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 The present work represents a method for identification of the vulnerable 

nodes in smart grid as well as assessment of the performance of voltage 

stability indicator technique with the help of weighted least square scheme. 

in today’s smart grid system, false data injection (FDI) is the major issue to 

supply uninterruptedly at demand side in advanced metering infrastructure 

(AMI). The recent blackouts are the consequence of non-identifying FDI as 

research on FDI is not considered under power system analysis. In our 

research, vulnerable nodes of a power system network have been identified 

and a state estimation method was used to eliminate superfluous data for 

those identified nodes. Voltage stability indicator (VSI) based state 

estimation have been used successfully to make the smart grid system error 

free as possible. VSI method has been used first to find the vulnerable nodes 

of the grid after that the efficient state estimation method i.e. optimal 

weighted least square (optimal WLS) have been employed to get  

refined result. Results show that VSI based technique in concurrence with 

optimal WLS has potential to eliminate undesirable data with sensible level 

of precision. 
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1. INTRODUCTION  

Smart grid systems are combined with a huge number of devices that are interconnected through a 

communication network and with a cyber-physical system. So, the heterogeneous network consists of sensor 

nodes in different layers, and they are very vulnerable due to the openness of data exchange through different 

channels [1]-[4]. The false data injection attacks (FDIAs) [5] are dangerous. The attacker attacks the smart 

grid communicating devices or the remote terminal units (RTU) distantly retrieved through the system [6]. 

FDIs are responsible for changing the smart grid state estimation, and this is the target of the invader. The modified 

value of data leads to improper judgments in the control room, which results in great fault in the electrical security 

system [7]. 

In 2010 computer worm Stuxnet caused an unstable power system operation [8], in 2003 Northeast 

United States, Ontario Canada, and Midwest, had seen an electrical shutdown of duration of four days in few 

areas [9], Italy, and parts of Switzerland experienced its major power supply interruption for a duration of  

18 hours [9] due to the insecure smart grid system. To improve the safety system of the smart grid system of 

the nodes of the grid system with the voltage sensitivity index method has been discussed in this paper. 

Attackers instigate FDIAs by deletion of the measured values acquired through the SCADA arrangement or 

https://creativecommons.org/licenses/by-sa/4.0/
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phasor measurement units (PMUs), which creates a malfunction of the flow of power among buses of the 

network and the power inserted by the bus. The scheme introduced by Hug and Giampapa [9] can identify 

conventional bad data, which was created by arbitrary noise, but cannot identify complicated FDIAs. 

It is revealed that orthodox approaches on maximum regulated remainders are not capable of 

identifying well-planned false data injection attacks. So, the attacker may insert a particular attack at the time 

of measurement and in due course distort the consequences of state estimation [10], [11]. Nowadays, network 

attacks have become more complicated and sneakier; the FDIA identification scheme applying WLS only 

cannot identify FDIAs, particularly when while attacker is known and the system information [12]. The 

weighted extended Kalman filter (WEKF) [13] estimates are supported on present quantity and historical 

information, and a dynamic threshold. Studying on cost and efficiency of finding methods. The deal of FDIA 

depending on AC and DC state estimation methodology, is very popular among researchers for smart grid 

security purposes. Application of FDIAs in the DC prototype offers bulky residues in the process of the AC 

state estimation, which is improved for detecting FDIAs [14]. FDIAs centered on the AC state estimation 

prototype were formed in [15] to attack the power supply grid system. The assailant may here create the 

inaccurate grid state by flow of power and injection of power quantities with no analysis of the current state 

of a system, and finally vary the state estimation from the safety value as unidentified. With the purpose of 

decreasing the count of measurements when the attack is created, an FDI attack prototype is endorsed in [16] 

to alter the grid parameters, and this finally principals to an improved harmonization among the variation in 

states of the grid plus the alteration of grid parameters.  

The attack prototypical created with nonlinear physical limits was offered to attain the secrete 

consequence and effectively escape of revealing [17]. With AC state estimation arrangements, this is hard to 

invade for flawless FDIAs, as well as insufficient assaults initiate modifications for the possibility sharing of 

measured residuals. Hence, a finding technique applying statistical stability for measured residuals is 

recommended in [18]. Even though the technique may excellently identify FDIAs, this method may not 

discover an exact position for FDIAs. In smart grid the dynamical prototype has been considered to fight 

against FDIAs, the fast attack discovery algorithm was recommended in the work [19]. This algorithm 

discriminates between planned modifications and FDIAs via examining expected statistical possessions. 

Instantaneously, this technique may be able to find or remove FDIAs with little anticipation. In the work 

[20], this technique founded on Kullback-Leibler distance (KLD) was useful for identifying FDIAs. The 

technique regulates the FDIAs reality by matching dissimilarity within possibility distributions among 

historic and present measurements. The trouble of the identification method starts when it includes a huge 

historic measured data, as well as finding efficiency can be negotiated to fight trapezoidal attacks. A discovery 

approach grounded on PMUs measured data of is recommended [21]. This arrangement receives the state 

estimates achieved by PMUs, SCADA, then implements a stability checking process for identifying FDIAs. 

