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ABSTRACT

The smart grid is an advanced evolution of the traditional electrical power
grid, developed to meet the increasing energy demands and requirements of
the 21st century by incorporating digital technologies and data management
systems to improve efficiency and reliability. Unlike conventional grids, the
smart grid relies on a network of interconnected digital devices, sensors, and
computerized controls that enable real-time monitoring and management of
electricity distribution across vast geographic areas. However, the growing
dependence on digital technologies also brings heightened cyber security
concerns, since their integration can expose the grid to an increased risk of
malicious intrusions. This systematic literature review investigates the nature
and scope of cyber-attacks and cyber defense strategies in smart grids, which
are critical to modern energy infrastructure. Following established research
guidelines, this review rigorously examines existing studies by focusing on
peer-reviewed articles and conference papers to understand the range of cyber
security threats and defense mechanisms that smart grids face. The review
uses a structured methodology to identify, evaluate, and synthesize key findings,
revealing trends and gaps in current knowledge about smart grid security. The
outcomes of this analysis offer valuable clarity on the specific weaknesses and
operational challenges that affect smart grid infrastructures, contributing to the
ongoing efforts to enhance cyber security measures and guide future research in
this vital field.
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1. INTRODUCTION
Smart grids face increasing cyber threats due to their growing digital complexity. The integration

of advanced communication, automation, and data analytics has expanded their attack surface, making them
vulnerable to sophisticated threats that can compromise control, availability, integrity, and confidentiality.
While numerous studies address individual threats, recent literature lacks a structured synthesis of attack
and defense strategies using the CAIC framework, especially for emerging trends between 2020 and 2024.
This paper addresses that gap by categorizing cyber-attacks through the CAIC model and synthesizing
state-of-the-art defense methods to inform future research and policy.
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Smart grids represent a transformative step in modern energy management, integrating information
and communication technologies with traditional power systems to optimize electricity production, distribution,
and consumption. This innovation enables better management of electricity demand, integration of renewable
energy sources, and efficient response to real-time changes in supply and demand. As the grid’s complexity
increases with the inclusion of decentralized power systems and variable renewable energy sources, smart
grids offer the flexibility needed to maintain stability and reliability. The International Energy Agency notes
that by 2030, the energy landscape will undergo significant changes due to current policy settings, emphasizing
the importance of adaptive smart grid solutions to accommodate these shifts and ensure sustainable energy
management [1].

Smart grids are advanced electricity networks that integrate the actions of generators, consumers, and
prosumers to efficiently deliver sustainable and secure electricity [2]. Using digital communication systems,
smart grids stand apart from conventional power grids, allowing two-way data exchange between energy
providers and end-users through smart meters, sensors, and automated controls. This allows for real-time
management of electricity supply and demand and supports distributed energy resources like wind and solar
power. According to the US National Institute of Standards and Technology (NIST), a smart grid comprises
seven logical domains: bulk generation, transmission, distribution, customer, markets, service provider, and
operations [3]. Together, these domains enhance grid efficiency, reliability, and sustainability.

The development of smart grids is driven by the demand for reliable, sustainable energy solutions.
As the global energy landscape shifts toward decarbonization and decentralization, traditional grids struggle
to manage challenges like integrating renewable energy and handling peak loads. Smart grids address these
issues with real-time monitoring and enhanced stability, but their increased complexity also makes them more
vulnerable to cyber threats. Communication technologies and consumer data are particularly exposed, posing
significant challenges to broader deployment and integration [4].

Cybersecurity challenges in smart grids encompass a wide range of threats, from common data
breaches and ransomware attacks to more sophisticated methods such as distributed denial of service (DDoS)
attacks, advanced persistent threats (APT), phishing, spyware, rootkits, ransomware, and SQL injection [5].
These attacks, which can target the grid’s control systems and data integrity, present significant risks that, if not
properly managed, can lead to severe disruptions, financial losses, and safety concerns. To combat these diverse
threats, advanced techniques like machine learning, anomaly detection, and multi-stage intrusion detection
systems are increasingly being employed [6]. Moreover, deep learning approaches have also shown great
potential in improving threat detection and enhancing response capabilities within smart grid environments [7].

While several reviews have explored cybersecurity in smart grids, many span broad timeframes
without emphasizing recent advancements [8]. Moreover, they often concentrate on a narrow set of well-known
attack types, overlooking the broader landscape of potential threats [9]. In contrast, this paper presents a timely
and systematic review that employs the CAIC framework to categorize attacks—explicitly linking each threat
to its corresponding impact area and covering a wider range of attack vectors.

