A multi-scale dual-stage model for PV array fault detection, classification, and monitoring technique

Siti Nor Azlina Mohd Ghazali, Muhamad Zahim Sujod


The output generated by photovoltaic arrays is influenced mainly by the irradiance, which has non-uniform distribution in a day. This has resulted in the current-limiting nature and nonlinear output characteristics, and conventional protection devices cannot detect and clean faults appropriately. This paper proposes a low-cost model for a multi-scale dual-stage photovoltaic fault detection, classification, and monitoring technique developed through MATLAB/Simulink. The main contribution of this paper is that it can detect multiple common faults, be applied on multi-scale photovoltaic arrays regardless of environmental conditions, and be beneficial for photovoltaic system maintenance work. The experimental results show that the developed algorithm using supervised learning algorithms mutual with k-fold cross-validation has produced good performances in identifying six common faults of photovoltaic arrays, achieved 100% accuracy in fault detection, and achieved good accuracy in fault classification. Challenges and suggestions for future research direction are also suggested in this paper. Overall, this study shall provide researchers and policymakers with a valuable reference for developing photovoltaic system fault detection and monitoring techniques for better feasibility, safety, and energy sustainability.

Full Text:


DOI: http://doi.org/10.11591/ijape.v11.i2.pp134-144


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Applied Power Engineering (IJAPE)
p-ISSN 2252-8792, e-ISSN 2722-2624

Web Analytics Made Easy - StatCounter IJAPE Visitors