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1. INTRODUCTION

The presence of constraints on the input, output or states in industrial systems is illustrated by
technological limitations such as limit devices or adjustment elements. These constraints make the control
problem more complicated. Most of research activities have been interesting in stabilizing delayed input
linear systems during the last two decades [1-6]. The control problem of constrained output systems
represents one of actuality subjects. It may have two different aspects. In the first one, the output is really
technologically limited, the system model includes an essential nonlinear static element and the system
dynamics must be nonlinear because of this limitation. In the second case, the output is just analytically
limited but technologically the constraint can be violated. The constraint does not affect the system model
and the dynamics can or can not be linear.

In this paper we are focusing on controlling linear delayed systems with both input and output
saturation. In this situation, two main questions can be raised: how to develop a saturating regulator in order
to stabilize a saturating delayed system? This issue is not yet solved. The second question is most important
which is: is the closed-loop system of a given saturating delayed system and a saturating stabilizing regulator
asymptotically globally stable?

A similar research activities on the stabilization of a specific class of state saturating systems were
formulated by [7] and especially by [8] using linear constrained regulators but in the non-delayed systems
case. The class of systems considered in the present paper and the one in [7] and [8] differ in the fact that we
are interested in systems with delayed inputs and also the constraint enters the system model. In [8] and [7],
the authors supposed that the states are all available which allows using state-feedback regulator, but in our
paper we consider an output-feedback regulator because only the system output is available. Finally, we have
to notice that the problems in the present paper and in [7] are quite different from the classical control
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problem of unsaturating output systems in presence of input saturation [9]. Indeed, in the problem of
controlling output saturating delayed systems one has three main features describing the closed-loop system
with saturating regulator: (1) the system is nonlinear; (2) the closed-loop system may be asymptotically
globally stable even if the system is open-loop strictly unstable at the origin, and (3) all the signals of the
closed-loop are bounded. Notice that in the saturating input case the system output is not a priori bounded,
for this, the system should not be open-loop strictly unstable. In this paper we are focusing this control
problem of systems with saturating input and output. Sufficient conditions for global stability of the resulting
closed-loop system are formulated using input-output stability tools [9] - [10].

These conditions will show that the closed-loop system is asymptotically globally stable although
the system is strictly unstable. This paper is organized as follows: Section 2 is devoted to formulate the
control problem; the controller design is described in Section3; the resulting closed-loop system is analyzed
in Section 4; the corresponding stabilization performances are illustrated by simulation in Section 5.

2. CLASS OF CONTROL SYSTEM
The input-output representation of a saturating input-delayed system can be modeled as follows:

%(s) =[1- A(5)] y(s) + B(s)e~*"i(s) (1.2)
with y(t) = sat(yp , x(t)) 1.2)
A(s)=s"+ay 1"+ ays+ag (2.1)
B(s) = by 5" L+ +bys+by (2.2)

in presence of input constraint:

|u(t)| < uy €))

where (u(t),y(t)) are the system input and output and ({i(s),y(s)) their Laplace transforms; U, and
Ym are two real positive constants.

It is further assumed that:

Al. A(s) is Hurwitz polynomial,

A2. (sA(s), B(s)) are coprime.

Note that in the case of unconstrained output (yy=), the system is controllable with a linear state
feedback. Also, A(s) is not necessarily Hurwitz, i.e. the origin can be an unstable equilibrium.

From (1)-(2) it’s easily seen that the system is can be represented around the origin by the
linearized model:

A(s)9(s) = B(s)e "U(s) 4)

3. CLASS OF STABILIZING REGULATOR

The control design method is the finite spectrum assignment (FSA) which is an extension to time-
delay systems case of the standard pole placement design technique. The starting step is an arbitrary choice,
by the designer, of a pair of Hurwitz polynomials of the form:

C(s) = s"+Cpgs" 4.4 CyS+Cp,

ol ©®)
AEB) ="+ 48" T+ L+ A4S+ A

There exists a pair of pseudo-polynomials R(s) and S(s) satisfying the Bezout equation:
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SR(S)A(s) +S(s)B(s)e %" =C(s)A(s) (6)

