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This paper evaluates the performance of sensorless vector and scalar control
methods, namely field-oriented control-based model reference adaptive system
(FOC-MRAS) and voltage frequency-based model reference adaptive system
(VE-MRADS), applied to an induction motor (IM) driven by a space vector mod-
ulation inverter. In motorized systems, conventional control methods use me-
chanical sensors, which can be cuambersome and costly. To overcome these limi-
tations, sensorless control techniques based on speed estimation have been intro-
duced. In this paper, MRAS-based sensorless speed control for IM drives using
rotor flux is used. This adaptive system uses a reference model based on rotor
flux and implements closed-loop control. The estimated speed derived from the
current and voltage models is compared to the desired speed and adjusted by
the proportional-integral (PI) controllers. The performances of the approaches
are evaluated in terms of speed regulation and minimization of electromagnetic

torque and rotor flux ripples, through a comparative analysis of sensor and sen-
sorless controls under various operating conditions, including variable loads and
speed reversal. The simulation results obtained, using consistent criteria for both
methods, confirm the effectiveness of sensorless control.
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1. INTRODUCTION

Induction motors are the most widely used variable speed drives because of their robustness, relia-
bility, simplicity and straightforward control process [1]]-[S]. However, to achieve high performance with the
induction motors (IMs), it is necessary to select an effective control strategy tailored to specific applications.
For induction motor (IM) control, several techniques have been proposed, such as traditional direct torque
control (DTC), scalar control (V/f), and field-oriented control (FOC) [6]. The DTC is characterized by good
dynamic torque response and easy to implement. However, both torque and electromagnetic flux exhibit ripples
[7]. For the FOC, it is distinguished by its good dynamic response [§]. It maintains efficiency over a wide speed
range and takes into account the load torque variations. As for scalar control, it is simple, less costly, allows
slow speed variation and is easy to implement, but it exhibits poor dynamic performance and is typically used
in low-cost, and low-performance system drives.
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The above-mentioned controls have advantages and limitations depending on the application. As the
ability to operate at variable speed is a fixed objective in this work, the FOC and voltage frequency (VF) con-
trols are used with the aim of improving their performance by exploring alternative implementation strategies.
However, efficient execution of these closed-loop strategies requires speed information. To this end, the use of
mechanical sensors has often been necessary. However, their use presents certain limitations, such as increased
device cost, reduced reliability and low noise immunity. For this reason, recent research has largely focused on
sensorless drives.

The sensorless control enables speed to be reconstructed from the IM model. Several techniques
are used, including open-loop technique, sliding mode observer (SMO), extended Kalman filter observer, and
model reference adaptive systems (MRAS) observer [9]-[13]. Open-loop estimators have always attracted at-
tention due to their simplicity, but they exhibit low robustness [14]. The Kalman method is widely used for
flux and speed estimation [15]]-[[17]. Although the estimated variables are well filtered, the method is often
impractical at low speeds, sensitive to parameter variations, and difficult to implement. As for the SMO, it is
robust and simple to implement. However, its use is limited by oscillations that can lead to instability, and com-
putational complexity is significantly increased. The Luenberger technique yields good results but is sensitive
to disturbances and parameter variations, and is also challenging to synthesize [18]]. For the MRAS technique,
widely used for estimating motor speed or motor resistance, it is based on comparing a reference model that is
independent of speed to an adjustable adaptive model that depends on speed [19]]. The error is corrected by an
adaptation mechanism using a proportional-integral (PI) controller that determines the estimated motor speed
[20]. This method provides good results, is straightforward to implement has good accuracy and requires less
computational effort compared to the mentioned estimator techniques [21]].

In this work, the flux-based MRAS technique is adopted for speed estimation applied to FOC and
VF drives. In this respect, this paper proposes an alternative methodology for estimating speed via MRAS
of a three-phase IM driven by a space vector modulation (SVM) voltage source inverter (VSI). The SVM
strategy is employed to achieve reduced harmonic distortion, and minimized switching losses [22[]-[24]. The
proposed control methods are evaluated in terms of speed regulation, as well as reductions in torque and rotor
flux ripple. A comparative study of sensor and sensorless control strategies was conducted under different
operating conditions.

This research is divided into four sections. Following an introduction in section 1, section 2 presents
the mathematical models of the drive system components and the proposed control strategies. Section 3 presents
and discusses the simulation results. Finally, the paper concludes in section 4.

