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The present work represents a method for identification of the vulnerable
nodes in smart grid as well as assessment of the performance of voltage
stability indicator technique with the help of weighted least square scheme.
in today’s smart grid system, false data injection (FDI) is the major issue to
supply uninterruptedly at demand side in advanced metering infrastructure
(AMI). The recent blackouts are the consequence of non-identifying FDI as
research on FDI is not considered under power system analysis. In our
research, vulnerable nodes of a power system network have been identified
and a state estimation method was used to eliminate superfluous data for
those identified nodes. Voltage stability indicator (VSI) based state
estimation have been used successfully to make the smart grid system error
free as possible. VVSI method has been used first to find the vulnerable nodes
of the grid after that the efficient state estimation method i.e. optimal
weighted least square (optimal WLS) have been employed to get

refined result. Results show that VSI based technique in concurrence with
optimal WLS has potential to eliminate undesirable data with sensible level
of precision.
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1. INTRODUCTION

Smart grid systems are combined with a huge number of devices that are interconnected through a
communication network and with a cyber-physical system. So, the heterogeneous network consists of sensor
nodes in different layers, and they are very vulnerable due to the openness of data exchange through different
channels [1]-[4]. The false data injection attacks (FDIAS) [5] are dangerous. The attacker attacks the smart
grid communicating devices or the remote terminal units (RTU) distantly retrieved through the system [6].
FDIs are responsible for changing the smart grid state estimation, and this is the target of the invader. The modified
value of data leads to improper judgments in the control room, which results in great fault in the electrical security
system [7].

In 2010 computer worm Stuxnet caused an unstable power system operation [8], in 2003 Northeast
United States, Ontario Canada, and Midwest, had seen an electrical shutdown of duration of four days in few
areas [9], Italy, and parts of Switzerland experienced its major power supply interruption for a duration of
18 hours [9] due to the insecure smart grid system. To improve the safety system of the smart grid system of
the nodes of the grid system with the voltage sensitivity index method has been discussed in this paper.
Attackers instigate FDIAs by deletion of the measured values acquired through the SCADA arrangement or
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phasor measurement units (PMUSs), which creates a malfunction of the flow of power among buses of the
network and the power inserted by the bus. The scheme introduced by Hug and Giampapa [9] can identify
conventional bad data, which was created by arbitrary noise, but cannot identify complicated FDIAs.

It is revealed that orthodox approaches on maximum regulated remainders are not capable of
identifying well-planned false data injection attacks. So, the attacker may insert a particular attack at the time
of measurement and in due course distort the consequences of state estimation [10], [11]. Nowadays, network
attacks have become more complicated and sneakier; the FDIA identification scheme applying WLS only
cannot identify FDIAs, particularly when while attacker is known and the system information [12]. The
weighted extended Kalman filter (WEKF) [13] estimates are supported on present quantity and historical
information, and a dynamic threshold. Studying on cost and efficiency of finding methods. The deal of FDIA
depending on AC and DC state estimation methodology, is very popular among researchers for smart grid
security purposes. Application of FDIAs in the DC prototype offers bulky residues in the process of the AC
state estimation, which is improved for detecting FDIAs [14]. FDIAs centered on the AC state estimation
prototype were formed in [15] to attack the power supply grid system. The assailant may here create the
inaccurate grid state by flow of power and injection of power quantities with no analysis of the current state
of a system, and finally vary the state estimation from the safety value as unidentified. With the purpose of
decreasing the count of measurements when the attack is created, an FDI attack prototype is endorsed in [16]
to alter the grid parameters, and this finally principals to an improved harmonization among the variation in
states of the grid plus the alteration of grid parameters.