This paper presents a systematic and comprehensive review of research on cyber-attacks and defense
strategies in smart grids from 2020 to 2024. It synthesizes findings from various studies to highlight the
current state of cybersecurity measures, systematically identifies gaps in existing research, and proposes
future directions for enhancing the resilience of smart grids against evolving cyber threats. By examining
different types of cyber threats, their impacts, and potential mitigation strategies, this systematic review aims to
contribute to the development of more robust cybersecurity frameworks capable of protecting smart grids from
emerging challenges.

The paper is structured as follows: Section 2 outlines the methodology employed for the systematic
literature review. Section 3 presents the results, followed by a discussion. Finally, section 4 provides the
conclusions.

2. METHOD
2.1. Search strategy

This systematic literature review (SLR) adopts a well-defined, replicable process, drawing on
Kitchenham’s methodology for evidence-based software engineering [10], [11]. Kitchenham’s framework was
chosen for its methodological rigor and suitability for multidisciplinary, technology-driven domains such as
smart grid cybersecurity—where reproducibility, traceability, and transparency are critical.
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The need for this review stems from notable gaps in the existing literature. While several studies
have explored cybersecurity in smart grids, no current review provides a comprehensive synthesis of recent
developments alongside a broad categorization of attack types and their associated impacts. Many existing
reviews span long timeframes without emphasizing emerging threats, or they focus narrowly on a limited set
of well-known attack vectors.

Accordingly, this review explicitly defines its scope to focus on identifying and analyzing
cyber-attacks targeting smart grids, along with the corresponding mitigation strategies employed to defend
these systems. To guide the review process, we formulated two research questions: i) What are the predominant
cyber-attacks discussed in the current literature related to smart grids? and ii) How are these attacks addressed
in existing studies, and what cyber defense strategies are proposed?

A comprehensive search strategy was adopted to locate relevant literature. This involved using
reputable databases known for publishing scholarly articles on smart grids and cybersecurity. The primary
digital libraries selected for this review are: i) IEEE Xplore, ii) Web of Science, and iii) ACM Digital Library.
These leading digital libraries were chosen for their extensive coverage of peer-reviewed works in engineering,
computer science, and cybersecurity. IEEE Xplore offers the most comprehensive smart grid research, Web of
Science ensures multidisciplinary indexing, and ACM Digital Library provides strong coverage of computing
and network security.

To refine the search process, specific keywords and Boolean operators were used, with ”attack” and
”smart grid” selected as the main search terms. These keywords were chosen to focus on offensive aspects of
cybersecurity, ensuring that retrieved studies addressed direct threats rather than only general security measures.
Boolean operators and title-specific searches were applied to increase precision and reduce irrelevant results.
– IEEE Xplore Search Query:

Boolean/Phrase: ("Document Title": attack) AND ("Document Title": smart
grid)
Refined by content type: conferences and journals.

– Web of Science Search Query:
Boolean/Phrase: (TI=(attack) AND TI=(smart grid)) AND ((DT=(Article)) OR
DT=(Proceedings Paper) OR DT=(Review Article))

– ACM Digital Library Search Query:
Boolean/Phrase: [Title: attack] AND [Title: smart grid]
Refined by publication type: proceedings and journals.

2.2. Inclusion and exclusion criteria
To ensure that only pertinent and high-quality studies were included in the review, clear inclusion and

exclusion criteria were defined. These criteria guided the filtering of results obtained from the search pro- cess
and ensured consistency in study selection. The criteria are summarized below:
– Inclusion criteria: i) studies directly related to smart grid cyber security, ii) publication dates ranging from

January 1, 2020, to March 31, 2024, and iii) publications in English.
– Exclusion criteria: i) duplicate publications and ii) articles focusing on cyber security aspects of related fields

like IoT or EVs without a direct emphasis on smart grids.

2.3. Screening process
The screening was carried out in two stages. Initially, titles and abstracts were reviewed to filter

out studies that did not meet the predefined inclusion and exclusion criteria. Subsequently, a comprehensive
full-text evaluation was performed to determine study quality and collect information relevant to the research
questions. Figure 1 illustrates the study selection process following the PRISMA guidelines.