2. MATERIALS AND METHOD

In this paper, the performances of sensorless FOC and VF controls, based on the closed-loop MRAS
technique are studied. The drive system consists of a three-phase IM driven by a SVM VSI. The IM models in
(d-q) and (alpha-beta) reference frames are developed initially. This model will be used to establish equations
for estimating speed using the MRAS method. The parameters of the controllers used are calculated to achieve
fast adaptive loop that is independent of load torque variation. The models and control strategies are then
implemented and simulated using the MATLAB-Simulink software tool under various load conditions.

2.1. Induction motor modeling

In this work, the dq and «, 8 models are used. The dq model described by (1)-(4) allows for estab-
lishing conventional controls, while the «a, 5 model is essential for sensorless control. The dq model can be
subsequently transformed into stationary coordinates («, 3) using the inverse Park transformation.
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2.2. SVM inverter modeling

The diagram of the VSI comprises three branches and six switches whose switching depends is de-
termined by the SVM scheme depicted in Figure 1. With the SVM, the VSI require a voltage vector space,
i.e., 8 possible switching states that are then transformed into voltage vectors in «, 8 frame corresponding to
well-defined sequences [25]. Regarding the VSI model, only six of the eight voltage vectors (001), (101),
(100), (110), (010), and (011) are active as control elements. The vectors (000) and (111) are null. The active
switching states, the line voltages, and the two-phase voltage levels v, and vz are summarized in Table 1.
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Figure 1. General diagram of SVM inverter

Table 1. Switching states and voltages table

States  vq vp Ve Va vg
000 0 0 0 0 0
100 2Vae/3 —Vie/3 —Vie/3 2Vae/3 0
110 Vdc/3 Vdc/3 _2Vdc/3 Vdc/S \/§Vd0/3
010 Vac/3 2Vae/3 —Vie/3 —Viae/3 \/§Vdc/3
011 -2Vg./3 Vie/3 Vie/3 -2Vy./3 0
001 'Vdc/3 'Vdc/3 2Vdc/3 ‘Vdc/3 '\/gvdc/B
101 Vdc/3 'ZVdc/S Vdc/3 Vdc/S '\/gvdc/S
111 0 0 0 0 0

2.3. Speed observer based on MRAS

The principle for controls relies on comparing reference model (RM) and adaptive model (AM), as
depicted in Figure 2 [19]. The RM corresponds to the rotor flux calculated from current and voltage feedback,
while the AM corresponds to the rotor flux derived from rotor equations. The error between these models is
used to drive an appropriate adaptation mechanism using a PI controller that generates the estimated speed
[20]. Rotor fluxes (®7,, ®7) of the RM and rotor fluxes of adaptive model (qga, qAS,g) are given by:
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vqas and vgs denote the stator voltages, while 7,5 and igs represent the stator currents, all expressed in the a3
frame, which are used as feedback inputs to the motor control system as repreented in Figure 2.

According to the error signals used as input to the PI controller, the estimated speed is determined. It
can be expressed as (9).

k k - R
w=¢ <k1+52) = (lﬁ +S2> (¢a¢f3 _¢B¢Z> 9

The PI controller gains k; and ks are tuned based on the MRAS closed-loop transfer function (CLTF), ob-
tained by linearizing the adaptation model. Assuming perfect flux orientation with constant flux and current
magnitudes (¢}, = ®, and (;5; = 0), the (10) gives the linearized expression of the error.

e = 0} 004 + 0o 60% — By 60, — @, 605 = D7, 604 (10)

The linearization of the adaptive model expressions gives as (11).
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The substitution of the previous equations gives as (12).
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Since de = fgbj;éqgﬂ, the open-loop transfer function is as (13).
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Using the PI controller, the transfer function G (s) is expressed. Pole-placement-tuned PI controllers gains are
calculated where ¢ and w,,,_, are the damping coefficient and the natural frequency.
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Figure 2. MRAS structural diagram