Following the pole placement technique R(s) and S(s) are the unique solution of the Bezout equation
of the form:

R(s) = 14 niz R; (e‘s’)si +R_4(s),
i=0
S(5) = 3 Si(€7)s +5_1(5)
i=0

where R_;(s) and S_;(s) belong to G, the set of transfer functions of distributed and punctual

delay operators (Appendix A in [1]). Fori>0, R;(e™) and S;(e™") belong to R[e™'], the set of

polynomials ine~5" . Unlike the case of non-delayed systems, the (finite-degree) operators R(s) and S(s) are

presently pseudo-polynomials and, consequently, are analytical functions of s.
As deg(S(s)B(s)e—S’) <2n-1, it follows that deg (SA(S)R(s))=deg(C(s)4(5))=2n which implies that

deg(R(s))=n-1, because deg(sA(s))=n+1 and furthermore as sA(s) and C(s)A(s) are monic, (i.e. their

higher degree term coefficient equals 1).
With all the above notations, the saturated linear regulator is given the alternative form:

ooy AS)=SR(S) -~y S(8) .,
L VAR SR YARAS (7.1)
U(s) = sat(v(s)) (7.2)

This defined regulator is determined by the choice of the polynomials C and A.

We are focusing on the following problem: given a delayed system (1-3) and a regulator (7), based
on the choice of polynomials C and A, is the resulting closed-loop system globally asymptotically stable?

This problem is related to two issues:

a) Does the stabilizing regulator, for a given system (1-3), exist?

b) If it does, how can we design it?

To our knowledge these issues are not yet soved.
Remarks: (i) if we temporarily consider that the system (1-2) is not subject to the constraint (3), i.e. (Uy=).
Then, the above defined regulator reduces to the standard regulator G(S) =—% y(s) . If we have also
ym=o0, then the closed-loop system is transformed to a linear system whose poles are those of C(s).
(ii) From the above system and regulator, it follows that the signals v(t) and x(t) are bounded whatever the
C(s) polynomial’s choice. So from (1-2) and (7), it follows, for all t, that:

n-1
Vm :max{uM,[Z Jy,v,}
J ] ®)

j=0
n-1 n

XM =max{yM ,(Z |bj|]UM J{Z |aj|]y|v|}
j=0 1=0

iii) Due to this structural boundedness, some unstable systems can be globally asymptotically stabilized. But
in the case of unconstrained output, the signals are not a priori bounded and the system is globally stabilized
only if its poles are all in the right half plane.

r; S;

Ju+§1
AV 2ol

4. CLOSED-LOOP SYSTEM ANALYSIS
First, let us point out a sector property for the saturation function ([9] page 417).
LEMMA 1 Consider an arbitrary positive real § and a real function ®(f,.) defined as follows:
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®(B,z)=z — sat(B,z) for any real z 9.1)
then, for any z € [-zy,zyv] and any zy, > 8 one has:

Iy —a

0<2.®(p,2) < az® where p= (9.2)

Im
which means that ®(f,.) belongs to sector [0 B], when restricted to the interval [-zy,zu].
The main result is described by the following theorem.

THEOREM 1 Consider the closed-loop control system consisting of system (1-2) submitted to assumptions
Al and A2 and the saturated regulator (7). Then, if one has:

Aljo) ) _, 1
ogzioo[C(ja))j<1 o and (10.2)
inf Re{w&m—(j@}<l—i (10.2)
0<w<o C(jo)A(jw) ay
S(8)B(S) -sr|_ 1 10.3
Y4A@q9” ]<w¢ 1o

then, all signals v(t), u(t), x(t) and y(t) belong to L.
where vy, is the L,-gain of an L-stable operator.

