝑒𝑇𝑃𝑒 + (

𝐾

𝜎
)

2

) (13) 

 

We use 𝐾 to denote an assumption for the gain of the proposed observer, which is represented by  

𝐾 = 𝐾 − 𝐾𝑑, 𝜎 is a constant. In order to proof stability of estimation errors, it is essential that the rate of 

change of the Lyapunov function is negative. To achieve this, we derive the Lyapunov function as (14). 
 

𝑑𝑉(𝑒)

𝑑𝑡
=

1

2
((

𝑑𝑒

𝑑𝑡
)

𝑇

𝑃𝑒 + 𝑒𝑇𝑃
𝑑𝑒

𝑑𝑡
) + 𝜎−2𝐾

𝑑𝐾

𝑑𝑡
  

=
1

2
(𝑒𝑇 (𝐴̃𝑎𝑃 + 𝑃(𝐴̃𝑎)

𝑇
) 𝑒) +

1

2
 ((𝜆𝑇𝛥𝑇 − (𝛽𝑎)𝑇)𝑃𝑒 + 𝑒𝑇𝑃 (𝜆𝛥 − 𝛽𝑎)) + 𝜎−2𝐾

𝑑𝐾

𝑑𝑡
  

= −
1

2
𝑒𝑇𝑄𝑒 + 𝛥𝜆𝑇𝑃𝑒 − (𝛽𝑎)𝑇𝑃𝑒 + 𝛿−2𝐾

𝑑𝐾

𝑑𝑡
 (14) 

 

If we select 𝐾 as 𝜎2|𝑒𝜍|, and the 𝛽𝑎  is chosen as 𝐾𝑑
𝜆|𝑒𝜍|

𝑒𝜍
, then we have (15). 

 

𝑑𝑉(𝑒)

𝑑𝑡
= −

1

2
𝑒𝑇𝑄𝑒 + 𝛥𝜆𝑇𝑃𝑒 − 𝐾

|𝑒𝜍|

𝑒𝜍
𝜆𝑇𝑃𝑒 = −

1

2
𝑒𝑇𝑄𝑒 + (𝛥 − 𝐾𝑑

|𝑒𝜍|

𝑒𝜍
) (15) 

 

If 𝑄 is positively symmetric, −
1

2
𝑒𝑇𝑄𝑒 will be negative. Moreover, |𝛥| ≤ 𝛾 is less than zero, and 𝐾𝑑 > 𝛾 is 

always positive, ensuring (𝛥 − 𝐾𝑑
|𝑒𝜍|

𝑒𝜍
) is negative. Consequently, the adaptive observer gain 𝛽𝑎 is 

determined through dynamics, while 𝜎, directly influencing convergence time, is computed via the 

optimization methods. 𝛽𝑎 is obtained using (16). 
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𝑑𝝆̂

𝑑𝑡
= 𝜎|𝑒𝜍|  

𝑑𝒆

𝑑𝑡
= 𝐴̃𝑎𝑒 + 𝜆𝛥(𝑧) − 𝛽𝑎 (16) 

 

So, the adaptive observer gain 𝛽𝑎 is calculated by (17). 

 

𝛽𝑎 = {
𝜌̂(𝑒𝜍)𝛥𝑠𝑖𝑔𝑛(𝑒𝜍),    𝑒𝜍 ≠ 0

0,                                𝑒𝜍 = 0
 (17) 

 

 

4. ESTIMATION RESULTS OF SOC AND MEASUREMENT FAULT USING PRACTICAL DATA 

In order to determine how well the supplementary estimation technique works when evaluating 

lithium battery faults and charge levels, an implementation system was used. This system configuration, 

shown in Figure 2, involves discharging the lithium battery in advance with a programmable load. The 

voltage and current measurements are then utilized for simulations to estimate both the SoC and faults.  