This paper suggests a method for optimal WLS that together uses WLS and optimal sampling methods. 

The organization of paper is expressed as follows: Section 2 deals with the outline of the problem of 

this work for finding error free smart grid. The approach for finding voltage stability index (VSI), state 

estimation methods like AC state estimation idea of FDIA and WLS have also been explained in this section. 

Section 3 of this work mainly deals with the vulnerable node identification method. In this same segment the 

estimation method i.e. WEKF which could successfully identify FDIA and proposed method i.e. optimal 

WLS which supported us to identify the FDIA of smart grid have been discussed. The state deviation process 

which confirmed the FDIA has also been explained in section 3. In section 4, the performances of the 

proposed scheme have been described with different outcomes. Section 5 summarizes the findings of the 

present study and future scope of work. 

 

 

2. THE OUTLINE PROBLEM AND METHODS FOR FINDING ERROR FREE SMART GRID 

An outline of the problem of this work is given in the following paragraphs of this section. 

˗ To improve the security system of smart grid, the vulnerable nodes of grid system have been detected 

with voltage sensitivity index (VSI) method. 

˗ The false data detection technique is based on WEKF and optimal weighted least square (OWLS) which 

was not previously used in conjunction with detection of FDIA. 

˗ The proposed method is also efficient for detecting the dynamic detection of the FDIA and the 

performance is very effective here. 

˗ The proposed technique is highly scalable showing a reasonable results and good performance compared 

to existing work. 

˗ The results obtained from experiment establish that this methodology continues outstanding detection 

performance of FDIA having variable strengths of attack. 
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2.1.  Voltage stability index 

In the distribution network constant voltage level for load end side is to be maintained mandatorily. 

Distribution operators maintain a constant voltage limit. Generally, voltage drop take place due to increase in 

load and a decrease in reactive power. Specific research determines the voltage stability index, which can be 

expressed by the following relation [22], [23]. 

 

𝑉𝑆𝐼(𝑁𝑟) = 𝑉𝑆
4 − 4(𝑃𝑟𝑋 − 𝑄𝑟𝑅)2 − 4(𝑃𝑟𝑅 − 𝑄𝑟𝑋)𝑉𝑠

2 (1) 

 

For an uninterrupted distribution system, operators need control on various system parameters. The 

measuring factors (e.g. current, voltage, and network power) should have error-free parameters. For the error-

free measurement state estimation is a frequently used tool in power networks, which also helps to calculate 

its theoretical value [24]. 

 

2.2.  AC state estimation 

In the AC grid systems, in the state estimator, the power of a network is flowing in the form of a 

nonlinear function of power system parameters of states like magnitudes of voltage as well as angles. So, AC 

state estimation may be represented by a subsequent nonlinear relationship: 𝑚𝑖𝑛 𝑧 − ℎ(𝑥), when 𝑧 being 

called a vector of measured values, and which is stated by the matrix equation as (2). 

 

𝑧 =

[
 
 
 
 
𝑧1

. . .
𝑧𝑛−𝑚

. . .
𝑧𝑛 ]

 
 
 
 

=

[
 
 
 
 
ℎ1(𝑥1, 𝑥2, . . . 𝑥3)
. . .
ℎ𝑛−𝑚(𝑥1, 𝑥2, . . . 𝑥3)
. . .
ℎ𝑛(𝑥1, 𝑥2, . . . 𝑥3) ]

 
 
 
 

+

[
 
 
 
 
𝑒1

. . .
𝑒𝑛−𝑚

. . .
𝑒𝑛 ]

 
 
 
 

  

𝑧 =  ℎ(𝑥)  +  𝑒 (2) 

 

In the aforementioned (2), 𝑒 is represented as a noise vector, 𝑥 expresses the vector of network states (like 

magnitudes of voltage and voltage angles), here ℎ(𝑥) is called the Jacobian matrix and is denoted by 𝐽ℎ 

which expresses the non-linear correlation of the measured data and network parameters of states, as (3). 

 

𝐽 =

[
 
 
 
 
 
 
 
 
𝜕ℎ1

𝜕𝑥1

𝜕ℎ1

𝜕𝑥2
. . .

𝜕ℎ1

𝜕𝑥𝑛−1

𝜕ℎ1

𝜕𝑥𝑛

𝜕ℎ2

𝜕𝑥1

𝜕ℎ2

𝜕𝑥2
. . .

𝜕ℎ2

𝜕𝑥𝑛−1

𝜕ℎ2

𝜕𝑥𝑛

. . .
𝜕ℎ𝑚−1

𝜕𝑥1

𝜕ℎ𝑚−1

𝜕𝑥2
. . .

