Implementation and study of fuzzy based KY boost converter for electric vehicle charging

Jalla Upendar, Sangem Ravi Kumar, Sapavath Sreenu, Bogimi Sirisha


Elecetric vehicle batteries require direct current (DC) current for charging; hence the circuit alternating current (AC) is converted to DC by a battery charger. Battery charger mostly consists of a rectifier and DC-DC converter with a controller built in to serve as a protective circuit. A harmonic source load is a type of electric car charger. During the AC-DC change over method, harmonic current is introduced into the power system, affecting power quality. In this study, a charging station consisting of buck boost and a charging station consisting a KY Boost converter were simulated. To maintain output voltage of DC-DC converters constant controller is used, the controller is either PI or fuzzy logic controller. So, four models are developed and simulated which are buck-boost converter controlled by proportional-integral (PI)-controller, KY-boost converter controlled by proportional integral-controller, buck boost converter controller fuzzy logic controller and KY boost-converter controlled by fuzzy logic controller. The total harmonic distortion (THD) of the four models is compared.


fuzzy logic controller; electric vehicle; KY boost converter

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Applied Power Engineering (IJAPE)
p-ISSN 2252-8792, e-ISSN 2722-2624

Web Analytics Made Easy - StatCounter IJAPE Visitors