The attack prototypical created with nonlinear physical limits was offered to attain the secrete
consequence and effectively escape of revealing [17]. With AC state estimation arrangements, this is hard to
invade for flawless FDIASs, as well as insufficient assaults initiate modifications for the possibility sharing of
measured residuals. Hence, a finding technique applying statistical stability for measured residuals is
recommended in [18]. Even though the technique may excellently identify FDIAs, this method may not
discover an exact position for FDIAs. In smart grid the dynamical prototype has been considered to fight
against FDIAs, the fast attack discovery algorithm was recommended in the work [19]. This algorithm
discriminates between planned modifications and FDIAs via examining expected statistical possessions.
Instantaneously, this technique may be able to find or remove FDIAs with little anticipation. In the work
[20], this technique founded on Kullback-Leibler distance (KLD) was useful for identifying FDIAs. The
technique regulates the FDIAs reality by matching dissimilarity within possibility distributions among
historic and present measurements. The trouble of the identification method starts when it includes a huge
historic measured data, as well as finding efficiency can be negotiated to fight trapezoidal attacks. A discovery
approach grounded on PMUs measured data of is recommended [21]. This arrangement receives the state
estimates achieved by PMUs, SCADA, then implements a stability checking process for identifying FDIAs.
This paper suggests a method for optimal WLS that together uses WLS and optimal sampling methods.

The organization of paper is expressed as follows: Section 2 deals with the outline of the problem of
this work for finding error free smart grid. The approach for finding voltage stability index (VSI), state
estimation methods like AC state estimation idea of FDIA and WLS have also been explained in this section.
Section 3 of this work mainly deals with the vulnerable node identification method. In this same segment the
estimation method i.e. WEKF which could successfully identify FDIA and proposed method i.e. optimal
WLS which supported us to identify the FDIA of smart grid have been discussed. The state deviation process
which confirmed the FDIA has also been explained in section 3. In section 4, the performances of the
proposed scheme have been described with different outcomes. Section 5 summarizes the findings of the
present study and future scope of work.

2. THE OUTLINE PROBLEM AND METHODS FOR FINDING ERROR FREE SMART GRID
An outline of the problem of this work is given in the following paragraphs of this section.

- To improve the security system of smart grid, the vulnerable nodes of grid system have been detected
with voltage sensitivity index (VSI) method.

- The false data detection technique is based on WEKF and optimal weighted least square (OWLS) which
was not previously used in conjunction with detection of FDIA.

- The proposed method is also efficient for detecting the dynamic detection of the FDIA and the
performance is very effective here.

- The proposed technique is highly scalable showing a reasonable results and good performance compared
to existing work.

- The results obtained from experiment establish that this methodology continues outstanding detection
performance of FDIA having variable strengths of attack.
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2.1. Voltage stability index

In the distribution network constant voltage level for load end side is to be maintained mandatorily.
Distribution operators maintain a constant voltage limit. Generally, voltage drop take place due to increase in
load and a decrease in reactive power. Specific research determines the voltage stability index, which can be
expressed by the following relation [22], [23].

VSI(N,) = Vi — 4(P.X — Q,R)* — 4(P.R — Q. X)V}? )

For an uninterrupted distribution system, operators need control on various system parameters. The
measuring factors (e.g. current, voltage, and network power) should have error-free parameters. For the error-
free measurement state estimation is a frequently used tool in power networks, which also helps to calculate
its theoretical value [24].

2.2. AC state estimation

In the AC grid systems, in the state estimator, the power of a network is flowing in the form of a
nonlinear function of power system parameters of states like magnitudes of voltage as well as angles. So, AC
state estimation may be represented by a subsequent nonlinear relationship: min z — h(x), when z being
called a vector of measured values, and which is stated by the matrix equation as (2).

71 hy(%1,%5,...%3) e
Z = Zp-m | = |An-m (X1, X2, ... X3) | + [ €n-m
Zn hy, (%1, %5,...%3) én

z =hx) +e (2)

In the aforementioned (2), e is represented as a noise vector, x expresses the vector of network states (like
magnitudes of voltage and voltage angles), here h(x) is called the Jacobian matrix and is denoted by J,
which expresses the non-linear correlation of the measured data and network parameters of states, as (3).

