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A novel type of single-phase hybrid multilevel inverter (HMLI) is proposed
in this paper. A hybrid system is made up of a multilevel inverter coupled to
an H-bridge unit and which can generate nine-level output. To synthesize an
output voltage waveform with nine steps, this setup uses merely seven power
switches, two diodes, and two DC supplies. A greater number of steps were
achieved in output voltage through suggested circuit with a smaller number
of components than other existing multilevel inverter (MLI) topologies.
A finer output waveform that is closer to a sinusoidal shape is produced with
less total harmonic distortion (THD) because of the greater number of steps
in the output voltage. Furthermore, it prolongs the switches' lifetime and
lowers the voltage stress across them, increasing reliability. In addition, the
system produces fewer switches than necessary, resulting in lower power
losses and increased efficiency. This guarantees the suggested system's small
size and inexpensive cost. A comparison between the suggested topology
and the most current MLI topologies has been conducted to highlight the key
components of the proposed topology. The suggested topology has been
controlled using three distinct controlling schemes are phase disposition-
pulse width modulation (PD-PWM), phase opposition disposition-PWM
(POD-PWM), and alternative phase opposition disposition-PWM
(APOD-PWM).
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1. INTRODUCTION

DC-AC converters are a crucial component of electrical power systems that provide changeable
frequency and magnitude in output. Multilevel inverters have become very popular, particularly in the realm
of DC/AC converters, academic and industry research. This interest comes from a variety of advantages that
multilevel inverters have over traditional inverters, which reduces the output waveform's harmonic content
with a lot of steps in the output voltage waveform. Moreover, the physical dimensions of the AC side filter
elements are reduced. In addition, the output waveform's large step count extends the lifetime of the
switching components and lowers their voltage stress and dv/dt rate, improving system reliability. For the
same output power level, the more steps in the waveform of output voltage have the benefit of reducing the
switching devices' rating when compared to a conventional converter. This lowers the multilevel inverter
(MLI) system's cost and size and makes it more packageable [1]. Three major categories of traditional MLIs:
cascaded H-bridge multilevel inverters (CHB-MLIs), flying capacitor multilevel inverters (FC-MLIs), and
neutral point diode clamped multilevel inverters (NPC-MLIs).
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Hybrid electric vehicle (HEV) and renewable energy integration industries continue to use these
topologies extensively. Compared to common flying capacitors and neutral point clamped topologies, losses are
lower with a conventional cascaded H-bridge inverter since it simply uses switches. The balance of capacitors is
another issue related to flying capacitors. Additionally, neutral point clamped structures only provide half
voltages at the output levels. To get around these limitations, a lot of work has gone into creating unique MLI
topologies that can yield greater steps in output voltage waveform with limited switches and DC voltage
sources. Regarding this, numerous topologies with symmetrical and asymmetrical configurations have been
presented [2], [3].

Several innovative topologies with a range of applications have been published in this field since the
initial attempt at the MLI was provided in 1981 with three-level NPC. The authors in [4]-[7] presented new MLI
topologies with 13 and 17 levels of output and different modulation schemes, and they are suitable for
renewable applications. Hybrid multilevel inverter design and analysis for asymmetric input voltages have been
presented in [8], [9]. These topologies address the design of a single-phase hybrid multilevel inverter for a
standalone system using asymmetrical voltage input sources and three-level T-type, diode clamped legs, and H-
bridge MLI. In comparison to traditional topologies, this architecture requires fewer switches to reach the
output voltage level. An asymmetric configuration for the 15-level topology is proposed in [10]. This topology
naturally produces both positive and negative cycles without the need for an extra H-bridge unit, thus
lowering the inverter's overall standing voltage.

A recently designed multilevel inverter with a hexad voltage-boosting capability has been presented
in [11]. It uses a single source with just fourteen switches, two diodes, and four capacitors to create a 13-level
waveform. By connecting the DC source and capacitors in parallel at multiple points during an operational
cycle, during the inverter's switching, proper magnitude of the voltage at the capacitors is maintained. In [12],
[13], there is another topology that aims to minimize the number of switching devices. A prototype of a nine-
level quadruple boost inverter (NQBI) topology is shown in [14], which runs on a single solar photovoltaic
source and uses less switches, capacitors, and diodes. With the help of this topology, the voltages of the two
capacitors are effectively balanced, giving the output nine voltage levels. A new multilevel inverter topology
presented in [15], for multilevel voltage generation, stacked voltage sources taken from single DC link and
series-connected capacitors. A detailed analysis of a pencil-shaped (PS) 9-level inverter with reduced
components that was constructed with just two DC sources was provided in [16]. An analysis of the benefits
and drawbacks of multilevel inverter topologies in electric vehicle applications was published in [17]. A new
topology and survey with less no of switching devices was presented in [18], [19]. Muhammad et al. [20]
presented an adaptive hybrid control strategy in conjunction with a cascaded reduced switch symmetrical
multilevel inverter to efficiently and steadily inject power produced from distributed energy resources into
the utility grid.