𝜕ℎ𝑚−1

𝜕𝑥𝑛−1

𝜕ℎ𝑚−1

𝜕𝑥𝑛

. . .
𝜕ℎ𝑚

𝜕𝑥1

𝜕ℎ𝑚

𝜕𝑥2
. . .

𝜕ℎ𝑚

𝜕𝑥𝑛−1

𝜕ℎ𝑚

𝜕𝑥𝑛 ]
 
 
 
 
 
 
 
 

 (3) 

 

To gain access to a particular measuring device, a hacker may introduce an FDIA, which is alarming 

for the magnitude of measured data. For retaining the hacked measurement concealed, minimum one of the 

state variables is essential should be active. (else, erroneous value gained by state estimator (1) will exceed 

the onset, and FDI attack will be identified) [9]. The attackers are only able to gain access to measuring 

devices but not on states of the system. Therefore, the attacker can influence only the measured values which 

are linked with those system states to retain it untraceable [9]. The link between the measured values and 

states of network may be established from a Jacobian matrix. 𝐽ℎ  (in (3)). The AC state estimation method for 

FDIA may be restructured as discussed in [9]. 

 

‖𝑧 ′ − ℎ(𝑥 ′)‖ = ‖𝑧 + 𝑎 − ℎ(𝑥 + 𝑐)‖ = ‖(
𝑧𝑛

𝑧𝑛+𝑎
) − (

ℎ(𝑥𝑛)
ℎ(𝑥𝑛 , 𝑥𝑎 + 𝑐)

)‖ (4) 

 

Where, 𝑧 = 𝑧𝑛 + 𝑧𝑎 and ℎ(𝑥) = ℎ(𝑥𝑛) + ℎ(𝑥𝑛 , 𝑥𝑎 + 𝑐), the terms expressed using subscript ‘n’ are meant 

for natural measured values of network states and are expressed terms with subscript ‘a’ are attacked 

measured values of the network. If the FDI attack is to be kept untraceable: 

 

∥ 𝑧′ − ℎ(𝑥′) ∥=∥ 𝑧 − ℎ(𝑥) ∥ (5) 

 

but, for a normal situation ∥ 𝑧 − ℎ(𝑥) ∥< 𝜏. Hence, it follows that: 
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‖𝑧 ′ − ℎ(𝑥 ′)‖ = ‖𝑧 − ℎ(𝑥)‖ = ‖(
𝑧𝑛

𝑧𝑛+𝑎
) − (

ℎ(𝑥𝑛)
ℎ(𝑥𝑛 , 𝑥𝑎)

)‖ (6) 

 

solving (4) and (6), the attack vector value, may be attained as (7) [9]. 

 

𝑎 = ℎ(𝑥𝑛 , 𝑥𝑎 + 𝑐) − ℎ(𝑥𝑛 , 𝑥𝑎) (7) 

 

From the (5), to introduce an attack vector, the hacker should know the pertinent system state values.  

Hug and Giampapa [9] observed that AC state estimation may be used in an AMI-dependent smart 

grids framework. The AMI measured values are a subsection of the entire measured values expressed  

in (2). If the hacker gains access to entire or a subsection of AMI based devices, e.g., p-AMI devices, he or 

she can produce a FDI attack through selecting a nonzero attack vector a = {a1, …, am} in the manner so that 

this attack vectors at non-reachable devices happen to be zero (so, ai= 0, where, i, {AMI devices}). 

Undetectable attacks can be created, and possible actions to be taken care of are discussed in the 

recent works [9], [24]-[27]. The FDI attacks (where the attacker’s objective is to disorder system function) in 

AMI-based devices have two main impacts. 

i. If FDIA becomes untraceable, like residuals are a smaller amount of an onset value in a weighted least 

square based estimator, network parameters of indicate (e.g., magnitude of voltage, angle) attained from 

the state estimation method deliver erroneous information [28]. The erroneous system conditions found 

from the state estimation method produce confusing operational decisions. These mislead the real-time 

and prolonged real-time operation in the network, like the solution of optimal power flow (OPF) or volt-

VAR control (VVC). This false operative decision will reduce this system’s efficiency, stability as well, 

and consequently, this will cause a significant blackout. 

ii. FDI attacks, identified or unidentified, have straight effect in smart grid set-up. In these studies, the 

influence of FDI attacks on stability of system, in the next segment. 

 

2.3.  Weighted least square (WLS) method of state estimation 

State estimation in power networks is a significant element in power system energy managing 

systems. Remote terminal units transmit field measurement data to a state estimator through data 

transmission systems. A state estimator adequately adjusts state variables of the power system by reducing 

the sum of residual squares. Few non-linear equations linking the measurements and power system states i.e. 

bus voltage, and phase angle support for this method. This process is the famous WLS method.  

The preliminary WLS equation of state estimation process is given (8). 