-6h1 6h1 6h1 6h1
9x1 9%, " 0xn_g %
dh, dh,  Oh, Ohy
9x1 0% """ dxnq O

J = Ohm—10hm—1  Ohm—1 0hm—1 ®)
dx, Oxy; T 0xp_q Oxn

Ohm Ohm  Ohm Ohm
Lax, 0xp; "' 0xp—q 0xp

To gain access to a particular measuring device, a hacker may introduce an FDIA, which is alarming
for the magnitude of measured data. For retaining the hacked measurement concealed, minimum one of the
state variables is essential should be active. (else, erroneous value gained by state estimator (1) will exceed
the onset, and FDI attack will be identified) [9]. The attackers are only able to gain access to measuring
devices but not on states of the system. Therefore, the attacker can influence only the measured values which
are linked with those system states to retain it untraceable [9]. The link between the measured values and
states of network may be established from a Jacobian matrix. J, (in (3)). The AC state estimation method for

Zn > (Al(.’fn) )|| 4
(zn+a h(xn'xa C) ( )

Where, z = z, + z, and h(x) = h(x,) + h(x,, x, + ¢), the terms expressed using subscript ‘n’ are meant
for natural measured values of network states and are expressed terms with subscript ‘a’ are attacked
measured values of the network. If the FDI attack is to be kept untraceable:

|z = hGH|| =llz+a—hx+0o)ll =

Il z' — h(x") 1=l z— h(x) |l )

but, for a normal situation || z — h(x) II< . Hence, it follows that:
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2 = h(H|| = llz = h(x)ll =

() (Zg)x))” 6)

solving (4) and (6), the attack vector value, may be attained as (7) [9].
a=h(x,, x, +c)—h(x, x) @)

From the (5), to introduce an attack vector, the hacker should know the pertinent system state values.

Hug and Giampapa [9] observed that AC state estimation may be used in an AMI-dependent smart
grids framework. The AMI measured values are a subsection of the entire measured values expressed
in (2). If the hacker gains access to entire or a subsection of AMI based devices, e.g., p-AMI devices, he or
she can produce a FDI attack through selecting a nonzero attack vector a= {al, ..., am} in the manner so that
this attack vectors at non-reachable devices happen to be zero (so, ai= 0, where, i, {AMI devices}).

Undetectable attacks can be created, and possible actions to be taken care of are discussed in the
recent works [9], [24]-[27]. The FDI attacks (where the attacker’s objective is to disorder system function) in
AMI-based devices have two main impacts.

i. If FDIA becomes untraceable, like residuals are a smaller amount of an onset value in a weighted least
square based estimator, network parameters of indicate (e.g., magnitude of voltage, angle) attained from
the state estimation method deliver erroneous information [28]. The erroneous system conditions found
from the state estimation method produce confusing operational decisions. These mislead the real-time
and prolonged real-time operation in the network, like the solution of optimal power flow (OPF) or volt-
VAR control (VVC). This false operative decision will reduce this system’s efficiency, stability as well,
and consequently, this will cause a significant blackout.

ii. FDI attacks, identified or unidentified, have straight effect in smart grid set-up. In these studies, the
influence of FDI attacks on stability of system, in the next segment.

2.3. Weighted least square (WLS) method of state estimation

State estimation in power networks is a significant element in power system energy managing
systems. Remote terminal units transmit field measurement data to a state estimator through data
transmission systems. A state estimator adequately adjusts state variables of the power system by reducing
the sum of residual squares. Few non-linear equations linking the measurements and power system states i.e.
bus voltage, and phase angle support for this method. This process is the famous WLS method.

The preliminary WLS equation of state estimation process is given (8).

So,z=h(x) +e (8)
The vector z of measured values is z7 = [z; z, ... z,,] and the vector hhT = [hy(x) hy (%) ... by (%)]
comprising the non-linear functions h;(x) is associated with the anticipated value of the measured quantity in
state vector x having n variables x” = [x; x, ... x,]. And e is a vector of measurement errors e’ =
[e; e5 ... e,]. The measurement errors e; is supposed to fit the subsequent statistical properties. Primarily,
errors with have zero mean has been calculated to find the voltage stability condition by using the following
algorithm E (e;) = 0,i= 1, ... m. After that, errors were taken as independent, (E [e;e;] = 0 for I #j), in such
a way that the covariance matrix is diagonal.