In this paper, a unique hybrid MLI topology with an enhanced H-bridge unit is presented. This setup
generates an output voltage with 9 steps using just 7 switches, 2 diodes, and 2 DC sources. Compared to the
traditional approach, the suggested system achieves several output steps with fewer components and
facilitates versatile operation. By contrasting the suggested system with the recently developed MLI
topologies, the uniqueness of the suggested system has been demonstrated. The suggested topology will also
be suitable for other domains such as renewable energy (solar, wind, and tidal), grid-to-vehicle (G2V), and
vehicle-to-grid (V2G). This topology outperformed the other designs when the number of distinct
components was considered.

This paper is divided structurally as follows: Section 1 presents a literature review and an
introduction has been provided; the existing and suggested hybrid system, including its structure and
switching scenarios, is described in section 2. To illustrate the major features of the suggested system,
section 3 will compare it with a few current topologies. Section 4 has outlined the various control methods
for the suggested system. In section 5, the results and the discussion are given. In section 6, the work's
conclusion is presented.

2. NEW TOPOLOGICAL HYBRID MULTILEVEL INVERTER (HMLI)
2.1. Design of the system

The suggested novel nine-level hybrid multilevel inverter system is depicted in Figure 1. The
suggested design included three diodes, D1, D2, D3, and two DC sources (Vdcl =3 V and Vdc2 = V), in
addition to seven power switches (S1 to S7). As a result, this topology falls into the group of asymmetrical
MLI topologies. These components were all joined together into one unit to create a 9-level voltage
waveform as the output. The suggested topology is precisely constructed to prevent any chance of a short
circuit occurring along any of the circuit routes.
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Figure 1. Diagram illustrating the suggested 19L hybrid MLI architecture

2.2. Modes of operation of proposed system

The proposed structure was developed to generate waveform of an output voltage with nine levels
restricted quantity of switching devices and dc voltage sources. For this topology, a total of four positive
levels, four negative levels, and one zero levels switching state have resulted in the production of nine
distinct switching states. Every level includes a different loop with specific switches that must be turned ON
to reach the desired level. Figure 2 provides a detailed explanation of each of these switching scenarios

separately.
Vdel = Vdcl— Vdel -
D3 D3 D3
D1 s1 s3 1 D1A s1 s3 t D1 s1 $3
s7 Load s7 Load s7 Load
S6 S6 S6
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Figure 2. Detailed operation of 9-level hybrid MLI at different levels: (a) Vo=Vdcl1, (b) Vo=Vdc2,
(c) Vo=Vdc1-Vdc2, (d) Vo=Vdcl1+Vdc2, (e) Vo=-Vdcl, (f) Vo=-Vdc2, (g) Vo=-(Vdc1-Vdc2), and
(h) Vo=-(Vdc1+Vdc2)
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Table 1 shows the elements that can be used in each level generation procedure [1]. From Table 1,
the switching operation for different output levels is shown in Figure 3. For positive cycle the switches S1,
S2, S5, S6, and S7 are in ON position and remaining switches are in OFF position, whereas for negative
cycle switches S3, S4, S5, S6, and S7 are in ON position and remaining switches are in OFF position.
Switches S1, S3, or S2, S4 are in ON position and the remaining switches are in OFF position to get zero

voltage at the load.

Table 1. Various operating stages for the suggested system

Switching states Vout Closed loop Current path
1 VitV S1,S2,Ss,and S
2 Vdcl Sl, Sz, S7, and D2
3 Vdcl-vdcz S], Sz, Sﬁ, Dz, and D3
4 Vdcz S], Sz, Ss, and D1
5 0 SI,S301‘ Sz, S4
6 ‘Vdcz S}, S4, 55, and D1
7 -(Vae1-Va2) S3, S4, Se, D2, and D;
8 'Vdcl S}, S4, S7, and D2
9

'(Vdcl+Vdcz) S}, S4, 55, and S7

Vdel+Vdel

Vel

Videl-Vde2

Vicl

-Vde2

- (Videl-Vde2)

-Viel

S (Vdel+Videl)

51

52
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Figure 3. Switching scheme for one cycle

2.3. Computing the total standing voltage (TSV)
The selection of a power device is significantly influenced by the voltage stress across the switches.
Generally, total standing voltage (TSV) is the overall voltage stress across all power switching devices,

accounting for all voltage steps TSV [1].