 

So, 𝑧 = ℎ(𝑥) + 𝑒 (8) 

 

The vector z of measured values is 𝑧𝑇 =  [𝑧1 𝑧2  … 𝑧𝑚] and the vector ℎℎ𝑇 = [ℎ1(𝑥) ℎ2(𝑥) … ℎ𝑚(𝑥)] 
comprising the non-linear functions ℎ𝑖(𝑥) is associated with the anticipated value of the measured quantity in 

state vector x having n variables 𝑥𝑇 = [𝑥1 𝑥2  … 𝑥𝑛]. And 𝑒 is a vector of measurement errors 𝑒𝑇 =
 [𝑒1 𝑒2  … 𝑒𝑚]. The measurement errors 𝑒𝑖 is supposed to fit the subsequent statistical properties. Primarily, 

errors with have zero mean has been calculated to find the voltage stability condition by using the following 

algorithm 𝐸 (𝑒𝑖) = 0, i = 1, … m. After that, errors were taken as independent, (𝐸 [𝑒𝑖𝑒𝑗] = 0 for I ≠ j), in such 

a way that the covariance matrix is diagonal. 

 

𝐶𝑜𝑣(𝑒) = 𝐸(𝑒𝑒𝑇) = 𝑅 = 𝑑𝑖𝑎𝑔{𝜎1
2, 𝜎2

2. . . 𝜎𝑚
2 }  

 

The objective function is denoted by (9). 

 

𝐽(𝑥) =  
∑ (zi-hi(𝑥))2𝑖=𝑚

𝑖=1

𝑅𝑖𝑖
= (𝑧ℎ(𝑥))𝑇𝑅−1(𝑧 − ℎ(𝑥)) (9) 

 

The minimization condition of (9) is indicated by: 

 

𝑔(𝑥) =
𝛿𝑓(𝑥)

𝛿𝑥
= 𝐻(𝑥)𝑇𝑅−1(𝑧 − ℎ(𝑥)) = 0  

 

where 𝐻(𝑥)  = 𝜕ℎ(𝑥)/𝜕𝑥. The Taylor series expansion of 𝑔(𝑥) is expressed as (10). 

 

𝑔(𝑥) = 𝑔(𝑥𝑘) + 𝐺(𝑥𝑘)(𝑥 − 𝑥𝑘)+. . . = 0 (10) 
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Where the 𝑘 + 1 iterate is correlated to kth iteration via: 

 

𝑥𝑘+1 = 𝑥𝑘 − 𝐺(𝑥𝑘)−1𝑔(𝑥𝑘) … (11) 

 

and 𝐺(𝑥𝑘) is a gain matrix 𝐺(𝑥𝑘) =
𝛿𝑔(𝑥𝑘)

𝛿𝑥
= 𝐻𝑇(𝑥𝑘)𝑅-1𝐻(𝑥𝑘). Here, every step of the iteration 𝑔(𝑥𝑘) 

satisfies 𝑔(𝑥𝑘) = 𝐻𝑇𝑥𝑘𝑅-1(𝑧 − ℎ(𝑥𝑘)). 

 

 

3. VULNERABLE NODE IDENTIFICATION METHOD 

3.1.  VSI for vulnerable node identification 

In real-time operation SCADA network supports running the data related to the consumption of 

power to the electrical distribution operator. AMI assistances to deliver these data to electrical operators. If 

the attacker somehow succeeds in tackling the data and changing the data for power of consumption, he can 

modify the data of AMI inserting bad data. So, the primary job of smart grid network will be to find the 

vulnerable nodes in a network. If an attacker somehow accesses the AMI based devices, one can control the 

data of power consumption by inserting wrong information. Here, we have considered that l-AMI based 

instruments are attacked by false data information. So, the attacked values of real as well as reactive power 

measurements, 𝑃𝑖
𝐹𝐷𝐼 and 𝑄𝑖

𝐹𝐷𝐼, are (12)-(14). 

 

𝑃𝑖
𝐹𝐷𝐼 = 𝑃𝑖

0 + 𝑎𝑖; 𝑖∀{1,2, . . . 𝑙} (12) 

 

𝑄𝑖
𝐹𝐷𝐼 = 𝑄𝑖

0 + 𝑎𝑖; 𝑖∀{1,2, . . . 𝑙} (13) 

 

𝑃𝑖
𝐹𝐷𝐼 = 𝑃𝑖

0 + 𝑃𝑖
0𝛽 = 𝑃𝑖

0(1 + 𝛽) (14) 

 

where, 𝑃𝑖
0 and 𝑄𝑖

0 are the correctly measured real and reactive powers of i-th AMI-based devices 

correspondingly. 𝑎𝑖 symbolizes matching attack vectors. Then taking 𝑎𝑖 = 𝑃𝑖
0, where 𝑎𝑖 multiplication factor 

of actual dimensions, the (8) may be written as (11). 

 

𝑃𝑖
𝐹𝐷𝐼 = 𝑃𝑖

0 + 𝑃𝑖
0𝛽𝑖 = 𝑃𝑖

0𝜆𝑖 (15) 

 

Where 𝜆𝑖 = 1 + 𝛽𝑖. Similarly: 

 

𝑄𝑖
𝐹𝐷𝐼 = 𝑄𝑖

0𝛽𝑖 (16) 

 

in (15) 𝜆 is attack degree expressed with any real number. 

