Inverter based implementation of maximum power point techniques

Ashish Grover, Richa Adlakha

Abstract


The utilization of renewable energy sources is being pushed by both greater environmental consciousness and expanding demand. Recently, solar photovoltaic technology has found increased use for a broader range of applications. This may be ascribed to solar energy's extensive availability as well as its long-term viability and low cost. According to the global photovoltaic (PV) industry, 594 gigawatts (GW) of PV capacity were installed in 2019, with the objective of replacing conventional source-based generating facilities. The major problem in PV production, however, is identifying the maximum power point tracking (MPPT) systems that are currently in use to compute peak output. For 1240 W PV power plants, this article compares perturb & observe MPPT approaches with incremental conductance MPPT techniques. The MATLAB Simulink program was utilized to conduct the study, which was based on many factors such as voltage, current, and output power under various weather conditions. When these MPPT algorithms are applied to solar trackers, the efficiency, reaction time, and steady-state oscillations all improve.

Keywords


grid; inverters; irradiance; MPPT; photovoltaic; PV array

Full Text:

PDF


DOI: http://doi.org/10.11591/ijape.v11.i3.pp229-236

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Applied Power Engineering (IJAPE)
p-ISSN 2252-8792, e-ISSN 2722-2624

Web Analytics Made Easy - StatCounter IJAPE Visitors