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 The regular fault detection approaches are failed to detect the faults in wind 

integrated transmission networks due to intermittency nature of the wind 

energy. More reliable schemes are required to accomplish the detection of 

faults in presence wind. This article proposed empirical mode decomposition 

(EMD) based fault detection scheme to detect various faults in wind integrated 

transmission lines during the normal and stressed conditions of the system. 

The instantaneous current measurements available at either sending or 

receiving end are processed through EMD to decompose it into a series of 

intrinsic mode functions (IMFs) and IMF2 is identified as a dominated IMF 

with numerous case wise investigations. 1/4th cycle moving window is used 

to calculate the absolute sum of the IMF2 coefficients to detect the faults with 

the support of a predefined threshold. The efficacy of the method is tested on 

different types of faults during the normal condition in presence of wind and 

later extended to stressed conditions such as power swing. The method is 

reliable during the typical cases and includes remote end and high resistance 

faults. All the experiments are carried out in Simulink to generate the 

measurement data and programs are executed in MATLAB. 
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1. INTRODUCTION 

Integrating wind power into transmission lines is essential since the majority of fossil-based energy 

resources are decreasing and not meeting the demand of the users. The integration of renewables into power 

system presents several unique challenges for fault detection and protection. The variability and intermittency 

of wind power generation make fault detection more challenging, as traditional methods may struggle to adapt 

to rapidly fluctuating power flows [1]. Moreover, the variable fault current contributions from wind turbines, 

coupled with the increasing penetration of wind energy, increases the complexity of detecting and isolating 

faults in transmission lines. Addressing these challenges requires the development of advanced fault detection 

algorithms [2]. A few research works are available in the literature on protection of wind integrated 

transmission lines highlighting the need of the advanced schemes in this area. Some of the recent studies are 

available to explore the status of the protection algorithms adopted for the wind integrated transmission 

networks [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Conventional schemes such as distance and differential protection functions are applied in wind 

transmission lines with few changes so that those schemes are suitable to detect various faults. The phase 

current samples indicators at both terminals of the transmission lines are used under differential protection 

scheme for fault detection in transmission lines connected to wind farms (WF) in the consideration of power 

[4]. Apart from the modified distance and differential protection algorithms, signal processing techniques are 

significantly useful to capture the disturbances in the measurements due to events like faults and the methods 

incorporated with such tools are helpful to enhance the outputs of the protection functions in terms of the 

performance attributes like dependability, security, and speed. A hybrid method is used which combines 

wavelet transform (WT) for noise reduction, Clarke transform to find the gradient of the signal component, 

and decision tree for fault diagnosis [5]. Stockwell transform is another powerful signal processing tool to 

extract the frequency components from the power system voltage and current measurements suggested in [5] 

and [6] to detect and discriminate the faults from other events in a wind integrated transmission lines.  

Furthermore, artificial intelligence techniques like support vector machines and artificial neural networks are 

also used for detection and classification tasks [7]. A hybrid approach combining signal processing tools and 

machine learning algorithms for adaptive fault classification in wind energy integrated power transmission line 

protection systems is proposed in [8]. These hybrid methods utilized a combination of signal processing 

techniques and machine learning algorithms to adaptively classify faults based on dynamic operating 

conditions. The study reveals the effectiveness of the hybrid approach in improving fault classification 

accuracy and adaptability to changing system conditions. The studies available in [6]-[8] falls under such 

hybrid schemes. Each approach has its strengths and limitations, highlighting the need for further research to 

develop comprehensive and robust solutions for fault detection and classification in renewable energy 

integrated power system. Overall, these studies provide the importance of approaches to address the unique 

challenges raised by wind power generation in power system operation and maintenance. Furthermore, 

optimization-based schemes are suggested to detect and classify the faults in wind integrated transmission lines 

[9]. Swarm algorithm assistance is provided to differential protection scheme to set its threshold specifically 

for wind-integrated transmission systems with the help of particle swarm optimizer (PSO) [10]. Furthermore, 

the approach proposed in [11] used teaching learning-based optimization (TLBO) to improve fault detection 

functions in wind farm-integrated power networks. This method can potentially optimize fault detection 

parameters, improving the accuracy, reliability, and efficiency of fault detection mechanisms in complex power 

systems. After comparing the TLBO and PSO, the method demonstrates the ability to outperform than PSO 

[10], particularly in terms of convergence speed, solution quality, and computational efficiency. A detection 

and classification scheme for transmission lines connecting wind farms, specifically utilizing single-end 

impedance measurements is proposed [12]. This approach is more accurate for fault identification according 

to the results available in [12]. All these methods [5]-[12] tested on the power system models integrated with 

large penetrated WF.  

