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 Very recently, a new methodology was introduced solely for the purpose of 

real-time localized control of transient stability. The proposed new method is 

based on the localized transient stability of a power system. This is 

completely a new idea in transient stability. In this method, the post-fault 

power system is represented by a two-generator localized power system at 

the site of each individual generator. If each of these localized power systems 

reaches its respective stable equilibrium, then the full power system also 

reaches its stable equilibrium. Therefore, in terms of real-time localized 

control of transient stability, if each of the localized power systems is driven 

to its respective stable equilibrium by local control actions with local 

computations using the locally measured data, then the full power system is 

driven to its stable equilibrium. Thus the method can be easily implemented 

for real-time localized control of transient stability. In this paper, the details 

of the mathematical formulations are presented. Some interesting test results 

on the well-known New England 39-bus 10-generator system are also 

presented in this paper to demonstrate the potential of the proposed method 

for use in real-time localized control of transient stability. 
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1. INTRODUCTION 

Transient stability assessment and control are crucial for the secured operation of power systems. In 

the context of on-line applications, a number of computationally fast transient stability assessment methods 

have been reported in the literature. Among these, the direct methods such as the transient energy function 

method [1] and extended equal area criterion (EEAC) [2] are the important ones which have been 

implemented at some utility companies [3]. However, all the fast methods use classical representation of power 

systems and hence they are limited to short term assessment like the first swing stability. All these fast methods 

are faster than the standard step-by-step (SBS) numerical integration method which is considered as the most 

accurate method of transient stability assessment since this method can accommodate any degree of modeling of 

the power systems. The fast methods can be made even faster by coupling with them the dynamic equivalent 

reduction techniques [4-6]. Some recent developments in transient stability assessment are reported in [7-13]. 

There are also research efforts in using parallel processing [14-16] to speed up the transient  

stability simulations.  

Besides the natural causes (hurricane, tornado, ice storm, earthquake, etc.), transient instability has 

been known to be a major cause for widespread power blackouts. Power blackout does not occur frequently, 

but when it does, the impacts can be devastating in terms of human sufferings and financial losses. Since a 

vast majority of U. S. agricultural farms rely on the electricity from power grids for their proper operation, 
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power blackouts can have disastrous effects in terms of significant losses of crops and livestock. Power 

blackouts can also cause substantial spoilage of refrigerated agricultural products. In addition, power 

blackouts can have serious impacts in terms of huge financial losses by the other businesses. Therefore, with 

the stressed transmission systems of today, real-time control of transient stability is critically important to 

avoid widespread power blackouts due to transient instability. However, all the transient stability methods 

require system-wide transfer of measurement data to the system control center for use in real-time control of 

transient stability. Due to the development of phasor measurement unit (PMU), there are research efforts for 

real-time transient stability assessment [17-21] using PMU measurements. There are also research efforts for 

real-time centralized control of transient stability [21-23] using control actions like tripping of generators, 

tripping of transmission lines, etc. 

However, since real-time localized control of transient stability can be much simpler, faster and 

cheaper compared to the real-time centralized control, there are research efforts for localized controls. These 

localized controls use local computations with local information and measurements. To avoid the system-

wide transfer of real-time measurement data, Local Equilibrium Frame (LEF) was suggested in [24] for the 

purpose of localized control. However, the equilibrium state in LEF refers to a state at which all the 

generators run at synchronous speed. This synchronous speed equilibrium condition is sufficient, but not 

necessary, as it is too restrictive. This is a serious drawback of LEF. The center-of-angle (COA) frame of 

reference in which the generator angles are with respect to the center of angles of all the generators, and the 

machine frame of reference in which the generator angles are with respect to the angle of a chosen common 

generator do not suffer from such drawback. The equilibrium state in these reference frames refers to a state 

at which all the generators run at the same speed that is not necessarily the synchronous speed. Further, LEF 

cannot provide any dynamic equation for the external system. This is another drawback of LEF. There are 