2.4. Quality assessment
To maintain the validity and reliability of our findings, we applied a structured quality assessment to

all included studies. This process ensured that only technically sound, well-documented, and relevant research
contributed to the final synthesis. The evaluation relied on four binary criteria, selected to cover methodological
clarity, practical validation, measurable outcomes, and critical analysis.

These criteria were assessed independently by two reviewers to reduce bias, with disagreements
resolved through discussion until consensus was reached. Each criterion was scored as either met (1) or not met
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(0), and a study had to achieve a minimum score of 3/4 to be retained. This threshold strikes a balance between
maintaining a high standard and avoiding the exclusion of potentially valuable insights. Table 1 presents the
criteria alongside their underlying rationale. This multi-step evaluation ensured consistency, transparency, and
scalability across all reviewed papers, thereby increasing the robustness of the final synthesis.

Figure 1. PRISMA flow diagram of the study selection process

Table 1. Quality assessment criteria and their rationale
No. Criterion Rationale
1 The method is clearly described and

reproducible.
Ensures transparency and enables replication of findings by other
researchers.

2 The study includes a simulation, real-world
system, or experimental validation.

Confirms that results are based on practical implementation rather than
purely theoretical analysis.

3 The results section presents measurable outputs
or evaluation metrics.

Provides quantifiable evidence to support claims and allow performance
comparison across studies.

4 The findings are critically discussed and
compared to prior work.

Demonstrates awareness of existing literature and positions the study within
the broader research context.

3. RESULTS AND DISCUSSION
We first conducted a comprehensive search to identify all research papers related to the cybersecurity

of smart grids. This process yielded a total of 487 articles. The search was carried out across three major
databases: Web of Science, IEEE Xplore, and the ACM Digital Library. Table 2 presents the annual distribution
of these initial papers before applying any exclusion criteria. This includes all retrieved records regardless of
quality, duplication, or relevance.

Following an initial screening based on titles, abstracts, and predefined inclusion/exclusion criteria,
94 papers were excluded due to duplication or lack of relevance to smart grid cyber security. In the second
phase, the remaining 393 articles were examined in full to evaluate their quality. Based on the four-point
evaluation criteria, 29 papers failed to meet the minimum quality threshold and were removed. Consequently,
364 high-quality papers were retained for final synthesis and analysis. Our systematic review identified several
distinct research streams within the domain of smart grid cybersecurity. These streams, summarized in Figure
2, illustrate the thematic areas most frequently addressed by the reviewed studies, providing an overview of
where current research efforts are concentrated. Our findings indicate a stronger emphasis on enhancing cyber
defense mechanisms rather than developing cyber-attack strategies. Specifically, researchers tend to focus on
developing new mitigation techniques for the most critical threats facing smart grids, instead of adopting an
offensive approach, similar to that of malicious actors, by formulating new attack strategies. Furthermore,
several studies propose novel simulation frameworks that allow researchers to analyze and simulate potential
cyber-attacks, enabling them to better anticipate future threats, thereby strengthening defense mechanisms and
improving overall risk management. Additionally, other studies emphasize the importance of distinguishing
system faults from cyber-attacks, while others focus on comprehensive risk management strategies. The papers
were also categorized by research method analytical, simulation, or literature review as shown in Figure 3. This
distribution reveals methodological preferences within the field and helps identify underexplored approaches.
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Table 2. Annual distribution of retrieved papers by database
Year Web of Science IEEE ACM library Total count
2020 41 52 4 97
2021 44 50 8 102
2022 61 61 3 125
2023 52 65 5 122
2024 18 20 3 41

Figure 2. Research streams identified in the scope of this systematic literature review

Figure 3. Classification of publications by research method

The analysis of research methods across the reviewed papers shows a clear preference for simulation,
analytical approaches, or a combination of both, with fewer studies dedicated to literature reviews, especially
systematic ones. This suggests an emphasis on developing and testing specific models or solutions rather
than synthesizing existing knowledge. Expanding the number of systematic literature reviews could offer a
broader view of the research landscape, highlight gaps, and guide future studies toward more innovative and
effective strategies. In addition, several studies combine multiple methodologies, such as simulation validated
with analytical models, to achieve more robust and generalizable findings. This trend reflects an increasing
effort to balance technical rigor with practical applicability, an approach that can be particularly valuable when
addressing the multifaceted security challenges of smart grids.