TSV = 7, Vg

(M
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Where m is the number of power switching devices. There are 7 switching devices in the suggested topology,
so that (1) can be modified as (2).

TSV = %11 Vsi = Vsy + Vg + Vg + Vg + Vs + Vg + Vsy (2)
One important component of the topology design is the voltage stress on the switches. The suggested
structure is shown in Figure 1 with the magnitude of DC sources as Vdc2 =V, Vdcl = 3 V, the switches'
voltage stress is given by (3) and (4).

Vo1 +Vsy + Vg3 + Vs, =Vdcl +Vdc2 =3V +V =4V 3)

Vss + VSﬁ + Vs7 = VdCZ =V (4)
Considering the above equations, the TSV of the proposed topology is 19 V [1]. TSV is a measurement of

each switch's per-unit voltage stress. It is the relationship between the switches' peak voltage stresses of all
switches and peak output voltage [4]. TSV in p.u calculation is given in (5).

V§1+tVs2+Vg3+Vga+Ves+Vge+Vsy
TSV. = S S S S S5TVSeTVs

pu Vdcl+Vdc2 =475 ®)

3. COMPARATIVE STUDY

The proposed topology mainly consists of two dc voltage sources, five driving circuits, and seven
power switches. The comparison with the majority of the most recent topologies is displayed in Table 2.
With the exception of the topologies offered in the publications [21]-[33], the suggested topology has less
components overall. Fewer switches, driver circuits, and DC sources, as well as three diodes and zero
capacitors, all contribute to the suggested topology's reduced circuit footprint and increased topology
dependability. Same number of power electronic switches in the topology presented in [30], [32],
but [32] has more DC sources than the proposed topology. The TSV and cost factor are also less compared to
other topologies.

A multilevel inverter's cost factor (CF) is determined by the product of TSV with a constant ¢ and
the cost of its component parts. ¢ = 0.5 and ¢ = 1.5 are the constant values chosen for the comparison that is
shown below. The cost component is calculated as (6) [4].

Cost Factor (CF) = Ngy, + Ngp + Np + Ne + Ng + 0 X TSV 6)

From Table 2, the comparative study presented in Figure 4. The X-axis is taken as multilevel
inverter topologies and Y-axis is taken as number of switches in Figure 4(a), the number of gate drive circuits
in Figure 4(b), the number of capacitors in Figure 4(c), the total standing voltage in Figure 4(d), and cost
factor per level in Figure 4(e). From the comparative study of different topologies (references), the suggested
MLI had minimum in switching devices, gate drive circuits, and capacitors. The cost factor per level is also
low for the current MLI.

Table 2. Comparison of various multilevel inverters' outcomes

TOp Levels NSW NGD ND NC NS TSVp_u_ CF/L
=05 o=15

[21] 11 12 9 0 0 3 5 2.40 2.86
[22] 13 16 16 4 4 2 5 3.42 3.80
[23] 9 8 8 0 2 2 4.5 2.47 2.97
[24] 7 10 10 0 3 1 53 3.80 4.56
[25] 7 9 9 1 3 1 53 3.66 4.42
26] 9 2 12 0 2 1 55 330 391
[27] 9 11 11 0 2 1 5 3.05 3.61
[28] 9 10 10 1 2 1 7.5 3.08 391
[29] 9 17 15 0 4 1 7.25 4.51 5.31
[30] 9 12 10 0 3 1 6 322 3.88
[31] 9 9 9 0 2 1 6.25 2.68 3.37
2] 9 2 10 o 1 2 5 305 3.6l
[33] 9 8 8 3 3 1 6.5 291 3.63
[P] 9 7 5 0 0 2 4.75 1.81 2.34

Nsw = number of switches, Ngp = number of gate drives, Np = number of diodes,
Nc=number of. capacitors, Ns = number of sources
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Figure 4. Comparing MLI topologies with (a) number of switches, (b) number of gate drives, (¢) number of
capacitors, (d) TSV, and (e) cost factor

4. MODULATION TECHNIQUES

In an MLI, the primary goal of pulse width modulation schemes is to generate a train of switching
pulses that produce a sinusoidal waveform at the output voltage. THD in the output can be decreased by
using these strategies correctly. Reference and carrier signals are compared in modulation techniques. It is
necessary to use carrier waves for N-level inverters is (N-1). Multi-carrier based sinusoidal pulse width
modulation (MCSPWM) is the most widely utilized modulation technology [18]. The ratio of the peak
magnitudes of the carrier waveform and the modulating waveform is called the modulation index (MI).