also a number of strategies [25-30] that have been suggested in the literature for localized control of transient 

stability using different control means like braking resistors, series capacitors, fast valving and FACTS 

devices. However, these strategies are developed using very simplified models for the external systems like 

the infinite bus. Therefore, in each of these strategies, equilibrium refers to synchronous speed equilibrium 

which is a serious drawback. A control strategy based on simplified model may work only for some special 

faults in a multi-machine power system [29]. In all these strategies, simplified models are used due to the 

lack of availability of a suitable dynamic model for the remaining generators and a methodology that can be 

implemented for localized control of transient stability in multi-machine power systems. 

To overcome the drawbacks of localized control, a new methodology referred to as the Localized 

Transient Stability (LTS) Method is proposed here solely for the purpose of real-time localized control of 

transient stability. The proposed method is based on localized transient stability of a power system. This is 

completely a new idea. The method can be easily implemented for real-time localized control of transient 

stability. The system equilibrium state in the proposed method refers to a state at which all the generators run 

at the same speed that is not necessarily the synchronous speed. The method also provides dynamic equations 

for the remaining generators, which are necessary to design effective localized control strategies that can 

drive the power system to its appropriate equilibrium. Very recently, the proposed method was briefly 

introduced in [31]. However, in the present paper, the details of the mathematical formulations of the 

proposed method are presented. Some interesting test results on the very well-known New England 39-bus 

10-generator system are also presented to demonstrate the potential of the proposed method for use in real-

time localized control of transient stability. 

 

 

2. METHEMATICAL FORMULATIONS OF THE PROPOSED METHOD 

In the proposed method, transient stability is viewed as the interaction of each individual generator 

with its respective remaining generators. Therefore, the method uses two-generator localized models of the 

power system as it is seen from the sites of different individual generators. However, the development of a 

localized power system model involves the derivation of a simple dynamic equivalent for the remaining 

generators. This dynamic equivalent is obtained by satisfying the necessary nodal equation and generator 

swing equations. However, in the presence of a fault like the short circuit fault on the system, this dynamic 

equivalent is not available. Therefore, the proposed method uses the post-fault system. Note that the transient 

stability assessment and control are actually the assessment and control of the post-fault system. To develop the 

proposed method, a power system of n generators with classical representation is considered. However, since the 

classical model is used, the proposed method is limited to short term real-time control. 

 

2.1. A simple dynamic equivalent for the remaining generators 

To develop a simple dynamic equivalent for the remaining generators, at the site of an individual 

generator referred to as local generator, say the nth local generator, the post-fault power system network is 
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partitioned into two subsystems at the internal bus of the local generator: subsystem C containing the local 

generator, and subsystem D containing the remaining system. These two subsystems are connected to each 

other only at the internal bus of the local generator. Here, the interest is to form a dynamic equivalent for the 

subsystem D containing the remaining generators which may or may not be coherent. Therefore, this 

equivalent is a new kind of dynamic equivalent and is different from the coherency-based equivalents. The 

following sets of indices are defined. 

 

)}1(,,2,1{};{  nDnC II   

 

where CI is the index for the local generator internal bus, and DI are the indices for all the (n-1) remaining 

generator internal buses. After the power system network is reduced to the generator internal buses, the 

power system external to the local generator internal bus appears as in Figure 1. Here, In=phasor current 

injected into area D at the local generator internal bus, yk is a shunt admittance at an internal bus k that 

appears due to network reduction, Yik=Yki=Gik+jBik=Gki+jBki=elements of the reduced admittance matrix, and 

Ei=Eii=phasor voltage of a generator internal bus. Further, Mi, i and Pmi are respectively the inertia 

constant, rotor angle and mechanical input power of a generator. However, from the electrical network point 

of view, only the network shown in Figure 2(a) is seen by the local generator internal bus. 