In information technology (IT), the primary security focus is on the CIA triad (confidentiality,
integrity, availability). However, in operational technology (OT), such as smart grids, the emphasis shifts
to the CAIC model (control, availability, integrity, confidentiality), as shown in Figure 4. The cyber-attacks
identified from the reviewed literature were categorized based on their impact on these four CAIC dimensions -
control, availability, integrity, and confidentiality - providing a structured framework for understanding how
each threat affects different aspects of smart grid security. In IT systems, confidentiality is traditionally
prioritized, but in operational technology (OT) environments like smart grids, control and availability take
precedence due to their critical role in ensuring operational continuity and safety. The CAIC model—control,
availability, integrity, and confidentiality—captures this shift. Control ensures only authorized users can
influence system behavior; availability minimizes disruption by guaranteeing timely access to services and
data; integrity preserves accuracy and consistency of information; and confidentiality safeguards sensitive data
from unauthorized access.

This extended model guided the classification of cyber-attacks in this study. Table 3 presents each
attack type alongside its affected CAIC dimension(s), illustrating how specific threats compromise various
facets of smart grid security. Integrity appears as the most frequently targeted objective, particularly in attacks
like FDIA and topology manipulation. Availability is commonly disrupted by DoS and load-altering attacks.
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Control is threatened by remote access exploits, resonance manipulation, and Sybil attacks. Meanwhile,
confidentiality is often breached through deceptive means such as social engineering, MitM attacks, and data
mining.

Figure 4. Security priorities in IT and OT

Table 3. Cyber-attacks on smart grids and their impact areas
Attack type Impact area Description
False data injection attacks (FDIA) [12] Integrity Alters data to mislead systems or users.
Denial of service (DoS) [13] Availability Overwhelms a system to prevent legitimate access.
Distributed denial of service (DDoS)
[14]

Availability Overwhelms a system or network with a flood of internet
traffic from multiple sources.

Replay attacks [15] Confidentiality, integrity Retransmits valid data to repeat or delay transactions.
Adversarial attacks [16] Integrity, control Manipulates inputs to machine learning models to produce

incorrect outputs.
Cyber-physical attacks [17] Availability, integrity,

control
Targets both cyber and physical components, affecting critical
infrastructure.

ARP cache poisoning [18] Confidentiality, integrity Misleads devices by associating incorrect MAC addresses to
intercept or alter traffic.

Remote access [19] Confidentiality, control Exploitation of remote access tools to gain unauthorized
control over systems.

Supply chain attacks [20] Confidentiality, integrity,
control

Uses components or software provided by third parties to
infiltrate a target organization.

Internal attacks [21] Confidentiality, integrity,
availability, control

Perpetrated by insiders with legitimate access to the system or
network.

Social engineering [22], [23] Confidentiality, control Manipulates human behavior to obtain unauthorized
information or system access.

Malware [24] Confidentiality,
availability, integrity,
control

Deploys malicious software to disrupt, steal data, or gain
unauthorized control.

Man-in-the-Middle (MitM) [25] Confidentiality, integrity Captures and possibly modifies the exchange of information
between two communicating entities.

GPS spoofing [26] Integrity Falsifies GPS signals to mislead location-based services.
Dynamic load altering attack [27] Availability, integrity Manipulates load conditions to disrupt power system stability.
Data mining [28] Confidentiality Analyzes large datasets to extract sensitive or valuable

information.
Coordinated cyber-physical attack [29] Availability, integrity,

control
Simultaneous or synchronized attacks targeting both cyber
and physical layers.

Topology attack [30] Integrity, control Targets the system’s physical or logical structure by
manipulating the network’s layout or configuration.

Cascading failure attack [31] Availability, control Initiates a sequence of failures that affect interconnected
components.

Wormhole attack [32] Confidentiality, integrity Creates a tunnel between malicious nodes to disrupt network
communication.

Sybil attack [33] Integrity, control Creates multiple fake identities to manipulate network
protocols.

Resonance attacks (ResA) [34] Availability, control Targets resonance resources to manipulate or modify power
plant inputs based on resonance reference.

Time synchronization attacks (TSA)
[35]

Integrity, availability target timing data in smart grids, causing false alarms and
communication disruptions, potentially leading to cascading
faults.
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Notably, sophisticated threats—such as cyber-physical, internal, and supply chain attacks—often span
multiple CAIC domains, exploiting both technical and human vulnerabilities. While the literature addresses
a broad range of attack types across all CAIC domains, special attention should be given to threats targeting
control. Because control governs system actions and real-time decision pathways, breaches in this area pose the
most direct risks to physical safety and operational continuity. Prioritizing detection and mitigation strategies
for control-focused attacks is therefore essential for ensuring smart grid resilience.