Cov(e) = E(ee”) = R = diag{c?,c%...0%}

The objective function is denoted by (9).
) = B ()R (2 hx) ©)
The minimization condition of (9) is indicated by:
900 =L2 = H@R(z = h(x)) = 0

where H(x) = dh(x)/dx. The Taylor series expansion of g(x) is expressed as (10).

gx) =gx") +c(x"H(x —xMH+...=0 (10)
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Where the k + 1 iterate is correlated to kth iteration via:
xkt = xk — G(x*) g (xF) ... (11)

sg@xky _

and G(x*) is a gain matrix G(x*)= = HT(x®*)RTH(x*). Here, every step of the iteration g(x*)

satisfies g(x*) = HTx*R1(z — h(x")).

3. VULNERABLE NODE IDENTIFICATION METHOD
3.1. VSI for vulnerable node identification

In real-time operation SCADA network supports running the data related to the consumption of
power to the electrical distribution operator. AMI assistances to deliver these data to electrical operators. If
the attacker somehow succeeds in tackling the data and changing the data for power of consumption, he can
modify the data of AMI inserting bad data. So, the primary job of smart grid network will be to find the
vulnerable nodes in a network. If an attacker somehow accesses the AMI based devices, one can control the
data of power consumption by inserting wrong information. Here, we have considered that I-AMI based
instruments are attacked by false data information. So, the attacked values of real as well as reactive power
measurements, Pf°" and QFP!, are (12)-(14).

PP =P +a;iv{12,...13 -
=0 +aziv{L2,...[} >
PPl =PY +P)B =PP(1+p) .

where, P? and QY are the correctly measured real and reactive powers of i-th AMI-based devices
correspondingly. a; symbolizes matching attack vectors. Then taking a; = P?, where a; multiplication factor
of actual dimensions, the (8) may be written as (11).

PPl =P + P)B; = P X, (15)
Where 4; = 1 + g;. Similarly:
! = P (16)
in (15) A is attack degree expressed with any real number.

The VSI for a node in the smart grid is expressed with (1). According to the explanation of VSI, real
power and reactive power at rth node may be expressed under regular operative state in this way:

P = Yive P + Py + Ziva Pross (7)
Qr = Yive Q) + Qi) + Xiva Quoss (18)

where, P? and Q7 are the real power and reactive power of the loads of power consumers, correspondingly.
P.oy and Q. are real and reactive power loads of the rth energy consumers, correspondingly. P, g5 and
Q,0ss are active and reactive power losses of the divisions correspondingly. In the above equations, ¢ and d
signify entire buses and branches correspondingly, beyond node ‘r’ when VSI has been computed.

Let us consider ‘r’ represents an AMI measured quantity node which is under the attacker, the (13)
and (14) may be changed utilizing (11) and (12) as follows:

B = Yive P + Py Ar + Ziva Pross (19)
Qr = Yive Q0 + QLA + Yiva Quoss (20)
P. and Q, will change, if A, changes, and it will influence on VSI index shown in (1). From the (19) and

(20), any insertion of false data will modify the value of B. and Q,., which starts again to reduce the value of
VSI observed in (1). At the network distribution end, R/X ratio is very high [29]. A low amount of VSI
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indicates a failure of voltage of the system. Hence, the grid operatives would maintain the system within the
stability boundary.

From (1), VSI depends on resistance R and inductance X of the power grid. So, the equal value of A
(means same quantity of false data insertion) at various nodes, the values of VSI should differ subject to
changes of the values of R and X of the downriver branches of different nodes while they are attacked. The
following segment describes the connection of VSI and FDI attack. As scope of this paper, VSI has been
utilized for searching of vulnerable nodes in IEEE 14 bus topology (Figure 1) as experimental network.
Figure 2 shows the vulnerable nodes detected in sample IEEE 14 bus network.
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Figure 1. IEEE 14 bus topology
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Figure 2. The vulnerable nodes detected in the sample network
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3.2. Estimation methods for identification of FDIA
3.2.1. WEKF based measurement

Hu et al. [13] tried to simplify the EKF [30] to outstanding estimation result in the presence of
FDIAs in the network. WEKF method adaptively reduces the gain value of filter of EKF with the
expectation, which certifies the harmed measured values for having a smaller weight for the state estimation
technique. The weights foreseen, expected measured values have seen to be enlarged. The bond among the
weight matrix W, of the measured values and the covariance matrix R of the measured noise is W, = R™1.
The weight matrix of measured values is expressed as (21).