 

 

 
 

Figure 1. Remaining system D (the power system external to the local generator internal bus) 

 

 

For the purpose of transient stability, area D in Figure 2(a) can now be described by one nodal 

equation at the local generator internal bus and (n-1) swing equations for the remaining generators. The nodal 

equation is written as 

 


 IDk
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which can also be rewritten as 
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where 
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To satisfy the dynamic behavior of a remaining generator i in Figure 2(a), it is considered that this generator 

has its original inertia constant Mi. However, its electrical output power as seen in Figure 1 is decomposed 

into two components: first component is the power flowing towards the local generator; second component is 

the combination of the power flowing into the shunt admittance at the internal bus of this generator and the 

power flowing towards the other remaining generators. Now an equivalent mechanical input power Pi of this 

generator is defined as its original mechanical input power Pmi minus the second component of the 

decomposed power. This Pi as shown in Figure 2(a) produces the original post-fault trajectory of this 

generator. However, this mathematical manipulation makes Pi a time varying quantity unless all the 

remaining generators are coherent. The swing equations of the remaining generators in Figure 2(a) are now 

written in synchronous frame of reference as: 
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To aggregate the generators of Figure 2(a) to one equivalent generator, the network enclosed by the dashed 

lines is replaced by its Thevenin equivalent. Figure 2(b) now becomes the single-generator dynamic 

equivalent of Figure 2(a). 

In Figure 2(b), ET, δT, MT, and PT are respectively the internal bus voltage magnitude, rotor angle, 

inertia constant, and mechanical input power of the equivalent generator. The nodal equation (2)  

now becomes 
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where 
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is the Thevenin admittance that appears between the local generator internal bus and the equivalent generator 

internal bus. To determine the internal voltage ET and the rotor angle δT from the local generator internal bus 

quantities, (4a) can be written as 

 

TnTnnnT yEyEyIE /)(         (5) 
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Figure 2. (a) Equivalent of remaining system D as seen by the local generator, (b) Single-generator dynamic 

equivalent of remaining system D 

 

 

However, by comparing (2a) and (4a), ET is given by 
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which is the expression for the Thevenin phasor voltage. Equation (6) clearly indicates that ET is an admittance-

weighted aggregated average phasor voltage of all the remaining generator internal bus phasor voltages with the 

weighting admittances being the ones which connect the local generator internal bus with the remaining generator 

internal buses. Thus the angle of this aggregated average phasor voltage is taken as the rotor angle T. Using (6), 

it can be shown that ET  is a time varying quantity unless all the remaining generators are coherent. The 

equivalent shown in Figure 2(b) can also be interpreted as the result of assigning the same aggregated average 

phasor voltage ET=ETT to all the remaining generator internal buses in Figure 2(a) and then forming the 

Thevenin equivalent. It can be easily shown that the Thevenin equivalent remains unaltered when all the 

remaining generator internal buses are assigned the same aggregated average phasor voltage ET=ETT. 

Therefore, the swing equation for the equivalent generator is obtained by replacing all the remaining generator 

internal bus voltages i.e. Ei=Eii IDi by ET=ETT in the swing equations (3) and then summing them. The 

resulting swing equation for the equivalent generator is thus given by 
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which can be written as 
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with the inertia constant MT and mechanical input power PT of the equivalent generator given by 
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In this aggregation, since the internal phasor voltages of the remaining generators are replaced by a common 

aggregated average phasor voltage, the real power at the internal bus of the equivalent generator is expected 

to be approximately equal to the sum of the real powers at the internal buses of all the remaining  

generators, i.e. 
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The equivalent presented here is a localized model that represents the dynamic behavior of the 

remaining generators as seen at the site of the local generator, but PT and ET in this model are in general time 

varying quantities. 