The protection logics further strengthened for the power system models integrated with WF and 

FACTS. Some of the popular works are available in [13]-[17]. An enhanced detection and location tasks are 

suggested for transmission lines compensated with thyristor-controlled series capacitors (TCSC) connecting 

wind farms [13]. Also another method is proposed on wind integrated transmission line with TCSC [14]. The 

identification of defective phases and ground detection in TCSC-compensated lines integrated with wind farms 

are the main topics of this work. It likely explores advanced techniques to improve fault identification accuracy 

and speed. Similar to TCSC, impact of unified power flow controller [15] and static VAR compensator [16] 

along with wind are studied and intelligent schemes are adopted to design the fault detection and classification 

tasks. Overall, these articles highlight the diverse range of techniques to enhance fault detection and 

classification in power systems, especially in the context of integrating renewable energy sources like wind 

farms. Hybrid approaches, swarm intelligence techniques, optimization algorithms, and advanced signal 

processing tools play significant roles in improving the reliability and efficiency of power systems [18]-[22]. 

Another challenge is detection of faults during stressed condition like power swing [23]. Few studies are 

available to detect symmetrical faults during power swing. For example, synchrophasor-assisted power swing 

detection, which could be crucial for maintaining stability in power systems. Synchrophasor technology 

enables real-time monitoring and analysis of power system dynamics, aiding in early detection of power swings 

and potential faults [17]. More effective schemes are required to detect the faults in wind integrated 

transmission lines during the normal and stressed conditions of the system [24], [25]. 

In order to identify transmission line faults in wind integrated power systems under both normal and 

stressed situations, this work proposes an EMD-based fault detection scheme. In order to identify faults, the 

approach calculates the absolute total of the dominant IMF coefficients of three phase currents for each 1/4th 

window. The indices are then compared with a predetermined threshold. The method's effectiveness is 

evaluated under a range of fault types and operating situations, including fault location, fault initiation, fault 

resistance, and fault nature. Additionally, the investigations are expanded to include a variety of faults, such as 

high resistance and remote end faults. To examine the method's performance, it was also validated under power 
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swing conditions. MATLAB-Simulink is used for all of the simulations. The rest of the article is organized as 

follows: Section 2 provides the methodology details followed by test system and simulation results in section 

3. Conclusions are presented in section 4.  

 

 

2. PROPOSED METHOD 

The instantaneous currents of test system either at sending or received end are processed through 

EMD to extract a series of IMFs. EMD is a powerful signal processing technique with applications across 

various fields. In biomedical engineering, EMD aids in analyzing electrocardiograms for detecting 

irregularities or abnormalities in heart rhythms. In finance, it assists in analyzing stock market data to identify 

trends and patterns for informed decision-making. In geophysics, EMD is used for seismic signal analysis, 

helping to discern important geological features and potential hazards. Additionally, EMD finds utility in 

environmental science for analyzing climate data and understanding long-term trends and variability. Its 

adaptability to non-linear and non-stationary signals, robustness to noise, and ability to extract interpretable 

components make EMD a valuable tool for signal analysis and interpretation across diverse disciplines. There 

are few research articles in power system relaying [22], [24] where the EMD is used to discriminate the events. 

It decomposes the raw data of aforementioned fields of interest into a series of several oscillatory modes called 

intrinsic mode functions (IMFs) and residual component. Let i(t) is available current data in a particular phase 

processed through EMD, produce n number of IMFs and one residual component. Mathematically: 
 

𝑖(𝑡) = ∑ 𝑑𝑖(𝑡) + 𝑟(𝑡)𝑛
𝑖=1  (1) 

 

where di is the IMF of ith oscillatory mode and r is the residual component. The IMFs are simple modes of 

oscillations of the signal i(t) and final residual component is available in r(t). The upper and lower envelopes 

are constructed from i(t) by using the local maxima and local minima is calculated using the (2). 
 

𝑑(𝑡) =
1

2
{𝑢(𝑡) + 𝑙(𝑡)} (2) 

 

The intermediate signal available after the computation of the mean envelope is expressed as (3). 
 