(o)™ = Wit « ek i) ()

The performance of state estimation can be successfully explained because with the increment in
attack strength, the technique could restrain successfully the attack. When the predicted estimated
measurement h(xy,—;) diverges meaningfully from the present measurement zk, the enhancement in
predicted remaining vector creates the noise due to measurement which ultimately reduces the Kalman gain.
Slight differences among the forecasted and present measurements direct to small fluctuations in the
measurement noise. This directs to small variations in Kalman gain and finally to small variations in
predictable values. In the presence of FDIAs, the WEKF can restrain the consequences of attacks in an
improved manner, eventually raising the mismatch between the WEKF and optimal WLS estimation.

3.3. Optimal WLS
3.3.1. A weighted least-squares approximation

In this research paper, we start with the discrete norm least-squares method. The common form of
the discrete norm is shown in (22).

olly = GZi, wl [v()]) (22)

The above equation will be used now for the weighted least-squares estimator. Here, sampling measured
value dy, usually varies from dp has been applied and can be written as (23).

wdp = dp (23)

Here w is considered as positive function described universally on X. So fxw~tdp = 1, and we here reflect
weighted least-square method where weights have been considered as follows: wi = w(xi). Here we select
the norm so that, the norm ||v||,, approaches ||v|| as n improves. When du =dp and w = 1 indicates
standard least-squares method evaluated by Theorem 1.1. It is to be noted that varying the sampling values
are a usual practice scheme for decreasing the difference in Monte Carlo methods, which includes importance
sampling. L; denotes L*(X, dp) orthonormal basis of V;, and with this an introduction of new function can be
mentioned as (24).

2
X = ko (0): = ZTL w()|L; ()| (24)
Which is dependent on 17,,, dp, and w.
Km,w = Bmw (Vm: dp, w) = ”km,w”LOo (25)

It is to be noticed that, as \/ij are an L?(X,du) orthonormal basis of vVwV,, where space consists of
functions Vwg with g € V,,, we obtain [ x*mWwau=m and thus K,,,, w > m.

3.3.2. Optimal sampling
Theorem 2.1 in leads the study with usual way aiming for optimal sampling scheme for weighted
least-square method. Let us consider:

wi= = (26)

km ST L
for any value of w, one may test out that:

dp = dp 27)

m
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is the probability measure on X as [ x*m=m_Furthermore, for the specific choice k,,, w = wk,, = m.
Therefore:

ki, w=m. (28)

thus, we conclude that result is subsequent result of above theorem. This theorem displays that above
selection of w and du permits for attaining nearest-optimal estimates which reduces weighted least-squares
estimator, below nominal condition which selects n so that it becomes least of order m In(m).

3.4. ldentification process with state deviation

The power flow calculation of power system is executed for k, and calculated result is included for
deviation error following Gaussian distribution which is the measurement system. At this condition two
numbers of state estimation approaches offered above are applied to evaluate the system state. Primarily, for
comparing the deviations among two estimates the consistency test is applied. The formula is given by (29).

x'sk — xdk2 < ta (29)

Here x"sk and x"d k symbolizes the forecast state estimates using optimal WLS and WEKF respectively. The
consistency check threshold is expressed with ta. The value of ta is fixed by measurement error as well as
correctness of state estimation outcome. As forecasted value is designed by means of Holt’s two parameter
approach, unexpected deviations in generator and load are not accepted in system. For removing false
identifications due to sudden change in generator output or changes in load, the residues from the calculated
estimates and the original measured value are ensured. The technique of residual test is given by (30).

zk — h(x'sk)2 < b (30)

Here h (x"s k) can be expressed as estimated measured value found from the optimal WLS; the identification
threshold of bad data is b, and tolerance error of the chi-square distribution decides the result also. If the
power grid is attacked with FDIA, the test results regarding consistency of the state estimation achieved
through these two estimation approaches WEKF and optimal WLS are much higher than the threshold
values. It ensures the presence of FDIAs. Ultimately, the forecast estimate values obtained applying WEKF
are undergone through residual tests to determine the presence of FDIAs. If the threshold value of the optimal
WLS test is lesser than the outcome of residual test, the presence of FDIA is sure in the system. Conversely,
if threshold of chi-square test is greater than outcome of a residual test, then the consistency test result is
interrupted, lastly it is determined that the system is attack-free.