 

2.2. Post-fault localized power system model 

The power system as seen at the site of the nth local generator now consists of the subsystem C and the 

dynamic equivalent of Figure 2(b). Therefore, the localized power system (LPS) model takes the form shown in 

Figure 3. Here, δn, Mn, and Pmn are respectively the rotor angle, inertia constant, and mechanical input power 

of the local generator. The swing equation of the local generator is given by 
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and that of the equivalent generator is given by 
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Figure 3. Localized power system (LPS) model at the site of nth generator 
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Here, Pen and PeT are respectively the output electrical powers of the local generator and the equivalent 

generator. Further, (G'n, n+ j B'n, n), (G'T, T +j B'T, T), (G'n,T +j B'n,T) and (G'T,n +j B'T,n) are elements of the admittance 

matrix of the localized power system shown in Figure 3, and ωn and ωT are respectively the speeds of the local 

generator and the equivalent generator. The dynamics of the system described by (10) and (11) can be put in the 

two-state form of representation as: 
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with δ and ω as the state variables. The localized two-generator system described by (12) is referred to as the nth 

localized power system. Since δ and ω respectively represent the separation angle and speed of an individual 

generator with respect to its respective remaining generators, the trajectories of a localized power system (LPS) 

can also be referred to as the separation trajectories of the corresponding individual generator. 

Note that the two-generator localized model at the site of a local generator describes the dynamic 

behavior of the full power system as it is seen at the site of the local generator. Therefore, these localized power 

system models are not subsystems like the interconnected subsystems in a power system where the entire power 

system can be unstable even though each subsystem is stable. 

 

2.3. Transient stability of full system and the localized power systems 

Consider that the full power system after a major disturbance, reaches its appropriate stable 

equilibrium point in the post-fault configuration. Then all the generators are coherent i.e. they operate at the 

same speed which is not necessarily the synchronous speed. This can be written as 

 

n   21          (13) 

 

Now consider the behavior of the LPS corresponding to the nth local generator, as the full system reaches the 

equilibrium state. By (13), the remaining generators are coherent i.e. 
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where  is the speed of the remaining generators. Since the angular difference between any two remaining 

generators is constant, it can be shown using (6) that ET is a constant quantity i.e. 
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Equation (6) can also be written as 
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Differentiation of (15) leads to 
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Use of (14a) in (16) leads to  
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From (15) and (17), it can be easily shown that 

  T           (18) 

 

which indicates that the speed of the equivalent generator is same as the speed of the remaining generators.  

However, at stable equilibrium point of the full system, the speed of the nth generator is also equal 

to the speed of the remaining generators as indicated in (13). This leads to the following. 
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Since the LPS speed ω is zero, the LPS acceleration is also zero i.e. 
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Differentiation of (12c) and (12d) leads to 
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Use of (19c) in (12b) and then its differentiation leads to 

 

0TP           (19e) 

 

However, equation (19b) combined with (19c) i.e. )0,0(    defines the stable equilibrium of the 

LPS. Therefore, when the full system reaches its stable equilibrium, then the nth LPS also reaches its stable 

equilibrium. But this is true for each of the localized power systems. Therefore, all the localized power 

systems reach their respective stable equilibriums as the full system reaches its appropriate stable equilibrium 

in the sense that all the generators run at the same speed that is not necessarily the synchronous speed. In other 

words, it can be said that if each of the localized power systems is at its respective stable equilibrium, then the 

full system is at its appropriate stable equilibrium. This is the basis of the proposed transient stability method. 

This basis is also supported by the investigative test results. Therefore, in terms of localized control of 

transient stability by the proposed method, if each of the localized power systems is driven independently by 

local control actions to its respective stable equilibrium, then the full power system is driven to its  

stable equilibrium. 

As indicated here, if each LPS is stable, then the full system is stable. However, the stability of an 

LPS also means the stability of its local generator with respect to the remaining generators. Therefore, 

according to the proposed method, if each of the individual generators is stable in terms of its corresponding 

LPS trajectories, then the full system is stable. Since each of the LPS trajectories is involved in the transient 

stability studies, the proposed method captures all the transient stability phenomena of the full system. This is 

also supported by the test results based on the comparison of transient stability assessment results by the 

proposed method with those by the SBS method. Therefore, in the proposed LTS method, the LPS 

trajectories can be used to assess transient stability of the full system in terms of critical clearing time (CCT). 