 

 

 

 

Figure 2. The configuration of the implementation system for parameters identification SoC and  

measurement fault estimation 

 

 

After conducting a set of experiments, the dynamic equations for the battery model are derived, and 

the parameters in the battery state space model are determined. In this study, we use the battery type 

UL18650, 4.2 V, 3400 mAh, using the identification method of the authors in [27], the parameters (7) are 

determined as (18). 

 

𝑅𝑏 = 1.0714 × 103(𝛺); 𝐶𝑏 = 666.667(𝜇𝐹); 𝑅1 = 454.5455 (𝛺); 𝐶1 = 20(𝜇𝐹)  

𝑅2 = 0.75 (𝛺); 𝐶2 = 133(𝜇𝐹)  
𝜕𝑂𝐶𝑉(𝜍)

𝜕𝜍
 
𝑑𝜍

𝑑𝑡
≈ −0.3 × 10−4𝜍3 + 0.3 × 10−4(1 − 𝐼𝑏)𝜍

2 + 0.31 × 10−4𝐼𝑏𝜍 − 0.01(𝐼𝑏 + 1)𝑒−39𝜍(18) 

 

To evaluate the effectiveness of the proposed method, we validate the simulations using two sets of real-

world data. These datasets involve altering the frequency of terminal current during discharge to evaluate the 

efficacy of the estimation method. Figures 3 to 7 show performance results for the first data set, while 

Figures 8 to 11 show results for the second data set.  

 

 

 
 

Figure 3. SoC estimation for first data set 
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Figure 4. SoC estimation error for  

the first data set 

 

Figure 5. Terminal voltage estimation for  

the first data set 

 

 

  
 

Figure 6. Voltage estimation error for the first data set 

 

Figure 7. Fault estimation for the first data set 

 

 

Figure 3 compares the performance of the proposed method for estimating SoC at a lower frequency 

with that of a conventional sliding mode approach. The adaptive sliding mode method explained in this study 

shows a 2.95% lower estimation error than the conventional method as plotted in Figure 4. Moreover, the 

proposed method presents minimal chattering while the conventional approach displays some chattering in its 

performance. The difference between the two methods can be attributed to the adaptive calculation of the 

estimator's gain and the use of a genetic algorithm to enhance performance in the proposed method. The 

unique dynamics employed for adaptively calculating the estimator's gain are designed based on minimizing 

estimation errors. 

Figure 5 compares the proposed method's performance in terminal voltage estimation with that of 

the conventional sliding method. Figure 6 shows that this comparison reveals that the proposed method 

achieves a 2 (V) lower voltage estimation error than the conventional method. However, the chattering 

phenomenon persists in the terminal voltage estimation function using the proposed method. Additionally, 

the proposed method considers measurement sensor faults as an additional state variable in the estimator's 

dynamics, enabling it to estimate faults accurately. Figure 7 illustrates the estimation of sensor faults. The 

conventional sliding method cannot estimate sensor faults, which can negatively impact the accuracy of state 

variable estimation. This limitation is demonstrated in Figures 8-11, where the absence of sensor fault 

estimation in the conventional sliding method is evident. 

 

 

 

 

Figure 8. SoC estimation and SoC estimation error for second data set 
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Figure 9. Voltage estimation error for second data set 
 
 

 
 

Figure 10. Terminal voltage estimation for second data set 
 

 

 
 

Figure 11. Fault estimation for second data set 
 

 

5. CONCLUSION 

This paper proposed an augmented adaptive sliding mode method to address model uncertainties 

and measurement sensor errors. The method treats measurement errors as incremental mode variables, 

effectively combating model uncertainties. The inherent chattering problem associated with sliding 

estimators is mitigated by adaptively designing the estimator's gain. Our approach reduces the chattering 

effect by leveraging estimation error and dynamically designed dynamics. This method minimizes estimation 

error across all time steps by optimizing the gain calculation to eliminate chattering in SoC estimation and 

enhance accuracy. Through simulation with practical data in two distinct phases, our proposed method 

demonstrates superior accuracy compared to the conventional sliding method, achieving a better SoC 

estimation percentage. 
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