4. RESULTS AND DISCUSSION

For experimental purpose MATLAB R2018b has been selected for simulation and analysis. The
power flow of the network was evaluated applying significant data obtained by MATPOWER 7.1 power
simulation platform. In this experiment, Gaussian noise has been included in power flow results. Here the
mean value is selected 0 and the variance of 0.010. In the result section, the outcome regarding identification
of projected method has been established from the simulation results. According to the proposed scheme,
attack vector has been injected as FDIA in IEEE-14 bus network. Firstly, the FDIA nodes are detected by
VSI method. Secondly after FDIA in smart grid the state estimation results applying WEKF, and proposed
method (optimal WLS) have been compared. Lastly, the presence of FDIA has been determined by the
proposed identification approach in IEEE-14 bus system.

The VSI index method was applied in IEEE-14 bus system with injected false data in some nodes.
The experimental result with VSI is shown in Table 1. The VSI has efficiently detected the vulnerable nodes.
Table 2 (column 1) shows all the meter measurements (taken as before attack) along with the estimates
generated by WEKF and proposed method. Figure 3 illustrates the experimental results for the voltage
magnitude of IEEE-14 bus system. The curves indicate voltage magnitudes for the different methods of state
estimation with the proposed scheme. The proposed scheme establishes a very good, estimated value
compared to the other methods. Table 3 explains data (voltage phase) which were obtained by all the meter
measurements (taken as before attack) along with the estimating methods which are generated by WEKF and
proposed method. Figure 4 illustrates the experimental results for the voltage phase of IEEE-14 bus system.
The curves specify voltage phases for the different methods of state estimation with the proposed scheme
which establishes a very good, estimated value than the other methods.
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Table 1. Vulnerable node detection using VSI

Bus No. VSI Stability status Bus No. VSI Stability status
1 1.0000 Stable 8 1.0000 Stable
2 -54.1942 Vulnerable 9 -97.5199 Vulnerable
3 1.0000 Stable 10 1.0000 Stable
4 -23.8973 Vulnerable 11 1.0000 Stable
5 -22.1350 Vulnerable 12 -8.2894 Vulnerable
6 -42.1593 Vulnerable 13 -76.7224 Vulnerable
7 1.0000 Stable 14 -98.1856 Vulnerable

Table 2. Comparison table for voltage magnitude of WEKF and the proposed method after FDI

Bus No. Measured value in P. U

Methodology used

Bus No. Measured value in P. U  Methodology used

Before After WEKF  Proposed Before After WEKF  Proposed
FDI FDI [13] method FDI FDI [13] method
1 1.068 1.2134 1.15 1.07 8 1.0287 1.1347 1.06 1.023
2 0.9899 1.0959 1.08 0.99 9 0.9763 1.088 1.07 0.976
3 0.9518 1.0645 1.05 0.96 10 0.9758 1.0873 1.07 0.979
4 0.9579 1.0716 1.061 0.958 11 0.9932 1.1025 11 0.98
5 0.9615 1.0749 1.06 0.96 12 1.0009 1.1091 11 1.001
6 1.0185 1.125 1.115 1.019 13 0.994 1.1028 11 1.03
7 0.9919 1.1028 1.1 1.01 14 0.9647 1.0772 1.05 0.97

Table 3. Comparison table for voltage phase of WEKEF and the proposed method after FDI

Bus No.  Measured value in degree  Methodology used ~ Bus No.  Measured value in degree  Methodology used
Before After WEKF  Proposed Before After WEKF  Proposed
FDI FDI [13] method FDI FDI [13] Method

1 0 0 0 0 8 -13.39 -11.39 -14.39 -13.1

2 -4.97 -4.86 -4.9 -4.92 9 -14.91 -12.91 -15.91 -14.62

3 -12.75 -12.89 -12.8 -12.73 10 -15.4 -134 -16.4 -15.11

4 -10.3 -8.3 -11.3 -10.01 11 -14.9 -12.9 -15.9 -14.61

5 -8.76 -6.76 -9.76 -8.47 12 -15.7 -13.7 -16.7 -15.41

6 -145 -12.5 -155 -14.21 13 -155 -13.5 -16.5 -15.21

7 -13.3 -11.3 -14.3 -13.01 14 -16.08 -14.08 -17.08 -15.79

The Voltage Amplitude of each bus before and after FDI attack
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Figure 3. Comparison of voltage amplitude at each bus before and after FDI attack