This has been discussed in [31]. However, as indicated earlier, the proposed method is not intended for 

transient stability assessment. It is intended solely for real-time localized control of transient stability. 

 

 

3. REAL-TIME LOCALIZED CONTROL OF TRANSIENT STABILITY BY LTS METHOD 

The use of the proposed method for real-time localized control of transient stability is described 

here. In terms of local control, if each LPS is driven to its respective stable equilibrium i.e. if each LPS 

trajectory is stabilized by local control actions, then the full system is driven to its stable equilibrium. With 

the known post-fault passive network model of the external system (the system external to the network at the 

local generator site) and the total inertia constant of the remaining generators, all the unknown variables of an 
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LPS can be estimated from local information and real-time measurement data taken solely at the 

corresponding local generator site as discussed later. Therefore, it is assumed that the latest updated pre-fault 

passive network model of the external system, fault information including the fault clearing time, and total inertia 

constant of the remaining generators are known at the site of any individual generator. All these can be obtained 

directly from the main computer of the system control center. With the knowledge of the pre-fault passive 

network model of the external system, fault information, and the local network, the post-fault reduced admittance 

matrix can be obtained easily. Then the admittance parameters yn and yT of the LPS model can be determined. 

However, to apply this method, as described in [31], it is essential that the local control actions (if 

any) at different generator sites are applied during the same time step such that there is no local control action 

present in the full system at the beginning of any particular time step. This is necessary to ensure that the 

post-fault system returns to the original post-fault system at the beginning of any particular time step. 

Therefore, it is assumed that each generator site uses the fault clearing time as a common reference time so 

that the beginning and ending of the time steps used by each generator site are same. As such, the post-fault 

system returns to the original post-fault system at the beginning of each time step. At the beginning of a 

particular time step, necessary local computations are done independently at each local generator site using 

the respective original post-fault passive network model. However, the necessary local control actions (if 

any) at different generator sites are applied during the same time step. Note that the different local control 

means including the FACTS devices can be easily integrated into the network model of the local generator 

site for the purpose of control. With the admittance parameters yn and yT of an LPS model known, the 

different unknown variables of the LPS can be estimated from real-time local measurement data as follows. 

Consider the nth LPS. With known resistance and direct axis transient reactance of nth local 

generator, voltage En, real power Pen, and the reactive power Qen at the internal bus can be determined using 

measurement data like the real power, reactive power, and voltage magnitude taken at its external bus. 

However, Pen and Qen in terms of the LPS quantities are given by 
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So, the LPS angle δ can be determined by (21) with Pen and Qen obtained from measurement data. 

However, the angle  obtained from (21) must be adjusted by the addition or subtraction of an integer 

number times 2π electrical radians for pole slippage to obtain the LPS angular trajectory corresponding to the 

local generator. Therefore, the LPS angle δ can be determined by (21) with proper adjustment of  as 

indicated. With known values of δ at some suitable time steps, δ can be approximated by a third degree 

polynomial and then both   and   can be estimated from its derivatives. More details are provided later. 

Equations (20a) and (20b) can also be solved to yield 

 

)/()()/1( 2

,

2

,

22

TnTnnT BGQPEE        (22) 

 

Therefore, ET can be determined using (21b) and (22). PeT can now be obtained from (12d). Pmn can be 

obtained from the pre-fault steady-state real power Pen since they are equal. PT can now be determined from 

(12b) by matching the estimated value of LPS acceleration . Therefore, PT is given by  

 

eTTenmnnTT PMPPMMP  ))(/(       (23) 
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with known local generator inertia constant Mn and total inertia constant MT of the remaining generators.  