Our research highlights that false data injection attacks (FDIAs) have remained a major threat to
smart grids over the past four years. Alongside distributed denial of service (DDoS) attacks, FDIAs require
focused defense strategies. Moreover, there is a growing trend toward adversarial attacks targeting machine
learning-based defenses, underscoring the need for adaptive countermeasures. Our analysis also revealed that
coordinated cyber-physical attacks, malware, internal threats, and supply chain attacks have the most significant
impact when evaluated through the CAIC framework. These observations are reflected in the focus areas of the
most cited papers identified in this review, as presented in Table 4.

Table 4. Anchor paper bibliography
Article title Authors Citations Findings
Detecting false data injection attacks
in smart grids: A semi-supervised
deep learning approach [12]

Zhang, Ying; Wang, Jianhui;
Chen, Bo

222 Uses minimal labeled data and generative
models for FDIA detection in smart grids.

Detection of false data injection
attacks in smart grid: A secure
federated deep learning approach
[36]

Li, Yang; Wei, Xinhao;
Li, Yuanzheng; Dong,
Zhaoyang; Shahidehpour,
Mohammad

189 Uses federated learning and
transformer-based models with
privacy-preserving mechanisms for FDIA
detection.

Smart grid cyber-physical attack and
defense: A review [37]

Zhang, Hang; Liu, Bo; Wu,
Hongyu

181 Surveys cyber-physical attack models and
proposes a new taxonomy with recent defense
strategies.

Extremely randomized trees-based
scheme for stealthy cyber-attack
detection in smart grid networks [38]

Camana Acosta, Mario R.;
Ahmed, Saeed; Garcia,
Carla E.; Koo, Insoo

152 Combines KPCA and extra-trees algorithm to
detect stealthy cyber-attacks.

Detection of false data injection
attacks in smart grids based on graph
signal processing [39]

Drayer, Elisabeth;
Routtenberg, Tirza

141 Applies graph signal processing and filters to
detect FDIA in AC systems.

To address the various cyber threats identified earlier, a range of cyber defense methods have been
identified in the literature to enhance security and resilience against potential attacks for each type of threat:
– Machine learning and deep learning techniques: AI-based methods have become central to cybersecurity

solutions in smart grids due to their adaptability and pattern recognition capabilities. One study introduces
a data-driven machine learning approach that identifies stealthy false data injection attacks (FDIAs) on state
estimation through the application of ensemble learning methods. This approach employs both supervised
and unsupervised classifiers, showing that unsupervised ensemble models outperform individual classifiers
in detecting stealthy FDIAs [40]. A model focuses on detecting DoS attacks by using PCA for dimensionality
reduction and SVM for anomaly detection, outperforming other classifiers on the KDD99 dataset [41].
Additionally, hybrid machine learning models in [24] evaluate supervised learning techniques with various
boosting and feature selection methods to enhance FDIA detection in smart grids.

– Intrusion detection and anomaly detection: As smart grids increasingly integrate with communication
systems, the detection of irregular behavior becomes a critical line of defense. Sriranjani et al. [42]
proposed a machine learning-based scheme that effectively detects replay attacks by analyzing real-time
sensor data using fine gaussian support vector machine to classify data as either normal or malicious,
demonstrating high accuracy in replay attack detection in smart grids. Additionally, Jin et al. [43] introduced
an anomaly detection framework based on an attack-chain knowledge graph and a multi-layer detection
system, improving the detection of unknown and multi-step attacks in power grid networks, particularly in
internal and external interactions of smart grids.

– State estimation and control strategies: Effective control and accurate state estimation are foundational
to grid security and resilience. For instance, techniques such as physical watermarking, which rely on
set-theoretic model predictive control, are instrumental in actively detecting replay attacks while maintaining
system stability [15]. Although Kalman-filter-based detectors are widely used for identifying FDIAs, they
remain susceptible to noise-exploitation tactics, highlighting the need for more resilient solutions [44].
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More advanced approaches, like fourier singular values-based detection, improve FDIA identification in AC
systems by utilizing refined state estimation techniques to uncover anomalies [45]. Additionally, strategic
PMU placement enhances detection capabilities by boosting state estimation precision and mitigating
coordinated FDIAs, especially in environments with limited resources [46]. Furthermore, resonance
attacks, which exploit the rate of change in frequency to destabilize power systems, demand specific
countermeasures. A detection and mitigation control scheme employing an artificial neural network (ANN)
observer-based sliding mode controller (SMC) has been shown to efficiently detect and neutralize these
attacks by stabilizing frequency oscillations and minimizing chattering, as demonstrated through simulations
[34].