The VSI for a node in the smart grid is expressed with (1). According to the explanation of VSI, real 

power and reactive power at rth node may be expressed under regular operative state in this way: 

 

𝑃𝑟 = ∑ 𝑃𝐿
0

𝑖∀𝑐 + 𝑃𝐿(𝑟)
0 + ∑ 𝑃𝐿𝑂𝑆𝑆𝑖∀𝑑  (17) 

 

𝑄𝑟 = ∑ 𝑄𝐿
0

𝑖∀𝑐 + 𝑄𝐿(𝑟)
0 + ∑ 𝑄𝐿𝑂𝑆𝑆𝑖∀𝑑  (18) 

 

where, 𝑃𝐿
0 and 𝑄𝐿

0 are the real power and reactive power of the loads of power consumers, correspondingly. 

𝑃𝐿(𝑟) and 𝑄𝐿(𝑟) are real and reactive power loads of the rth energy consumers, correspondingly. 𝑃𝐿𝑂𝑆𝑆 and 

𝑄𝐿𝑂𝑆𝑆 are active and reactive power losses of the divisions correspondingly. In the above equations, 𝑐 and 𝑑 

signify entire buses and branches correspondingly, beyond node ‘r’ when VSI has been computed. 

Let us consider ‘r’ represents an AMI measured quantity node which is under the attacker, the (13) 

and (14) may be changed utilizing (11) and (12) as follows: 

 

𝑃𝑟 = ∑ 𝑃𝐿
0

𝑖∀𝑐 + 𝑃𝐿(𝑟)
0 𝜆𝑟 + ∑ 𝑃𝐿𝑂𝑆𝑆𝑖∀𝑑  (19) 

 

𝑄𝑟 = ∑ 𝑄𝐿
0

𝑖∀𝑐 + 𝑄𝐿(𝑟)
0 𝜆𝑟 + ∑ 𝑄𝐿𝑂𝑆𝑆𝑖∀𝑑  (20) 

 

𝑃𝑟  and 𝑄𝑟  will change, if 𝜆𝑟  changes, and it will influence on VSI index shown in (1). From the (19) and 

(20), any insertion of false data will modify the value of 𝑃𝑟  and 𝑄𝑟 , which starts again to reduce the value of 

VSI observed in (1). At the network distribution end, R/X ratio is very high [29]. A low amount of VSI 
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indicates a failure of voltage of the system. Hence, the grid operatives would maintain the system within the 

stability boundary. 

From (1), VSI depends on resistance R and inductance X of the power grid. So, the equal value of λ 

(means same quantity of false data insertion) at various nodes, the values of VSI should differ subject to 

changes of the values of R and X of the downriver branches of different nodes while they are attacked. The 

following segment describes the connection of VSI and FDI attack. As scope of this paper, VSI has been 

utilized for searching of vulnerable nodes in IEEE 14 bus topology (Figure 1) as experimental network. 

Figure 2 shows the vulnerable nodes detected in sample IEEE 14 bus network. 

 

 

 
 

Figure 1. IEEE 14 bus topology 

 

 

 
 

Figure 2. The vulnerable nodes detected in the sample network 
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3.2.    Estimation methods for identification of FDIA 

3.2.1. WEKF based measurement  

Hu et al. [13] tried to simplify the EKF [30] to outstanding estimation result in the presence of 

FDIAs in the network. WEKF method adaptively reduces the gain value of filter of EKF with the 

expectation, which certifies the harmed measured values for having a smaller weight for the state estimation 

technique. The weights foreseen, expected measured values have seen to be enlarged. The bond among the 

weight matrix 𝑊𝑘 of the measured values and the covariance matrix R of the measured noise is 𝑊𝑘 = 𝑅−1. 

The weight matrix of measured values is expressed as (21). 

 

(𝑊𝑘
𝑛𝑒𝑤)−1 = 𝑊𝑘

−1 ∗ 𝑒|𝑧𝑘−ℎ(𝑥𝑘|𝑘=1̂ )| (21) 

 

The performance of state estimation can be successfully explained because with the increment in 

attack strength, the technique could restrain successfully the attack. When the predicted estimated 

measurement ℎ(𝑥𝑘|𝑘−1̂ ) diverges meaningfully from the present measurement 𝑧𝑘, the enhancement in 

predicted remaining vector creates the noise due to measurement which ultimately reduces the Kalman gain. 

Slight differences among the forecasted and present measurements direct to small fluctuations in the 

measurement noise. This directs to small variations in Kalman gain and finally to small variations in 

predictable values. In the presence of FDIAs, the WEKF can restrain the consequences of attacks in an 

improved manner, eventually raising the mismatch between the WEKF and optimal WLS estimation. 