It can be seen here that with the known post-fault passive network model of the external system and the 

total inertia constant of the remaining generators, all the unknown variables (ET, δ and PT) of the LPS model 

shown in Figure 3 can be computed from measured data taken solely at the external terminal of the local 

generator. Therefore, this LPS model can be used to design and implement real-time localized control strategies 

that can drive the LPS to its stable equilibrium point. 

At any instant of time, a stable equilibrium point of the LPS described by (12) can be defined by 

holding ET and PT fixed at their current estimated values. This stable equilibrium state (δe, 0) is referred to as 

the instantaneous stable equilibrium state. Here, δe is the instantaneous stable LPS angle that can be obtained 

from (12b) by setting its left side equal to zero and using (12c) and (12d). However, if the values of ET and PT 

sustain, the instantaneous stable equilibrium becomes the stable equilibrium of the LPS. Note that since ET 

and PT are held fixed, δe is also fixed i.e. e
  is zero. In terms of local control, if each of the localized power 

systems is driven from its current state (δ,  ) to the instantaneous stable equilibrium point (δe, 0) of its 

respective state-space, then the full system is driven to its stable equilibrium. Therefore, the real-time local 

control of transient stability by the proposed method can be easily implemented at the site of each local 

generator independently without requiring any coordination. 

 

 

4. RESULTS ON REAL-TIME LOCALIZED CONTROL OF TRANSIENT STABILITY USING 

BRAKING RESISTORS AS THE LOCAL CONTROL MEANS 

The potential of the LTS method for use in real-time localized control of transient stability was 

investigated on the well-known New England 39-bus 10-generator system. In this investigation, braking 

resistors were used as the local control means. A number of three-phase short circuit faults were considered. 

These results on real-time localized control of transient stability are presented here. In this investigation, 

local computations with SBS simulated local measurement data were used to compute the necessary local 

controls. These local controls were then applied to improve the CCT ranges. In all the SBS simulations, a 

time-step size of 0.01 s has been used. However, to determine the local controls required to drive the 

localized power systems to their respective equilibriums i.e. to stabilize the LPS trajectories, optimal aim 

control strategy [32] was chosen due to its suitability for two-generator systems. With reference to local 

control of power systems, this optimal aim strategy (OAS) is described in detail in [25] where this strategy is 

referred to as a Localized Aiming Strategy (LAS). With respect to a two-generator system, this strategy has 

also been described in [33]. 

For the purpose of localized control by the LTS method using OAS, the control dependent dynamic 

equations of the nth localized power system are written in the form as 

 

,  MtUPP nem /)]([        (24) 

 

where ),/( TnTn MMMMM  )/()( TnTnTmnm MMPMMPP  and 

)()/()( fMMPMMPP TneTnTene  . Here, Un(t) represents an additive power control in the localized 

power system. However, the additive power un that is required by the nth local generator to produce the 

additive power Un in the localized power system is given by 

 

nnn MtMUtu /)()(          (25) 

 

This power is in addition to Pmn. However, since this additive power is a negative quantity, it also means that 

)(tuP nen   is an equivalent additional electrical output power of the local generator. Therefore, the new 

electrical output power required by the local generator to stabilize its respective LPS is given by 

 

enen

new

en PPP           (26) 

 

Other details can be found in [25], [33]. 

In this investigation, the value of  required to estimate PT and the value of   required in OAS at 

the beginning of a time-step have been determined from the derivatives of a third degree polynomial 

approximation obtained by matching the LPS angle at current time and the LPS angles at three previous 

times. Note that this estimation process has not been used for estimation at future times. Assuming that the 

measurement data and hence the LPS angle δ was available at the beginning of the post-fault configuration, 
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there was a delay of three time-steps to initiate the control. At the beginning of a current time step after three 

previous time-steps in the post-fault configuration, the additional electrical output powers required by the 

different local generators were computed by OAS and they were then applied over the entire length of the 

current time-step. However, the additional electrical output power required by a local generator was obtained 

by applying braking resistors at an arbitrarily chosen bus of the local generator site. For the local sites of 

generators 1-9, braking resistors were applied at the high tension sides of the step-up transformers as shown 

in Figure 4. However, for the local site of generator 10, braking resistors were applied at the generator 

external bus. 