– Cryptography and privacy: In a data-centric environment like the smart grid, securing communication and
maintaining user privacy are essential. Wang et al. [21] proposed a lightweight privacy-preserving data
aggregation protocol that enhances security by aggregating electricity consumption data while resisting
internal attacks, such as collusion from data centers or shared information attacks. Additionally, Hafeez
et al. [47] developed an enhanced differential privacy model (E-DPNCT), which provides robust protection
against collusion attacks in smart grids by using a split noise cancellation protocol with multiple master
smart meters, ensuring both privacy and accurate billing and load monitoring.

– Risk management and mitigation: Proactively quantifying and managing risks allows operators to prepare for
and respond to evolving cyber threats more effectively. Rios et al. [48] proposed a continuous quantitative
risk management methodology utilizing attack defense trees to provide a comprehensive assessment of
cyber risks in smart grids. This approach supports informed decision-making by continuously evaluating
risks across various attack and defense scenarios and optimizing security strategies for risk minimization.
Additionally, another study employs Bayesian networks to assess the risk of cyber-physical attacks, such
as manipulating circuit breakers in smart grids. By combining vulnerabilities in the cyber domain with
transient stability analysis in the physical domain, the model provides a framework for quantifying risks and
enhancing grid resilience [49].

– Optimization and game theory: Strategic modeling through optimization and game theory offers a
structured way to allocate defensive resources and anticipate adversarial behavior. Shan and Zhuang [50]
presented a model that simulates attacks and defenses at three levels—power plants, transmission, and
distribution—helping to identify equilibrium strategies that optimize defense efforts based on attack success
probabilities. Additionally, another study applies game theory to optimize defense resources against false
data injection attacks on energy management systems, offering effective monitoring strategies and revealing
Nash equilibrium solutions for mitigating these attacks [51].

To consolidate the insights from our review, we synthesized the most prominent attack types identified
in the literature, mapping them to their corresponding CAIC impact areas and the defense mechanisms most
frequently employed against them. This synthesis serves as a bridge between the threat landscape and the
mitigation strategies, enabling a clearer understanding of how research efforts are currently distributed across
different attack categories. While some threats, such as FDIAs and DoS/DDoS, benefit from well-developed
and diverse countermeasures, others—particularly adversarial ML attacks and supply chain threats—remain
less extensively addressed, underscoring the uneven maturity of defense approaches across the spectrum of
smart grid cybersecurity challenges. To complement the synthesis in Table 5, Figure 5 visualizes the mapping
between the identified attack types and the CAIC security dimensions:

While the literature demonstrates solid technical progress—particularly in the use of machine learning,
deep learning, and anomaly detection—the strong emphasis on these approaches reveals a narrowing of focus
in the field. A clear trend is the dominance of research on false data injection attacks (FDIA), which remain the
most studied threat, alongside sustained interest in distributed denial of service (DDoS) attacks. More recently,
there has been a notable rise in adversarial machine learning, where attack strategies are designed to evade
AI-based detection models, signaling a shift toward more sophisticated threat scenarios. Simulation-based
methodologies, often validated with analytical models, also dominate the research landscape, reflecting a
preference for controlled experimentation over large-scale real-world deployments.

However, this concentration comes at the expense of several important areas. Cryptographic
approaches, such as blockchain-enabled data integrity, and strategic security models based on game
theory—both critical for long-term resilience—receive comparatively limited attention. Similarly, emerging
domains like blockchain vulnerabilities, post-quantum cryptography, and systematic threat intelligence
frameworks are rarely addressed despite their growing relevance to future-proof security. Offensive research,
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including red-teaming exercises and simulated adversarial campaigns, is also underrepresented, leaving a gap
in anticipatory defense strategies that more closely mirror the behavior of real-world attackers.

In addition, system-level challenges stemming from the increasing decentralization and complexity of
smart grids are insufficiently explored. For instance, the rapid integration of cloud infrastructure introduces
new attack surfaces, yet few studies propose security models tailored to hybrid or multi-cloud smart grid
environments. There is also a lack of focus on secure communication protocol design, particularly protocols
that simultaneously address confidentiality, integrity, and accountability. These gaps highlight the need for a
broader and more multidisciplinary research agenda that complements the current defense-oriented approach
with forward-looking strategies capable of addressing both present and emerging threats.