ℎ(𝑡) = 𝑖(𝑡) − 𝑑(𝑡) (3) 
 

The first IMF is extracted using the (3) and the residual component is replacing the original signal to 

extract further IMFs using the similar procedure until no IMF is generated from the residual component. 

Among all IMFs, a dominated IMF is identified with the help of few case studies and the fault detection index 

is designed on the dominated IMF. For suppose di (t) is the ith IMF of the original signal i(t), then the index 

computed for the N samples (size of window) is (4). 
 

𝑖𝑛𝑑𝑒𝑥 = ∑ |𝑑𝑖(𝑘)|
𝑁
𝑘=1  (4) 

 

When the index value exceeds the predefined threshold, then faults are recorded, and which is expressed  

using (5). 
 

𝑖𝑛𝑑𝑒𝑥 > 𝜃 (5) 
 

The concept is extended for each phase of measurement with separate indices by processing the three 

phase currents through EMD and extracting the series of IMFs along with the dominated IMF. Instead of single 

index, three phase indicators are used in the proposed approach to detect various faults in the test system during 

the normal and stressed conditions. Furthermore, these indicators are helpful to classify the types of faults and 

faulty phases. 

 

 

3. TEST SYSTEM AND SIMULATION RESULTS 

The wind integrated transmission line system, which connects the grid to massive wind farms, is used 

to evaluate the suggested approach. Figure 1 displays the test system's single line diagram. The letters "G" and 

"W" stand for grid-side and wind-side buses, respectively. Between busses G and W is a 300-kilometer 

transmission line that exports power from the WF to the grid. Bus "G" measures the three phase currents, which 

are then processed by EMD to break down each phase data into a set of IMFs. In addition to wind farm 

parameters, the additional test system parameters are accessible in [7]. 
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Figure 1. Test system to study the proposed method 

 

 

3.1.  Regular unsymmetrical and symmetrical faults 

The current measurements at G for 4 regular unsymmetrical and symmetrical types of faults (LG, LL, 

LLG, and LLLG) are recorded after test simulations and the signals are plotted in Figure 2. In case of LG fault, 

AG fault is considered with fault location of 120 km from bus G, inception time of 1.4 s and fault resistance of 

20 Ω. Similarly, AB, BCG, and ABCG faults are considered with fault parameters shown in Table 1. The phase 

current variations are clearly visible in Figures 2(a), 2(b), 2(c), and 2(d) depending on the type of fault initiated 

in the section between the buses G and W. These currents are processed through EMD to extract the series of 

IMFs to detect the faults in the system. For example, ABCG fault is started at 1.41 s in the transmission line 

section and A-phase current is processed through EMD. Figure 3 shows the outputs of EMD in terms of a series 

of IMFs along with the residual component. The main component is available in IMF 1 and disturbance 

components are visible from IMF 2 to IMF 5. After extracting all the IMFs, residual components (with less 

magnitude) is finally retained. The nature of the original signal and IMF1 are similar and therefore it is not 

suitable for detection purposes. This work suggests that IMF2 is the dominant IMF as it extract the dominant 

disturbance part of the signal with significant features as shown in Figure 3. Another important issue is the 

discrimination of faults from other disturbances. It is also possible with IMF2 as shown in Figure 3. Therefore, 

IMF2 is more suitable to design the fault detection indicator to detect the faults in WF integrated transmission 

lines. For specific faults, the IMF2 coefficients of the individual phase currents are plotted in Figure 4. In case 

of AG fault, the IMF2 magnitude rises after inception time of fault in phase A helps to identify the faulty phase 

to classify the types of faults along with fault detection. A pre-defined threshold of 1 is used to generate the 

trip for each fault. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

Figure 2. The measured three phase currents at bus G for (a) A-g, (b) A-B, (c) B-C-g, and (d) A-B-C-g faults 
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Table 1. Fault parameters of various faults 
Type of fault Fault location (km) Fault time (s) Fault resistance 

AB 80 1.36 5 
BCG 220 1.44 10 

ABCG 160 1.41 8 

 

 

 
 

Figure 3. IMFs of the instantaneous current 

 

 

  
(a) (b) 

 

Figure 4. Dominated IMFs of three phase currents for (a) A-g and (b) A-B faults 

 

 

In case of AB fault, both A and B phase IMFs are responded in terms of the magnitude variation. 