 

 

 
 

Figure 4. Power system at the site of nth local generator with shunt braking resistor 

 

 

The test results for seven different fault cases are presented here. The critical clearing time (CCT) 

ranges for these fault cases were determined by SBS method using the COA frame of reference. In each fault 

case, the CCT ranges were obtained without local controls applied as well as with local controls applied. 

However, as indicated earlier, braking resistors were used in each of the fault cases as the local control 

means. Further, the SBS trajectories corresponding to the critically stable conditions with local controls 

applied are presented for the first six fault cases. 

Fault Case I: A three-phase short circuit fault on bus 29 was cleared by removing line 29-26. 

Without any local control applied, the system was found to be stable at a fault clearing time of 0.07 s and 

unstable at a fault clearing time of 0.08 s. So the CCT range without local controls applied was (0.07 s-0.08 

s). However, with local controls applied, the system was found to be stable at a fault clearing time of 0.15 s 

and unstable at a fault clearing time of 0.16 s. Therefore, the CCT range with local controls applied improved 

to (0.15 s-0.16 s). This is a very significant improvement. The SBS trajectories corresponding to the critically 

stable condition for this fault (i.e. at the fault clearing time of 0.15 s) with local controls applied are shown in 

Figure 5. 

Fault Case II: A three-phase short circuit fault on bus 25 was cleared by removing line 25-2. 

Without any local control applied, the system was found to be stable at a fault clearing time of 0.13 s and 

unstable at a fault clearing time of 0.14 s. So the CCT range without local controls applied was (0.13 s-0.14 

s). However, with local controls applied, the system was found to be stable at a fault clearing time of 0.20 s 

and unstable at a fault clearing time of 0.21 s. Therefore, the CCT range with local controls applied improved 

to (0.20 s-0.21 s). This is also a very significant improvement. The SBS trajectories corresponding to the 

critically stable condition for this fault (i.e. at the fault clearing time of 0.20 s) with local controls applied are 

shown in Figure 6. 
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Figure 5. Controlled SBS trajectories for fault case I 

with fault clearing time of 0.15 s 

 

Figure 6. Controlled SBS trajectories for fault case II 

with fault clearing time of 0.20 s 

 

 

Fault Case III: A three-phase short circuit fault on bus 22 was cleared by removing line 22-21. 

Without any local control applied, the CCT range was found to be (0.17 s-0.18 s). However, with local 

controls applied, the CCT range improved to (0.25 s-0.26 s). The SBS trajectories corresponding to the 

critically stable condition for this fault (i.e. at the fault clearing time of 0.25 s) with local controls applied are 

shown in Figure 7. 

Fault Case IV: A three-phase short circuit fault on bus 24 was cleared by removing line 24-23. 

Without any local control applied, the CCT range was found to be (0.20 s-0.21 s). However, with local 

controls applied, the CCT range improved to (0.24 s-0.25 s). The SBS trajectories corresponding to the 

critically stable condition for this fault (i.e. at the fault clearing time of 0.24 s) with local controls applied are 

shown in Figure 8. 

Fault Case V: A three-phase short circuit fault on bus 27 was cleared by removing line 27-17. 

Without any local control applied, the CCT range was found to be (0.18 s-0.19 s). However, with local 

controls applied, the CCT range improved to (0.26 s-0.27 s). The SBS trajectories corresponding to the 

critically stable condition for this fault (i.e. at the fault clearing time of 0.26 s) with local controls applied are 

shown in Figure 9. 

Fault Case VI: A three-phase short circuit fault on bus 10 was cleared by removing line 10-13. 