Different modulation schemes have been implemented (X-axis is taken as time and Y-axis is taken
as modulation index value) on the suggested nine-level structure. Figure 5 shows phase disposition pulse
width modulation (PDPWM), Figure 6 shows phase opposition disposition pulse width modulation
(PODPWM), and Figure 7 shows alternate phase opposition disposition pulse width modulation
(APODPWM). Modulation schemes have been implemented in the proposed system, and a comparison is
shown [34].
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Figure 7. Alternate phase opposition disposition PWM (APODPWM)

5.  RESULTS AND DISCUSSION

MATLAB software has been used to simulate the suggested nine-level topology. The various
simulated waveforms and THD for the suggested structure are displayed in Figures 8-16. The following are
the 9-Level MLI simulation parameters. The DC voltage sources are Vdc1=180 V, Vdc2=60 V, resistance is
R=10 Q. When a resistive load (R=10 Q) is taken, the AC output voltage at its peak of 240 V, the output
current reaches a maximum value of 2.4 A. At a carrier signal frequency of 2000 Hz, three different

Asymmetrical nine-level hybrid multilevel inverter design and analysis for ... (Gerri Ratnaiah)
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modulation techniques, PDPWM, PODPWM, and APODPWM, were employed in this research paper.
Figure 8 shows output voltage and output current using PDPWM scheme. Figure 9 shows output voltage and
output current using PDPWM scheme with a filter. Figure 10 shows output voltage and output current using
PODPWM scheme. Figure 11 shows output voltage and output current using PODPWM scheme with filter.
Figure 12 shows output voltage and output current using APODPWM scheme, and Figure 13 shows output
voltage and output current using APODPWM scheme with filter. Total harmonic distortion (THD) is
calculated using FFT analysis in MATLAB/Simulink and comparison results were tabulated in Table 3.
Figure 14 shows THD analysis for PDPWM, Figure 15 shows THD analysis for PODPWM, and Figure 16
shows THD analysis for APODPWM. After comparison of three control schemes, PODPWM technique has
lower THD.

Voltage (Vo)
=

Current (lo)
. =)

0 0.02 0.04 0.06 0.08 01 0 0.02 0.04 0.06 0.08 0.1

Time (sec) Time (Sec)
(a) (b)

Figure 8. Suggested HMLI with PDPWM technique: (a) output voltage (Vo) and (b) output current (o)
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Figure 9. Suggested HMLI with PDPWM technique using filter: (a) output voltage (Vo) and
(b) output current (Io)
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Figure 10. Suggested HMLI with PODPWM technique: (a) output voltage (Vo) and (b) output current (Io)
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Figure 11. Suggested HMLI with PODPWM technique using filter: (a) output voltage (Vo) and
(b) output current (Io)
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Figure 12. Suggested HMLI with APODPWM technique: (a) output voltage (Vo) and (b) output current (Io)
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Figure 13. Suggested HMLI with APODPWM technique using filter: (a) output voltage (Vo) and
(b) output current (Io)
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Figure 14. THD analysis of the proposed HMLI with PDPWM
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Figure 15. THD analysis of the proposed HMLI with PODPWM
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Figure 16. THD analysis of the proposed HMLI with APODPWM

Table 3. Comparison of THD analysis

THD %
PD-PWM  POD-PWM  APOD-PWM
12.04 10.20 13.49

6. CONCLUSION

This study presents a novel hybrid multilevel inverter topology. In order to provide an output
voltage, this nine-stage design requires two DC supplies, three diodes, and seven power switches. Numerous
properties were present in the suggested hybrid system, including low voltage stress on the power switches
and a high output voltage number of steps with fewer switches. The paper contains the conclusions for every
formula that was utilized to regulate the system expansion's operation. Several current MLI topologies have
been compared to the suggested topology in terms of switches, diodes, sources, levels, and cost factor.
Additionally, this comparison brought the suggested system's robustness characteristics to light. Three
distinct controlling strategies, the PDPWM, PODPWM, and APODPWM control schemes have been used to
conduct the simulation test. Excellent results are obtained for three techniques, and THD obtained using FFT
and meets the harmonics standard.
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