 

3.3.    Optimal WLS 

3.3.1. A weighted least-squares approximation 

In this research paper, we start with the discrete norm least-squares method. The common form of 

the discrete norm is shown in (22). 
 

‖𝑣‖𝑛 ≔ (
1

𝑛
∑ 𝑤𝑖𝑛

𝑖=1 |𝑣(𝑥𝑖)|
2
) (22) 

 

The above equation will be used now for the weighted least-squares estimator. Here, sampling measured 

value 𝑑µ, usually varies from 𝑑𝜌 has been applied and can be written as (23). 
 

𝑤𝑑µ =  𝑑𝜌 (23) 
 

Here 𝑤 is considered as positive function described universally on X. So 𝑓𝑥𝜔−1𝑑𝑝 = 1, and we here reflect 

weighted least-square method where weights have been considered as follows: 𝑤𝑖 =  𝑤(𝑥𝑖). Here we select 

the norm so that, the norm ‖𝑣‖𝑛 approaches ‖𝑣‖ as n improves. When 𝑑µ = 𝑑𝜌 and 𝑤 ≡ 1 indicates 

standard least-squares method evaluated by Theorem 1.1. It is to be noted that varying the sampling values 

are a usual practice scheme for decreasing the difference in Monte Carlo methods, which includes importance 

sampling. 𝐿𝑗 denotes 𝐿2(𝑋, 𝑑𝜌) orthonormal basis of 𝑉𝑚 and with this an introduction of new function can be 

mentioned as (24). 
 

𝑥 → 𝑘𝑚,𝑤(𝑥): = ∑ 𝑤(𝑥)|𝐿𝑗(𝑥)|
2𝑚

𝑗=1  (24) 
 

Which is dependent on 𝑉𝑚, 𝑑𝜌, and 𝑤. 
 

𝐾𝑚,𝑤 = 𝐾𝑚,𝑤  (𝑉𝑚, 𝑑𝜌, 𝑤) ≔ ‖𝑘𝑚,𝑤‖𝐿∞ (25) 
 

It is to be noticed that, as √𝑤𝐿𝑗 are an 𝐿2(𝑋, 𝑑µ) orthonormal basis of √𝑤𝑉𝑚 where space consists of 

functions √𝑤𝑔 with g ∈ 𝑉𝑚, we obtain ∫ 𝑥𝑘𝑚,𝑤𝑑µ=𝑚 and thus 𝐾𝑚 , 𝑤 ≥  𝑚. 

 

3.3.2. Optimal sampling 

Theorem 2.1 in leads the study with usual way aiming for optimal sampling scheme for weighted 

least-square method. Let us consider: 
 

𝑤 ≔
𝑚

𝑘𝑚
=

𝑚

∑ |𝐿𝑗|
2𝑚

𝑗=1

 (26) 

 

for any value of 𝑤, one may test out that: 
 

𝑑µ ≔
𝑘𝑚

𝑚
𝑑𝜌 (27) 
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is the probability measure on 𝑋 as ∫ 𝑥𝑘𝑚𝑑𝜌=𝑚. Furthermore, for the specific choice 𝑘𝑚, 𝑤 = 𝑤𝑘𝑚 = 𝑚. 

Therefore: 

 

𝑘𝑚, 𝑤 = 𝑚. (28) 

 

thus, we conclude that result is subsequent result of above theorem. This theorem displays that above 

selection of 𝑤 and 𝑑µ permits for attaining nearest-optimal estimates which reduces weighted least-squares 

estimator, below nominal condition which selects 𝑛 so that it becomes least of order 𝑚 𝑙𝑛(𝑚). 

 

3.4.  Identification process with state deviation 

The power flow calculation of power system is executed for k, and calculated result is included for 

deviation error following Gaussian distribution which is the measurement system. At this condition two 

numbers of state estimation approaches offered above are applied to evaluate the system state. Primarily, for 

comparing the deviations among two estimates the consistency test is applied. The formula is given by (29). 

 

𝑥ˆ𝑠𝑘 −  𝑥ˆ𝑑 𝑘 2 ≤  𝜏𝑎 (29) 

 

Here 𝑥ˆ𝑠𝑘 and 𝑥ˆ𝑑 𝑘 symbolizes the forecast state estimates using optimal WLS and WEKF respectively. The 

consistency check threshold is expressed with 𝜏𝑎. The value of 𝜏𝑎 is fixed by measurement error as well as 

correctness of state estimation outcome. As forecasted value is designed by means of Holt’s two parameter 

approach, unexpected deviations in generator and load are not accepted in system. For removing false 

identifications due to sudden change in generator output or changes in load, the residues from the calculated 

estimates and the original measured value are ensured. The technique of residual test is given by (30). 