Without any local control applied, the CCT range was found to be (0.22 s-0.23 s). However, with local 

controls applied, the CCT range improved to (0.25 s-0.26 s). The SBS trajectories corresponding to the 

critically stable condition for this fault (i.e. at the fault clearing time of 0.25 s) with local controls applied are 

shown in Figure 10. 

 

 

  
 

Figure 7. Controlled SBS trajectories for fault case 

III with fault clearing time of 0.25 s 

 

 

 

Figure 8. Controlled SBS trajectories for fault case 

IV with fault clearing time of 0.24 s 

0 0.5 1
-1

0

1

2

Angle (rad)

Time (s) 0 0.5 1 1.5
-1

0

1

2

Angle (rad)

Time (s)

0 0.5 1 1.5
-1

0

1

2

3

Angle (rad)

Time (s)

0 0.5 1 1.5
-1

0

1

2

3

Angle (rad)

Time (s)



         ISSN: 2252-8792 

IJAPE  Vol. 7, No. 1, April 2018:  73 – 86 

84 

 
 

 

Figure 9. Controlled SBS trajectories for fault case V 

with fault clearing time of 0.26 s 

 

Figure 10. Controlled SBS trajectories for fault case 

VI with fault clearing time of 0.25 s 

 

 

Fault Case VII: A three-phase short circuit fault on bus 15 was cleared by removing line 15-14. 

Without any local control applied, the CCT range was found to be (0.23 s-0.24 s). However, with local 

controls applied, the CCT range improved to (0.27 s-0.28 s). 

The summary of the test results without local controls applied and with local controls applied are 

shown in Table 1 for comparison. As it can be seen from this table, the results are very promising and they 

show very good improvement of transient stability in terms of CCT ranges by the real-time localized control. 

These results clearly demonstrate the high potential of the proposed method for use in real-time localized 

control of transient stability. 

 

 

Table 1. CCT Ranges without and with Localized Controls Applied 

Fault Cases 
Line tripped between buses 

*Faulty bus 
CCT ranges (s) 

  Without control With control 

Case I 
Case II 

Case III 
Case IV 

Case V 

Case VI 
Case VII 

*29 – 26 
*25-2 

*22-21 
*24-23 

*27-17 

*10-13 
*15-14 

0.07-0.08 
0.13-0.14 

0.17-0.18 
0.20-0.21 

0.18-0.19 

0.22-0.23 
0.23-0.24 

0.15-0.16 
0.20-0.21 

0.25-0.26 
0.24-0.25 

0.26-0.27 

0.25-0.26 
0.27-0.28 

 

 

5. CONCLUSION 

A new methodology based on a completely new idea of localized transient stability, is presented 

solely for use in real-time localized control of transient stability. In this localized transient stability (LTS) 

method, transient stability is viewed as the interaction of each individual generator with its respective 

remaining generators. Therefore, the method uses a two-generator localized power system (LPS) model at the 

site of each individual generator. In this method, if each LPS is stable, then the full power system is stable. 

Therefore, in terms of localized control of transient stability, if each LPS is driven to its respective stable 

equilibrium using local measurements and computations with local control actions, then the entire power 

system is driven to its appropriate stable equilibrium. As discussed in this paper, the proposed method 

overcomes the serious drawbacks of the different localized control strategies proposed in the literature. 

Therefore, the system equilibrium state in the proposed method refers to a state at which all the generators 

run at the same speed that is not necessarily the synchronous speed. The method also provides dynamic 

equations for the remaining generators, which are necessary to design effective localized control strategies 

that can drive the power system to its appropriate equilibrium. The test results presented here with the braking 

resistors as local control means show very good improvement of transient stability in terms of CCT ranges. 

These results clearly demonstrate the high potential of the proposed method for use in real-time localized 

control of transient stability. The use of the proposed method in the real-time localized control of transient 

stability with FACTS devices as the local control means is under investigation. However, the real-time 

localized control by the proposed method requires further investigation using the other control strategies (i.e. 

control strategies other than the optimal aim strategy) with different local control means. 
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