24. VF-MRAS

Scalar control aims to keep the magnetic flux constant at its maximum value by keeping the volt-
age/frequency ratio constant and boosting it to minimize the voltage drop across the stator resistance at low
speed. For scalar control, torque is controlled by slip variation and its expression is given by (16). The control
system of the closed-loop V/f-MRAS depicted in Figure 3 includes an outer-loop estimator to determine the
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motor speed (w). According to the scheme, the estimated speed is compared with a reference speed (w*). The
resulting error is fed into the PI speed controller, which calculates a slip angular speed that is then added to the
estimated motor speed to derive the frequency. Figure 4 shows the synthesis of speed corrector. The controller

gains can be calculated using (17).
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2.5. FOC-MRAS
For the FOC technique, the rotor flux and motor torque are controlled respectively by the direct and

the quadrature current components. For determining the rotor position, the sensorless MRAS technique is used
to estimate rotor position information in real time. Figure 5 illustrates the FOC-MRAS control scheme.
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Figure 3. Synoptic diagram of the proposed V/{-MRAS strategy
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Figure 4. Synthesis of the speed corrector for scalar control
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Figure 5. Synoptic diagram of the proposed FOC-MRAS strategy
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The control structure consists of an outer speed controller in a closed-loop and a series of inner current
controllers. On the basis of a cascade control, the current controllers dynamics is sufficiently fast with respect
to speed loop. The diagrams is represented in Figure 6. The controller gains can be calculated using (18).

kio = JwZ, kpo = 2JCwea — fr (18)

( is damping coefficient, and w.q the own pulsation.

Ty,
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Figure 6. Synthesis of the speed corrector for FOC control

3.  RESULTS AND DISCUSSION

The FOC-MRAS and V/{-MRAS controls are evaluated through simulation using MATLAB/Simulink
and a 2.2 kW IM in this section. The performances are assessed by comparing the results with those obtained
from sensor-based controls under various operating conditions. The first test was conducted to verify the
performance in terms of reference speed tracking. The results are presented in Figures 7 to 11. For each case,
the reference speed was set to 314 rad/s, with a load torque of 3.7 Nm (half load) applied at t = 3 s and the rated
load of 7.37 Nm at t = 5 s. A second test was performed to assess the strategies under reverse operation mode.
According to results represented respectively in Figures 8 and 11, the torque follows the variation of the load
with a slight offset due to the mechanical parameters of the motor, and exhibits noise associated to fluctuations
in the estimated speed. Additionally, the magnetic flux is properly oriented towards the direct axis.
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Figure 8. Load and motor torques VF-MRAS
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Figure 10. Rotor fluxes FOC-MRAS
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To test the robustness of the sensorless strategies against disturbances, the system is simulated using
a variable load profile. The measured, estimated, and reference speeds are shown in the Figures 7 and 9. The
results show that the proposed MRAS speed estimator enables accurate tracking of the actual motor speed,
with a fast response time. The zooms around the instants at 3 s and 5 s, when loads are applied, demonstrate
accurate tracking that reflects the effectiveness and robustness of the control in rejecting disturbances, despite
proportional variations in the applied load. Moreover, the results show the speed estimation error. It indi-
cates the instantaneous difference between the actual speeds and the estimated speeds, which is almost zero.
To further evaluate the strategy, at t = 6.5 s, a reversal of rotation direction followed by a speed reference of
+314 rad/s and -314 rad/s is performed to test the performance in these regimes. Figure 9 shows similar be-
havior, with a slight delay observed in the transient phases. Thus, the MRAS technique enables accurate speed
estimation in these regimes, ensuring good agreement with the reference and near-perfect approximation with
the estimated speed.

In summary, the figures presented above illustrate a series of simulation results aimed at evaluating the
performance of the FOC-MRAS and VF-MRAS controls. Tests include load variations, reversals of rotation
direction, and detailed analyses of motor flux and torque. The results show that the estimated speed using
MRAS control enables accurate tracking of the motor’s actual speed, with fast response and good robustness
to disturbances. Overall, the control strategies demonstrate an effective ability to maintain motor speed close
to reference despite varying load and operating conditions. The strategies exhibit excellent reference tracking,
and the speed transient regime is characterized by fast response times without significant overshoot.

4. CONCLUSION

The conclusion of this paper summarizes the validation and benefits of a sensorless vector and scalar
IM drive based on the MRAS method with speed estimation. The proposed control scheme is simulated under
different operation conditions, including load variation, and rotation inversion. Overall, the simulation results
highlights the robustness and improved performance of the proposed control strategies. The results emphasize
enhanced speed tracking, instantaneous speed estimation, and reduced flux and torque ripples. The developed
control schemes show promising potential for practical applications, as sensorless induction motor control
integrated with speed estimation mitigates the disadvantages associated with speed sensors, such as reduced
reliability, noise sensitivity, increased cost, weight, and system complexity of the drive system.
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