4.1. Comparison of RMSE values for different methods

The paper also applies the root mean square error (RMSE) for determining the estimators- WLS,
WEKEF and optimal WLS performance. The RMSE is also used here to find the strength of state estimation
while WLS, WEKF as well as optimal WLS are under FDIA attack. The RMSE computes the estimation
error for WLS, WEKF and optimal WLS estimators by means of deviation between anticipated estimation
and the real value. The anticipated estimated value for bus voltage is matched with real value while network
is attacked. Computation of RMSE may be performed with the following equation. The RMSE computed by
estimated error of every bus has been cited in Table 4. From Table 4, RMSE obtained by optimal WLS
estimation is expressively lower compared to RMSE of the WEKF estimation. So, in presence of FDIA, the
optimal WLS presents enhanced performance for estimation than the WEKF and WLS.
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RMSE = ﬁz?’zl(f] — x;)? (31)

Here N denotes the bus numbers; %, denotes anticipated estimated voltage for the jth bus. The estimate errors
for the voltage parameter for every are shown in Table 5. These data of voltage values have been taken while
the smart grid is under attack. In Table 5, the estimate error of optimal WLS is found to be minimal when
grid is under the injection of false data state. So optimal WLS shows an improvement for estimation
performance over WEKF while smart grid faced attack by FDIA. The column of proposed method in Table 5
and Table 5 using optimal WLS shows very good results as optimal weight least method uses selection of w
and dp which permits the user for attaining nearest optimal estimates of abridged weighted least-squares
estimator. Here the minimum condition is that n is minimal for the order m In(m).

The Voltage Phase in degrees of each bus before and after FDI attack
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Figure 4. Comparison of voltage phase angles at each bus before and after FDI attack

Table 4. RMSE of voltage amplitude
Algorithm RMSE
WLS 0.1094
WEKF [13]  0.0054
Optimal WLS _ 0.00038

Table 5. Estimated error of WLS, WEKF, and proposed optimal WLS and proposed method

Bus WLS method WEKF [13] Proposed method Bus WLS method WEKF [13] Proposed method
No. (RMSE) (RMSE) (RMSE) No. (RMSE) (RMSE) (RMSE)

1 8.23x10? -3.1x10°8 5.41x10* 7 10.90x1072 5.5x10° 1.54x10*

2 10.20x10%2 5.3x10° 4.20x10* 8 11.44x1072 5.8x10° 1.37x10*

3 9.94x10°2 4.2x10°% 3.76x10 9 10.96x1072 3.9x10°%° 1.89x10°

4 12.14x107 5.1x10° 3.29x10* 10 10.94x1072 6.1x10° 1.55x10

5 12.16x1072 6.2x10°° 2.69x10* 11 11.75x1072 5.2x10°° 5.43x10°

6 11.47x107 7.5x10°° 2.12x10* 12 11.64x1072 3.7x10°% 6.46x107°

7 10.90x1072 5.5x10°3 1.54x10* 13 11.71x107 4.1x10° 6.76x10°®

8 11.44x1072 5.8x10° 1.37x10* 14 12.05x1072 7.2x10°° 7.55x10°®

5. CONCLUSION

This paper recommends a technique based on VSI index and state deviation to efficiently identify
and pinpoint the FDIA. To pinpoint the FDIA the VSI index algorithm has been implemented. Using a
discrete optimal sampling weighting function to the orthodox WLS method, the detection performance due to
the FDIA attack is blocked efficiently. The consistency test for WLS, WEKF as well as optimal WLS
estimation were executed to primarily decide the presence of false data injection attack within network. With
the intention of dropping this value for error finding rate, residual test was also executed. For reducing the
redundancy of the network, efficient chi-square test has been executed. Ultimately, the experimental results
establish the outstanding enactment of proposed scheme to identify FDIA. As future work, diverse FDIA of
smart grid network, like time synchronization attack as well as interception attacks can be considered.
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