Analysis, design, and control of standalone PV based boost DC-AC converter

Jnanaranjan Nayak, Sunil Kumar, Pradeep Kumar Sahu, Satyaranjan Jena

Abstract


This paper presents a new control scheme for a boost DC–AC converter which is used for solar power applications. The proposed DC-AC converter configuration can produce an AC voltage level across the output or load side greater than input DC voltage based on the operating duty cycle. Generally, the conventional DC-AC converter or voltage source inverter (VSI) generates AC voltage which is less than input DC voltage. Maintaining a constant voltage across the load with improved dynamic performance is challenging for anyone for the solar photovoltaic (PV) system. A dual-loop sliding mode control is proposed for the boost VSI to address the above issues. The proposed controller has robust in nature against the wide fluctuation in the plant or load parameters. The design, analysis and control of the boost DC-AC converter are briefly discussed in this paper. This topology can be broadly used in solar powered uninterruptible power supply (UPS) where boosting operation is essential for low voltage solar PV system. This topology eliminates the DC boosting power processing stage which leads an improved efficiency of the overall system. The MATLAB/Simulink results are presented to highlight the above issues.

Keywords


Boost inverter; double control loops; PV system; sliding mode controller; voltage source inverter

Full Text:

PDF


DOI: http://doi.org/10.11591/ijape.v13.i2.pp294-302

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Applied Power Engineering (IJAPE)
p-ISSN 2252-8792, e-ISSN 2722-2624

Web Analytics Made Easy - StatCounter IJAPE Visitors