Table 5. Attack types and common defense methods
Attack Type Common defense methods
False data injection attacks (FDIA) State estimation validation, machine learning anomaly detection, PMU placement

optimization
Denial of service (DoS/DDoS) Network segmentation, traffic filtering, anomaly detection
Adversarial ML attacks Robust model training, input preprocessing, adversarial detection frameworks
Supply chain attacks Component validation, blockchain-based provenance, secure firmware updates
Replay attacks Time-stamping, watermarking, encryption
Cyber-physical attacks Physical redundancy, intrusion detection, coordinated incident response

Figure 5. CAIC mapping of major attack types based on reviewed literature

To further advance research on smart grid security, it is essential to explore these new directions to
address emerging challenges and gaps in current strategies:
– Focusing more on cyber attack development for smart grids: While much of the current research focuses

on developing cyber defense strategies, there is a critical need to place greater emphasis on creating and
understanding cyber attack methods in smart grids. Developing more sophisticated simulated attack models
and conducting red team exercises can provide deeper insights into potential vulnerabilities and weaknesses
in smart grid systems. By focusing more on the development of innovative attack methodologies, researchers
can better anticipate threats and improve defensive mechanisms, ultimately leading to more robust and
comprehensive cybersecurity solutions.

– Focusing on threat intelligence: Although threat intelligence plays a vital role in anticipating cyber threats
by delivering actionable insights into emerging attack vectors and tactics, it remains underrepresented in
existing literature. There is a need for more research into threat intelligence frameworks specific to smart
grids. Collaborative threat intelligence sharing platforms among utilities, governments, and private sectors
can enhance situational awareness and coordinated defense strategies, making smart grids more resilient.
Integrating threat intelligence with AI, blockchain, and advanced classification techniques can help maintain
a comprehensive and adaptive defense posture.

– Leveraging generative AI for cyber defense: Generative AI (Gen AI) offers significant potential for both
enhancing cyber defense and crafting sophisticated cyber attacks. In cyber defense, Gen AI can improve
smart grid security by identifying anomalies and predicting attacks. For instance, using improved wasserstein
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generative adversarial networks (WGAN) has proven effective in recovering from data integrity attacks in
power systems [52]. Conversely, in adversarial machine learning (AML), Generative AI can be employed
to generate evasion attacks that modify input data to mislead machine learning models, as demonstrated in
a study where such attacks markedly reduced the detection accuracy of security classifiers for smart meters
[53].Expanding research in this area could unlock new opportunities for proactive and adaptive cyber defense
strategies in smart grids.

– Improving threat classification: Differentiating between cyber attacks and system faults is crucial for smart
grid defense. Advanced machine learning, such as deep learning, enhances the accuracy of distinguishing
these incidents for targeted responses. For instance, researchers have developed a discrimination algorithm
that differentiates between electrical faults and cyber attacks, aiding in creating intelligent defense measures
against grid mal-operations [54]. Adaptive systems that evolve with new attack patterns and anomalies are
essential for robust defense mechanisms.

– Broadening cyber defense focus beyond false data injection attacks: While much of the current research has
centered on defending against false data injection attacks (FDIA), there is a growing need to shift attention
to other sophisticated cyber threats. Adversarial attacks that manipulate machine learning models and
side-channel attacks that exploit information leakage are emerging as significant challenges [55]. Addressing
these threats requires robust, adaptive algorithms and layered defenses that protect both software and
hardware, ensuring comprehensive protection against a broader range of cyber-attack vectors.

– Enhancing cyber awareness: Human error remains a major cybersecurity weakness, compounded by the
limited cyber awareness present in the power electronics community [56]. Strengthening cyber awareness
through targeted training helps stakeholders recognize threats like phishing and social engineering,
empowering them to act as effective defenders and reducing risks. Addressing this gap in cyber awareness is
crucial for ensuring that professionals in power electronics can effectively identify and respond to potential
cyber threats.

– Enhancing identity and access management: Advanced IAM is essential for securing smart grids against
unauthorized access and insider threats. Recent research highlights the use of physical unclonable functions
(PUFs) and blockchain to improve authentication and access control [57], [58]. Integrating decentralized
identity management with these technologies can enhance security against both cyber and physical attacks,
ensuring secure data exchange and system integrity. Future IAM solutions should focus on multi-factor
authentication, real-time access monitoring, and tamper-resistant frameworks to address the complex security
challenges in smart grids.