These IMFs are useful to detect and classify the faults which are presented in Figure 5. The AG, AB, BCG, 

and ABCG faults are simulated under regular faults and final results of the algorithm are plotted in Figure 5. 

Each index is computed with IMF 2 magnitude and with initiation of fault, the index exceeds the pre-defined 

threshold and detected as fault by the proposed algorithm. In Figure 5(a), index 1 exceeds the threshold since 

the type of fault is AG whereas other 2 indices are below the threshold. Similar results are observed in case of 

AB, BCG and ABCG faults shown in Figures 5(b), 5(c), and 5(d). Once the fault detection is accomplished 

from either of indices then faulty phase identification is achieved with the help of the three indices. 

Furthermore, the involvement of ground is identified by the neural current or zero sequence current. Finally, 

all the regular types of faults are detected and classified by using the proposed method. 
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(a) (b) (c) (d) 

 

Figure 5. Final fault detection indicators of the three phases of (a) A-g, (b) A-B, (c) B-C-g, and  

(d) A-B-C-g faults 

 

 

3.2.  Typical faults 

Apart from the regular faults, the faults located at remote terminals and faults with high fault 

resistances are few examples of the typical faults. Detection of such faults is challenging since the fault current 

is not significantly varied from the normal operating current. The performance of the EMD scheme is tested 

on both faults. Under remote end fault case, BG fault is considered with fault location of 280 km from the relay 

point initiated at 1.38 s and fault resistance of 1.38 s. In Figure 6, the 3-phase currents measured at relay point 

are presented followed by the IMF2 of all phases along with the ground index in Figure 7. These IMFs are used 

to estimate the indices which are presented in Figure 8. Since the type of fault is BG, the index corresponding 

to B-phase responded to the fault along with the ground. This detection is possible in first half cycle of the 

current waveform from the fault inception time. The changes in other nonfaulty phase are below the threshold 

and therefore the accuracy of the detection and classification of faults by the proposed method is acceptable. 

 

 

 
 

Figure 6. Three phase currents for remote end faults 

 

 

  
 

Figure 7. IMF2 coefficients of various phase 

currents under remote end fault 

 

Figure 8. Fault detection outputs of remote  

end fault 
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Additionally, to test the effectiveness of the suggested method, a high resistive fault is simulated. This 

scenario simulates a BG fault that is 65 km from bus G, has a fault resistance of 100 Ω, and has a fault inception 

time of 1.52 seconds. The reaction of the suggested approach during the high resistance fault is depicted in 

Figure 9. The detection outputs, as described in section 3.1, can be used to classify regular problems. However, 

only detection is achieved from the IMF indicators in case of high resistance faults since the type of fault is 

BG and phase A and phase B indicators exceeds the threshold provide the fault detection decision and failed 

to get accurate information of the fault classification. 

 

3.3.  Faults during the stressed conditions 

The performance of the method is further tested during the stressed conditions (power swing) of the test system. 

In this case, a symmetrical fault is initiated at 1.31 s with a fault resistance of 10 Ω and fault location of 110 

km during the swing condition. Figure 10 shows the current measurements at bus G which are processed 

through EMD to extract the IMFs. The dominated IMFs are used to compute the fault detection indices which 

are presented in Figure 11. From Figure 11, it is cleared that the proposed method has the ability to detect the 

typical 3-phase symmetrical faults during the swing condition. 
 

 

 
 

Figure 9. Fault detection outputs of high resistive fault 
 

 

 
 

Figure 10. Three phase fault during the swing condition 
 

 

 
 

Figure 11. Fault detection outputs for symmetrical fault during the swing condition 
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4. CONCLUSION 

EMD-based fault detection scheme was proposed in this article to detect the faults in the transmission 

lines connected to wind farms. The scheme is implemented with single end measurements by processing the 

instantaneous current information into EMD to extract a series of IMFs. The dominated IMF is used to compute 

the fault detection index to detect and classify the faults occurred in the transmission lines. The proposed 

algorithm produced high accurate results for regular faults irrespective of the type, location, inception, and 

resistance of the faults. Furthermore, the technique also provided acceptable results in case of typical faults 

include remote end and high resistance. The same method is useful to detect the symmetrical faults during the 

power swing condition is another advantage of the method. 
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