%=mﬁﬂ,%=mﬁmummhammmmw (11.1)
ni=T [c:(s) N (/:\((Ss))_—(g:((ss))).au /2] (11.2)
fi =12 {C(S) n (F:Q((ss))_—(é((ss))).ay /2] (13)
S e e W 1 (11.4)

1—0{u’yi /2 l—Oly'Yii /2

In the sequel, the notations will be simplified by not writing explicitly the dependence on s of all
polynomials and pseudo-polynomials. Also we’ll avoid the symbol “*” for the Laplace transforms unless
necessary. Thus, depending on the context, the letter x will be either the signal x(t) or its Laplace transform.

PROOF:
Let us define these new errors:
V=v-UuX=X-Y (12)
By considering all the above notations, equations (1) and (7.1) are written as follows:
SR S
V=——u-—— 13.1
NN (13.1)
X =—Ay+Be u (13.2)

IJAPE Vol. 6, No. 2, August 2017: 63-72



IJAPE ISSN: 2252-8792 a 67

Multiplying by-A both sides of (13.1), one has:

_ SAR AS
—AV=—U+—1yY
A A

Now, operating S/A on both sides of (13.2) yields

Using (6), adding these two last equations gives

S_ .

—X—-Av =Cu (14)
A

Using the fact that u=v—V and rearranging terms, one has:

C-A_ S _
V= V+—X
C

(14) can be equivalently written as follows:

V+—X+ (15)

where ¢ is a transfer function of a signal arising from initial conditions.
As C and A are Hurwitz, & vanishes exponentially, which implies that ; € L, .

Operating Be™** on both sides of (13.1) and yields

_ﬁ g5t
A

Be 57V = u

BS st
-—e 16.1
ey (16.1)

Operating sR/A on both sides of (13.2) and yields

SR RA RB
—X=-S—y+s—¢e

u 16.2
A A A (16:2)

Using (12), adding (16.1) and (16.2) gives:

x=SAZSR Y—EG_STV+§2 17)
CA C

where o, € L, .
Equations (15) and (17) are represented by Figure 1 as the system with feedbacks below where:

S _ B s
U =—X+0o,Upy=——e""V+0
1=ea Xt Ya=g 2
This system consists of a main feedback and two internal feedbacks, referred to as feedbacks F1 and

F2. The whole system stability analysis will be done in three steps.

Step 1: stability of feedback F1:

The forward pathway of this feedback is a linear time-invariant system with transfer function (A-
C)/C. The return pathway is the nonlinear operator ®(uy,.) which, using lemma 1, belongs to [0,a,]. Using
the circle criterion [9] — [15], one can get that F1 is L,-stable if
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inf
0<w<2r7r

Re(w} .1 (18.1)

C(jo) Ay

Now, let consider the operator G; such thatV(t)=Gy(Uy(t)). Then, if we apply the loop
transformation theorem ([2] pages 341-343), we can easily get the L,-gain of G, as follows:

1+y0, 12
Y2(Gy) = AL o (18.2)
1-yio, 12
which is nothing but ;/O.
Step 2: stability of feedback F2:
In a similar manner, one can show that F2 is L,-stable if
inf Re[ CUAG®) -~ joR(j@) ) 1 (18.3)
0<w<27 C(jo)A(jw) ay
Furthermore, let G2 denote the operator X(t) =G, (U, (t)) such that
1+ yiay 12
v2(Gp) = ey = (18.4)
—viiay 12

Step 3: Main feedback stability: applying the small gain theorem on Figure 1, it follows that this feedback is
L,-stable provided that

B,
Y2(Gv2(Go)v2 [A—Cze s j<1

which is nothing but the condition (10.3). Then it follows that U;,U,,X and V belong to L, as

51, 52 S L2.
Finally, since feedbacks F1 and F2 are L,-stable, we deduce from (15) and (17) that xe L, and
Ve L2 .

REMARKS
a) In case where conditions (10.1) and (10.2) hold, the global asymptotic stability at the origin is guaranteed.