 

𝑧𝑘 −  ℎ (𝑥ˆ𝑠 𝑘) 2 ≤  𝜏𝑏 (30) 

 

Here ℎ (𝑥ˆ𝑠 𝑘) can be expressed as estimated measured value found from the optimal WLS; the identification 

threshold of bad data is 𝜏𝑏, and tolerance error of the chi-square distribution decides the result also. If the 

power grid is attacked with FDIA, the test results regarding consistency of the state estimation achieved 

through these two estimation approaches WEKF and optimal WLS are much higher than the threshold 

values. It ensures the presence of FDIAs. Ultimately, the forecast estimate values obtained applying WEKF 

are undergone through residual tests to determine the presence of FDIAs. If the threshold value of the optimal 

WLS test is lesser than the outcome of residual test, the presence of FDIA is sure in the system. Conversely, 

if threshold of chi-square test is greater than outcome of a residual test, then the consistency test result is 

interrupted, lastly it is determined that the system is attack-free. 

 

 

4. RESULTS AND DISCUSSION 

For experimental purpose MATLAB R2018b has been selected for simulation and analysis. The 

power flow of the network was evaluated applying significant data obtained by MATPOWER 7.1 power 

simulation platform. In this experiment, Gaussian noise has been included in power flow results. Here the 

mean value is selected 0 and the variance of 0.010. In the result section, the outcome regarding identification 

of projected method has been established from the simulation results. According to the proposed scheme, 

attack vector has been injected as FDIA in IEEE-14 bus network. Firstly, the FDIA nodes are detected by 

VSI method. Secondly after FDIA in smart grid the state estimation results applying WEKF, and proposed 

method (optimal WLS) have been compared. Lastly, the presence of FDIA has been determined by the 

proposed identification approach in IEEE-14 bus system. 

The VSI index method was applied in IEEE-14 bus system with injected false data in some nodes. 

The experimental result with VSI is shown in Table 1. The VSI has efficiently detected the vulnerable nodes. 

Table 2 (column 1) shows all the meter measurements (taken as before attack) along with the estimates 

generated by WEKF and proposed method. Figure 3 illustrates the experimental results for the voltage 

magnitude of IEEE-14 bus system. The curves indicate voltage magnitudes for the different methods of state 

estimation with the proposed scheme. The proposed scheme establishes a very good, estimated value 

compared to the other methods. Table 3 explains data (voltage phase) which were obtained by all the meter 

measurements (taken as before attack) along with the estimating methods which are generated by WEKF and 

proposed method. Figure 4 illustrates the experimental results for the voltage phase of IEEE-14 bus system. 

The curves specify voltage phases for the different methods of state estimation with the proposed scheme 

which establishes a very good, estimated value than the other methods. 
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Table 1. Vulnerable node detection using VSI 
Bus No. VSI Stability status Bus No. VSI Stability status 

1 1.0000 Stable 8 1.0000 Stable 
2 -54.1942 Vulnerable 9 -97.5199 Vulnerable 

3 1.0000 Stable 10 1.0000 Stable 

4 -23.8973 Vulnerable 11 1.0000 Stable 
5 -22.1350 Vulnerable 12 -8.2894 Vulnerable 

6 -42.1593 Vulnerable 13 -76.7224 Vulnerable 

7 1.0000 Stable 14 -98.1856 Vulnerable 

 

 

Table 2. Comparison table for voltage magnitude of WEKF and the proposed method after FDI 
Bus No. Measured value in P. U Methodology used Bus No. Measured value in P. U Methodology used 

Before 

FDI 

After 

FDI 

WEKF 

[13] 

Proposed 

method 

Before 

FDI 

After 

FDI 

WEKF 

[13] 

Proposed 

method 

1 1.068 1.2134 1.15 1.07 8 1.0287 1.1347 1.06 1.023 

2 0.9899 1.0959 1.08 0.99 9 0.9763 1.088 1.07 0.976 

3 0.9518 1.0645 1.05 0.96 10 0.9758 1.0873 1.07 0.979 

4 0.9579 1.0716 1.061 0.958 11 0.9932 1.1025 1.1 0.98 

5 0.9615 1.0749 1.06 0.96 12 1.0009 1.1091 1.1 1.001 
6 1.0185 1.125 1.115 1.019 13 0.994 1.1028 1.1 1.03 

7 0.9919 1.1028 1.1 1.01 14 0.9647 1.0772 1.05 0.97 

 
 

Table 3. Comparison table for voltage phase of WEKF and the proposed method after FDI 
Bus No. Measured value in degree Methodology used Bus No. Measured value in degree Methodology used 

Before 
FDI 

After 
FDI 

WEKF 
[13] 

Proposed 
method 

Before 
FDI 

After 
FDI 

WEKF 
[13] 

Proposed 
Method 

1 0 0 0 0 8 -13.39 -11.39 -14.39 -13.1 

2 -4.97 -4.86 -4.9 -4.92 9 -14.91 -12.91 -15.91 -14.62 
3 -12.75 -12.89 -12.8 -12.73 10 -15.4 -13.4 -16.4 -15.11 

