Analysis of the effect of a microcontroller-based solar panel cooling system on temperature and power output
Abstract
This research addresses the problem of temperature fluctuations affecting the efficiency of solar panels. A cooling system has been developed using a Peltier and a combination of air- and water-cooling methods. The air-cooling system involves placing a Peltier coated with a heatsink under the solar panel, while the water-cooling system uses pumped water on the panel's surface. The study aims to design a solar panel cooling system to reduce temperature and power losses and compare its output to standard solar panels. The system includes a Peltier, DC fan, and heatsink. Results indicate that the air-cooling system reduced temperature losses on the bottom milk of solar panels by 14.5%. However, the surface of solar panels showed no reduction in temperature losses. Additionally, solar panels with cooling systems were able to reduce power losses by 4% compared to standard solar panels. This research suggests that the use of an air-cooling system utilizing Peltier as the cooling medium could be a potential solution to reduce temperature losses and power losses on solar panels.
Keywords
cooling system; peltier; power losses; solar panel; temperature
Full Text:
PDFDOI: http://doi.org/10.11591/ijape.v12.i2.pp119-125
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Applied Power Engineering (IJAPE)
p-ISSN 2252-8792, e-ISSN 2722-2624