Recall that all the signals are bounded i.e. Jul<um V1< Yo [V < v

stability means that all signals converge to zero for all initial conditions.

b) The design procedure of the stabilizing regulator could be composed of three steps which are: choosing
polynomials C and A, solving Bezout equation (6) and computing pseudo-polynomials R and S and
finally checking conditions (10.1) and (10.2). If these hold keep the obtained regulator. Else, make a
different choice of C and go back to second step.

¢) Although conditions (10.1) and (10.2) do not allow characterization of stabilizable systems (in terms of
zeros, poles,...) outside the left half plane. This is illustrated by the example in section simulation.

and |X <Xy . Then global
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Figure 1. Block diagram of the feedback system described by equations (15) and (17)

5. SIMULATION
We consider the simple saturating linear delayed system described as follows:

X(t) = Ay(t) +Bu(t—7); y(t) = sat(yp , x(t))
with
A=s-1, B=s+1l 7=1s; yy=uy=1 (19)

Notice that the system is strictly unstable. By solving (6) to obtain the regulator parameters R and S
with polynomials A(s) =s+0.2 and

C(s) =s+cowhere0<cg <1, (20)
one gets
S(s) =s+0.32¢ 5 and R(s) =1 (21)

In the rest of the section, we will show that there exists a set of values of the parameter C;, so that
conditions (10) hold. From (19) and (20) one gets

inf Re[mj 1 (22)

0<w<2r7 C(jw) Co
From (8), it can be checked that
1
VM = max{uM ( 02 juM +(11) ym }=5UM +Ym =6

Xy = max{yM () um +(1+1) yu } =Upy +2yy =3
Necessarily we have to specify the value of ¢ to get vy. So according to (11.1), one gets
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:M:§ and 1— 1

o = =_1/5 23.1
u VM 6 o ( )
and
ay _XM—ym _2 and 1_i=_1/2 (23.2)
XM 3 O.’y

It is easily checked using (22) and (23.1) that the first part of condition (10.1) is satisfied. Similarly
we get using (20) and (21):

(a)2 +o.2)2 +0.720°

0<w<27

inf Re(

0<w<27

Mj >0 (24)
CA

(0)2 +o.2)2 —0.640°

Equations (23.2) and (24) show that condition (10.2) holds for any 0<c,<1. Now, one has to
compute the involved gains to analyze the condition (10.3).

o A(s) -C(s)
=720 C(5) + (AG) —C(9))ag /2

—cy)e e
e | (o)
O§w§27r|1_(c0 +(ag —Cp)-y /2)e““’|
=15

which, using the first part of (11.4) follows that

I+ ayyi/2 1+0.75¢, 0.17
YO —a,- ui —ay- u _ (25)
1-eyyi/2 1-0.75¢, 1.15
i e 1-ay 12)
___ %
1-1.25c¢,
and we get
Aoa Lrviay /2 1-175¢) _ 0.875¢0 05
Y l-yjey /2 T14175¢,  1+1.75c
Furthermore, equations (19)-(21) yield
S(s)B(s) — 0.32
A(S)C(S) 0.2¢c3

Applying the above theorem, the L,-stability of the closed-loop system is achieved provided

Co2(0.07 +0.13c, 1
0.148c, —0.85
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are
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3

(=B 5
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o4

This condition is satisfied by the value 0 < ¢y =0.6 <1. The performances of the resulting regulator
illustrated in the following Figure 2.

Caontral Inpt u Shywbern Oubput ¥
T

6.

Figure 2. Closed-loop signals

CONCLUSION
We have interested in control system including an output saturating delayed linear system and a

saturating regulator. We have shown that this association can be represented by a nonlinear feedback schema.
Analyzing stability of this feedback leads to examine the closed- loop asymptotic global stability. Using tools

of i
that

nput-output stability approach, sufficient conditions for L,-stability are then obtained. These conditions
concern both the regulator and the system parameters did not give an easy characterization of the class of

systems that can be globally asymptotically stabilized. However, it has been verified that a saturating system

that’s strictly unstable can be globally asymptotically stabilized.
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