Improving Control Performance in DC Micro-Grids with Distributed Generations

Weilin Li, Huimin Li, Min Luo, Yunfei Zhang


DC micro-grids are attracting more and more attention due to their capability to lead to more efficient integration of distributed generation compared with traditional AC micro-grids. In this paper, a hierarchical control architecture is proposed to improve the control performance of DC micro-grid with distributed generations (DGs), which utilize a global controller (GC) to optimize the overall process and a number of distributed local controllers (LCs) associated with each subsystem. The measurement reliability of each LC is guaranteed by an associated measurement validation module which is developed based on Polynomial Chaos Theory (PCT). The system efficiency and robust is counted in the design of GC, where synergetic control theory is adopted. Numerical simulations have been done to verify the proposed method, and the simulation results show good consistency with theoretical analysis.


distributed generators; DC micro-grid; hierarchical control; measurement validation; polynomial chaos

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Applied Power Engineering (IJAPE)
p-ISSN 2252-8792, e-ISSN 2722-2624

Web Analytics Made Easy - StatCounter IJAPE Visitors