– Leveraging blockchain for enhanced security: Blockchain technology can provide significant benefits in
securing smart grids by ensuring data integrity, transparency, and tamper resistance. It can be used for secure
data exchange, decentralized identity management, and enhancing the trustworthiness of transactions across
the grid. The potential of blockchain to address key security, privacy, and trust issues in smart grids makes it a
valuable addition to smart grid security frameworks [59]. Integrating blockchain with smart grid systems can
create a distributed and immutable ledger, preventing data tampering and enhancing overall system resilience
against cyber-attacks.

– Developing quantum-resistant cryptography: As quantum computing advances, current cryptographic
methods could become vulnerable. Developing quantum-resistant cryptographic algorithms specifically
designed for smart grids is critical to safeguarding data integrity and confidentiality in a post-quantum era.
Additionally, the use of quantum computers for encryption purposes can be highly effective for enhancing
data security [60]. Future research should prioritize developing algorithms that combine efficiency with
resilience against quantum-based attacks, thereby ensuring long-term security for smart grid systems.

– Enhancing cloud computing security in smart grids: Cloud computing is becoming increasingly important
for smart grid systems due to its ability to enhance scalability, flexibility, and efficiency. However, this
integration introduces significant cybersecurity challenges [61]. The use of cloud environments in smart grids
increases the risk of cyber-attacks (CAs) by exposing sensitive data and critical infrastructure to potential
breaches. Therefore, more research is needed to develop robust security measures tailored specifically for
cloud-based smart grid systems.

– Development of secure communication protocols: Focusing on creating new protocols that address
confidentiality, privacy, integrity, and accountability is crucial, as current protocols primarily emphasize
connectivity. Developing secure communication protocols can help maintain the integrity and security of
data transmission within smart grids.
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– Adopting advanced risk management approaches: Given the complexity of smart grids, which represent
a paradigm shift over traditional power grids, there is a need for developing unified frameworks that
incorporate probabilistic models, risk breakdown structures, and advanced threat modeling to manage the
intricate risks inherent in smart grids. Such frameworks should provide a holistic view that encompasses
safety, security, and privacy risks across multiple layers and domains, as suggested by SGAM and NIST
[62]. Addressing the unique interactions, protocols, and devices of the smart grid infrastructure, these
approaches enable more comprehensive risk assessment, planning, and response to potential cyber threats,
while also incorporating integrated security mechanisms for field devices, secure access control, and secure
communication protocols.

– Increasing co-simulations and datasets for ML development: To advance AI and machine learning
capabilities in smart grid security, there is a need for more realistic simulations of smart grid environments,
particularly co-simulations, and the development of large, high-quality datasets. These datasets should
represent diverse scenarios and attack types to train more robust and accurate ML models, enhancing their
effectiveness in detecting, classifying, and mitigating cyber threats.

4. CONCLUSION
This systematic literature review maps the evolving landscape of cyber-attacks and defense

mechanisms in smart grids, revealing both technological progress and persistent gaps. As the digitalization
of smart grids accelerates, they face heightened risks from sophisticated threats such as false data injection
attacks (FDIAs), distributed denial of service (DDoS) attacks, and adversarial machine learning exploits.
While advancements in machine learning, anomaly detection, and state estimation have strengthened defensive
capabilities, the field remains disproportionately focused on reactive measures. Critical areas—such as
proactive attack modeling, realistic simulation environments, and validation using real-world datasets—remain
underexplored. The analysis underscores the urgency of diversifying research to include generative AI
for cyber offense–defense co-evolution, threat intelligence frameworks, blockchain-enabled security, and
quantum-resistant cryptography. Expanding beyond conventional attack types to address emerging threats will
be key to building adaptive, layered defenses capable of protecting increasingly complex and decentralized
grid systems.

In summary, securing the future of smart grids demands a shift from predominantly reactive defense to
a proactive, intelligence-driven, and multi-technology strategy. This requires integrating innovative research,
cross-sector collaboration, and resilient architectures to anticipate, withstand, and recover from both cyber
and physical disruptions. By prioritizing forward-looking approaches, the research community and industry
stakeholders can ensure the long-term resilience and trustworthiness of smart grid infrastructure.
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