4 -10.3 -8.3 -11.3 -10.01 11 -14.9 -12.9 -15.9 -14.61 

5 -8.76 -6.76 -9.76 -8.47 12 -15.7 -13.7 -16.7 -15.41 
6 -14.5 -12.5 -15.5 -14.21 13 -15.5 -13.5 -16.5 -15.21 

7 -13.3 -11.3 -14.3 -13.01 14 -16.08 -14.08 -17.08 -15.79 

 

 

 
 

Figure 3. Comparison of voltage amplitude at each bus before and after FDI attack 
 
 

4.1.  Comparison of RMSE values for different methods 

The paper also applies the root mean square error (RMSE) for determining the estimators- WLS, 

WEKF and optimal WLS performance. The RMSE is also used here to find the strength of state estimation 

while WLS, WEKF as well as optimal WLS are under FDIA attack. The RMSE computes the estimation 

error for WLS, WEKF and optimal WLS estimators by means of deviation between anticipated estimation 

and the real value. The anticipated estimated value for bus voltage is matched with real value while network 

is attacked. Computation of RMSE may be performed with the following equation. The RMSE computed by 

estimated error of every bus has been cited in Table 4. From Table 4, RMSE obtained by optimal WLS 

estimation is expressively lower compared to RMSE of the WEKF estimation. So, in presence of FDIA, the 

optimal WLS presents enhanced performance for estimation than the WEKF and WLS. 



                ISSN: 2252-8792 

Int J Appl Power Eng, Vol. 14, No. 2, June 2025: 347-358 

356 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥𝑗̂ − 𝑥𝑗)

2𝑁
𝑗=1  (31) 

 

Here 𝑁 denotes the bus numbers; 𝑥𝑗̂ denotes anticipated estimated voltage for the jth bus. The estimate errors 

for the voltage parameter for every are shown in Table 5. These data of voltage values have been taken while 

the smart grid is under attack. In Table 5, the estimate error of optimal WLS is found to be minimal when 

grid is under the injection of false data state. So optimal WLS shows an improvement for estimation 

performance over WEKF while smart grid faced attack by FDIA. The column of proposed method in Table 5 

and Table 5 using optimal WLS shows very good results as optimal weight least method uses selection of w 

and 𝑑µ which permits the user for attaining nearest optimal estimates of abridged weighted least-squares 

estimator. Here the minimum condition is that 𝑛 is minimal for the order 𝑚 𝑙𝑛(𝑚). 
 

 

 
 

Figure 4. Comparison of voltage phase angles at each bus before and after FDI attack 
 

 

Table 4. RMSE of voltage amplitude 
Algorithm RMSE 

WLS 0.1094 

WEKF [13] 0.0054 

Optimal WLS 0.00038 

 
 

Table 5. Estimated error of WLS, WEKF, and proposed optimal WLS and proposed method 
Bus 

No. 

WLS method 

(RMSE) 

WEKF [13] 

(RMSE) 

Proposed method 

(RMSE) 

Bus 

No. 

WLS method 

(RMSE) 

WEKF [13] 

(RMSE) 

Proposed method 

(RMSE) 

1 8.23×10-2 -3.1×10-3 5.41×10-4 7 10.90×10-2 5.5×10-3 1.54×10-4 

2 10.20×10-2 5.3×10-3 4.20×10-4 8 11.44×10-2 5.8×10-3 1.37×10-4 

3 9.94×10-2 4.2×10-3 3.76×10-4 9 10.96×10-2 3.9×10-3 1.89×10-5 

4 12.14×10-2 5.1×10-3 3.29×10-4 10 10.94×10-2 6.1×10-3 1.55×10-5 

5 12.16×10-2 6.2×10-3 2.69×10-4 11 11.75×10-2 5.2×10-3 5.43×10-5 

6 11.47×10-2 7.5×10-3 2.12×10-4 12 11.64×10-2 3.7×10-3 6.46×10-6 
7 10.90×10-2 5.5×10-3 1.54×10-4 13 11.71×10-2 4.1×10-3 6.76×10-6 

8 11.44×10-2 5.8×10-3 1.37×10-4 14 12.05×10-2 7.2×10-3 7.55×10-6 

 
 

5. CONCLUSION 

This paper recommends a technique based on VSI index and state deviation to efficiently identify 

and pinpoint the FDIA. To pinpoint the FDIA the VSI index algorithm has been implemented. Using a 

discrete optimal sampling weighting function to the orthodox WLS method, the detection performance due to 

the FDIA attack is blocked efficiently. The consistency test for WLS, WEKF as well as optimal WLS 

estimation were executed to primarily decide the presence of false data injection attack within network. With 

the intention of dropping this value for error finding rate, residual test was also executed. For reducing the 

redundancy of the network, efficient chi-square test has been executed. Ultimately, the experimental results 

establish the outstanding enactment of proposed scheme to identify FDIA. As future work, diverse FDIA of 

smart grid network, like time synchronization attack as well as interception attacks can be considered. 
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